JPH01307145A - Ion source - Google Patents

Ion source

Info

Publication number
JPH01307145A
JPH01307145A JP13750888A JP13750888A JPH01307145A JP H01307145 A JPH01307145 A JP H01307145A JP 13750888 A JP13750888 A JP 13750888A JP 13750888 A JP13750888 A JP 13750888A JP H01307145 A JPH01307145 A JP H01307145A
Authority
JP
Japan
Prior art keywords
intermediate electrode
discharge
anode
cathode
ion source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13750888A
Other languages
Japanese (ja)
Other versions
JPH0559538B2 (en
Inventor
Naomitsu Fujishita
直光 藤下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP13750888A priority Critical patent/JPH01307145A/en
Publication of JPH01307145A publication Critical patent/JPH01307145A/en
Publication of JPH0559538B2 publication Critical patent/JPH0559538B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To suppress abnormal discharge between an intermediate electrode and an anode, heating a heat cathode stably, and have transfer to arc discharge by making the nozzle tip of the intermediate electrode from a high melting point metal material, and forming the gap between the intermediate electrode and the anode in such a small dimension as not to generate insulation breakage. CONSTITUTION:An ion source according to existing invention brings about glow discharge through insulation breakage by means of spark discharge between a heat cathode l and an intermediate electrode 5, heats the heat cathode 1 with this glow discharge, and generates discharge plasma due to arc discharge between the heat cathode 1 and anode 8, wherein the nozzle tip 20 of the intermediate electrode 5 is covered with a high melting point metal material. At the same time, the gap between that part of intermediate electrode 5 except nozzle tip 20 and the anode 8 mating with this intermediate electrode 5 shall be dimensioned smaller that the inter-electrode distance which meets the conditions of the value of product obtained by multiplying the degree of vacuum to give minimum spark voltage, according to Paschen's law, with the inter- electrode distance. This suppresses abnormal discharge within the ion source, stabilizes heating of the heat cathode, and allows easy transfer to arc discharge.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、イオン源に関し、特に半導体あるいは金属
などの表面改質またはビーム加工に利用するイオンビー
ム発生用のイオン源に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an ion source, and particularly to an ion source for generating ion beams used for surface modification or beam processing of semiconductors, metals, etc.

〔従来の技術〕[Conventional technology]

第6図は従来のイオン源を示す断面構成図である。図に
おいて、+11はディスク状の自己加熱形の熱陰極で、
比較的低温で熱電子放出能の高い材料、例えばり、B6
(六ホウ化ランタン)で形成されている。(2)は自己
加熱形の熱陰極<11を保持する、高融点金属材料(例
えばタングステン、タンタル。
FIG. 6 is a cross-sectional configuration diagram showing a conventional ion source. In the figure, +11 is a disk-shaped self-heating hot cathode.
Materials with high thermionic emission ability at relatively low temperatures, such as B6
(lanthanum hexaboride). (2) is a high melting point metal material (e.g. tungsten, tantalum) that holds a self-heating hot cathode <11.

モリブデン等)でできた陰極構造体、(3)は耐熱性の
金属材料(例えばステンレススチール等)による陰極構
造体の取り付は部、(4)は陰極構造体の取り付は部(
3)に接続する取り付は部で、冷却部を備えた陰極フラ
ンジ、(5)は強磁性材料で作られ、後述する発生した
プラズマαηを電界と強磁界でピンチさせる中間電極、
(6)は非磁性材料よりなるもので、中間電極(5)の
冷却部、(7)は中間電極(5)をプラズマから保護す
るため高融点金属材料で作られたライナー、(8)は陰
極(1)間との印加電圧で放電を発生させる陽極、(9
)は強(n場を発生させるマグネットコイル、(101
はイオン源にガスを導入するためのガス導入口、0υは
イオン源の放電用電源、@は放電用電源ODにより負電
圧が印加される陰極電位部であり・熱陰極(1)、陰極
構造体(2)、陰極構造体取り付は部(3)、フランジ
(4)および導入口αΦより構成されている。α濁は中
間電極(5)に電位を与えるためのフローティング抵抗
、Q41はフローティング抵抗031により電位を与え
られる中間電極電位部であり、中間電極(5)、中間電
極の冷却部(6)およびライナー(7)より構成されて
いる。09は陰極電位部0乃と中間電極電位部側を絶縁
するための絶縁物、aeは陽極(8)と中間電極電位部
00を絶縁するための絶縁物、01は低気圧アーク放電
によって生成された放電プラズマ、OIは放電プラズマ
Q71からイオンを引き出すイオン引き出し電極、a情
は引き出されたイオンビームである。
(3) is a heat-resistant metal material (e.g. stainless steel, etc.).
The attachment connected to 3) is a cathode flange equipped with a cooling part, and (5) is an intermediate electrode made of ferromagnetic material that pinches the generated plasma αη with an electric field and a strong magnetic field, which will be described later.
(6) is a cooling part of the intermediate electrode (5) made of a non-magnetic material, (7) is a liner made of a high melting point metal material to protect the intermediate electrode (5) from plasma, and (8) is a liner made of a high melting point metal material. an anode (9) that generates a discharge by applying a voltage between the cathode (1);
) is a magnetic coil that generates a strong (n field, (101
is a gas inlet for introducing gas into the ion source, 0υ is a power source for discharging the ion source, and @ is a cathode potential part to which a negative voltage is applied by the power source for discharging OD. Hot cathode (1), cathode structure The body (2), the cathode structure attachment section (3), the flange (4), and the inlet αΦ. α turbidity is a floating resistor for giving a potential to the intermediate electrode (5), Q41 is an intermediate electrode potential part given a potential by a floating resistor 031, the intermediate electrode (5), the cooling part (6) of the intermediate electrode, and the liner. (7). 09 is an insulator for insulating the cathode potential part 0 to the intermediate electrode potential part side, ae is an insulator for insulating the anode (8) and the intermediate electrode potential part 00, and 01 is an insulator generated by low pressure arc discharge. OI is an ion extraction electrode that extracts ions from the discharge plasma Q71, and OI is the extracted ion beam.

次に動作について説明する。中間電極(5)内の圧力が
例えば0.5 Torr程度になるように例えばアルゴ
ンガスをガス4人口(tillから導入する。この状態
で陰極電位部0りを負、陽極(8)を正として500 
V前後の電圧を放電用電源0υにより印加すると、中間
型piA(51にもフローティング抵抗01を通じて正
の電圧が印加される。この時、熱陰極(1)および陰極
構造体(2)と中間電極(5)の間のうちパッシェンの
法則の最小火花電圧を与える真空度と電極間距離の積の
値(Pd)Cの条件を?+’jjたす付近の部位で絶縁
破壊を起こす。(バフジエンの法則についての詳細は真
空技術常用諸表(日刊工業新聞社、 1965)第11
0頁に掲載されている。)パッシェンの法則の最小火花
電圧を与える真空度と電橋間距離の積の値(pd) c
 はガスの種類、陰極材料、および陰極表面状態などに
よって異なるが、おおよそ、0.5〜1.5Torr−
c+n程度である。この場合、中間電極(5)内の圧力
が0.5 Torrであるので、電極間距離は1〜3C
1i1のところがこの条件に相当する。中間電極(5)
のノズル開口部と陰極構造体(2)の距離を’l cm
程度にしておけば、陰極構造体(2)と中間電極(5)
の間の中心軸付近で絶縁破壊が起こり、グロー放電が発
生する。このとき、中間電極(5)は抵抗a3によりフ
ローティングされているので、放電電流により抵抗αで
の両端に電圧が発生し、中間電極(5)の電位は陰極の
電位に近づく。このため、中間電極(5)と陽極(8)
の間に電圧が発生し、陰極(1)と中間電極(5)間の
放電が陰極(1+と陽極(8)間の放電に進展する。陰
極(1)と陽極(8)間のグロー放電により自己加熱形
の熱陰極filは加熱されて高温になり、熱電子放出を
始め、アーク放電へと移行して放電プラズマ面を発生す
る。この放電プラズマa1は中間電極(5)によりピン
チされて細く絞られているが、マグネットコイル(9)
で中間電極〈5)と陽極(8)間に強磁場を発生させる
ことにより、さらにピンチしてプラズマ密度を高めるこ
とができる。次に、陽極(8)に対し、イオン引き出し
電極a鴎が負電位になるよう数十KV程度の高電圧を印
加すると、陽極(8)の開口を通過した放電プラズマa
ηから高密度のイオンビームQlが引き出される。この
イオンビームα傷は例えば金属の表面改質などに用いら
れる。
Next, the operation will be explained. For example, argon gas is introduced from the gas till so that the pressure inside the intermediate electrode (5) becomes, for example, about 0.5 Torr. In this state, the cathode potential part 0 is set as negative and the anode (8) is set as positive. 500
When a voltage around V is applied by the discharge power source 0υ, a positive voltage is also applied to the intermediate type piA (51) through the floating resistor 01. At this time, the hot cathode (1), the cathode structure (2), and the intermediate electrode Among (5), dielectric breakdown occurs near the area where the value of the product of the degree of vacuum and the distance between the electrodes (Pd)C that gives the minimum spark voltage according to Paschen's law is +'jj. For details on the law, see Vacuum Technology Common Use Statements (Nikkan Kogyo Shimbun, 1965), No. 11.
Published on page 0. ) The value of the product of the degree of vacuum and the distance between electric bridges that gives the minimum spark voltage according to Paschen's law (pd) c
varies depending on the type of gas, cathode material, cathode surface condition, etc., but is approximately 0.5 to 1.5 Torr-
It is about c+n. In this case, since the pressure inside the intermediate electrode (5) is 0.5 Torr, the distance between the electrodes is 1 to 3C.
1i1 corresponds to this condition. Intermediate electrode (5)
The distance between the nozzle opening and the cathode structure (2) is 'l cm
If you keep it to a certain level, the cathode structure (2) and the intermediate electrode (5)
Dielectric breakdown occurs near the central axis between the two, and a glow discharge occurs. At this time, since the intermediate electrode (5) is floated by the resistor a3, a voltage is generated across the resistor α due to the discharge current, and the potential of the intermediate electrode (5) approaches the potential of the cathode. For this reason, the intermediate electrode (5) and the anode (8)
A voltage is generated between the cathode (1) and the intermediate electrode (5), which develops into a discharge between the cathode (1+) and the anode (8). A glow discharge between the cathode (1) and the anode (8) The self-heating hot cathode fil is heated to a high temperature, starts emitting thermionic electrons, transitions to arc discharge, and generates a discharge plasma surface.This discharge plasma a1 is pinched by the intermediate electrode (5). Although it is narrowed down, it is a magnetic coil (9)
By generating a strong magnetic field between the intermediate electrode (5) and the anode (8), the plasma density can be further increased by pinching. Next, when a high voltage of several tens of kilovolts is applied to the anode (8) so that the ion extraction electrode a has a negative potential, the discharge plasma a that has passed through the opening of the anode (8)
A high-density ion beam Ql is extracted from η. This ion beam α scratch is used, for example, to modify the surface of metal.

〔発明が解決使用とする課題〕[Problem to be solved by the invention]

従来のイオン源は以上のように構成されているので、放
電破壊した直後に中間電極(5)と陽極(8)間に発生
した電圧により、中間電極(5)の先端と陽極(8)間
あるいは中間電極の冷却部(51と陽極(8)で絶縁破
壊を起こしやすく、中間電極(5)の表面に陰極点を形
成して金属蒸気を発生するなど放電を不安定にして、熱
陰極fi+をスムーズに加熱できないという問題点があ
った。さらに金属蒸気の発生あるいは電極からのガス放
出によりイオン源内の真空度が変化し一条件の異なる場
所で放電が発生する。
Since the conventional ion source is configured as described above, the voltage generated between the intermediate electrode (5) and the anode (8) immediately after discharge breakdown causes the voltage between the tip of the intermediate electrode (5) and the anode (8) to increase. Alternatively, dielectric breakdown is likely to occur in the cooling part (51) of the intermediate electrode and the anode (8), forming a cathode spot on the surface of the intermediate electrode (5) and generating metal vapor, making the discharge unstable and causing the hot cathode fi+ Furthermore, the degree of vacuum within the ion source changes due to the generation of metal vapor or the release of gas from the electrodes, causing discharge to occur at different locations under different conditions.

とりわけ、陰極取り付は部(3)と中間電極(5)間で
放電が発生した場合、上述した中間電極(5)と陽極(
8)間の放電も発生しやすく、二重の安定な7−り放電
に進展するなどの問題点があったゆ この発明は上記のような問題点を解消するためになされ
たもので、イオン源内で発生する異常な放電を抑制し、
熱陰極の加熱を安定にして、容易にアーク放電に移行さ
せると共に金属蒸気発生によるイオン源内の汚染を抑え
ることができるイオン源を得ることを目的とする。
In particular, the cathode mounting is such that if a discharge occurs between the section (3) and the intermediate electrode (5), the above-mentioned intermediate electrode (5) and anode (
8) There was a problem that discharge between ions was likely to occur, progressing to double stable 7-return discharge. Yuko's invention was made to solve the above problems. suppresses abnormal discharge that occurs within the source,
An object of the present invention is to obtain an ion source that can stabilize heating of a hot cathode, easily transition to arc discharge, and suppress contamination within the ion source due to metal vapor generation.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係るイオン源は、中間電極のノズル先端部を
高融点金属材料で被うと共に、上記ノズル先端部を除く
中間電極と、この中間電極に対向する陽極との間隔を、
パッシェンの法則における最小火花電圧を与える真空度
と電極間距離の積の値の条件を満足する電極間距離より
も小さくしたものである。
In the ion source according to the present invention, the nozzle tip of the intermediate electrode is covered with a high melting point metal material, and the distance between the intermediate electrode excluding the nozzle tip and the anode facing the intermediate electrode is
The distance between the electrodes is smaller than the distance between the electrodes that satisfies the condition of the product of the degree of vacuum and the distance between the electrodes to provide the minimum spark voltage according to Paschen's law.

〔作用〕[Effect]

この発明におけるイオン源は、中間電極のノズル先端を
高融点金属材料にし、中間電極と陽極間ギャップを絶縁
破壊が起こらない程度に十分小さくすることにより、中
間電極と陽極間の異常放電が抑制され、自己加熱形の熱
陰極を安定に加熱し、アーク放電に移行するようしたも
のである。
In the ion source of this invention, the nozzle tip of the intermediate electrode is made of a high melting point metal material, and the gap between the intermediate electrode and the anode is made sufficiently small to prevent dielectric breakdown, thereby suppressing abnormal discharge between the intermediate electrode and the anode. , which stably heats a self-heating hot cathode and transitions to arc discharge.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。(2
Φは中間電極のノズル先端部を被った高融点金属材料(
例えばタングステン、タンタル、モリブデン等)で形成
された中間電極のノズルカバーであり、中間電極(5)
と熱的に密着した状態にある。
An embodiment of the present invention will be described below with reference to the drawings. (2
Φ is the high melting point metal material covering the nozzle tip of the intermediate electrode (
This is a nozzle cover for the intermediate electrode (for example, tungsten, tantalum, molybdenum, etc.), and the intermediate electrode (5)
and are in close thermal contact with each other.

通常、中間電極(5)をプラズマから保護するインサー
ト物であるライナー(7)も高融点金属材料でつくられ
るので、ここではライナー(7)と一体となったものを
ノズルカバーQ@としている。強磁性材料でできている
中間電極(5)および中間電極の冷却部(6)および陽
極(8)は従来のものと機能は同じであるが、中間電極
(5)と陽極(8)の間隔は、パッシェンの法則におけ
る最小火花電圧を与える真空度と電極間距離の積の値(
Pd) cの条件を満たす電極間距離dよりも十分小さ
い。より具体的にいうとQ、 5 Torr程度のガス
圧力下で動作を開始させる場合には、平行平板電極にお
けるdの値は1〜3cmであるので、中間電極(5)と
陽極(8)の間隔は3寵以下にする。この時、高融点金
属材料によるノズルカバーQllIと陽極(8)との間
隔は3f1以上でよい。
Normally, the liner (7), which is an insert that protects the intermediate electrode (5) from plasma, is also made of a high-melting point metal material, so here, the nozzle cover Q@ is integrated with the liner (7). The intermediate electrode (5), cooling part (6) of the intermediate electrode, and anode (8) made of ferromagnetic material have the same functions as conventional ones, but the distance between the intermediate electrode (5) and the anode (8) is is the value of the product of the degree of vacuum and the distance between the electrodes that gives the minimum spark voltage according to Paschen's law (
Pd) is sufficiently smaller than the inter-electrode distance d that satisfies the condition of c. More specifically, when starting the operation under a gas pressure of about 5 Torr, the value of d in the parallel plate electrode is 1 to 3 cm, so the distance between the intermediate electrode (5) and the anode (8) is The spacing should be 3 or less. At this time, the distance between the nozzle cover QllI made of a high melting point metal material and the anode (8) may be 3f1 or more.

上記のように構成されるイオン源では、イオン源内の圧
力が例えばQ、 5 Torr程度になるように例えば
アルゴンガスをガス導入口αΦから導入し、陰極電位部
(2)を負、陽極(8)を正として500■前後の電圧
を放電用電源αBにより印加する。中間電極(5)lに
もフローティング抵抗03を通じて正の電圧が印加され
るので、中間電極(5)と熱陰極+11あるいは陰極構
造体(2)の間に火花放電が発生し、グロー放電へと移
行する。この時、熱陰極fl+あるいは陰極構造体(2
)の表面に陰極点が発生すると、陰極電位部α乃と中間
電極電位部04Jは短絡状態となり、放電用電源θBの
ほぼ全電圧が抵抗(+3の両端に発生し、中間電極電位
部圓と陽極(8)の間に約5oovの電圧が印加された
ことになる。従来のイオン源では中間電極電位部Q41
と陽極(8)間に火花放電が発生して中間電極電位部O
aの表面にも陰極点が形成されて放電を不安定にしてい
た。この実施例のイオン源では、中間電極電位部α旬と
陽極(8)の間隔がノズル先端部を被うノズルカバーα
鴨の部分を除いて3龍以下であり、真空度と電極間距離
の積の値はほぼQ、15Torraa以下となり、火花
放電を起こすには約1000 V以上の電圧が必要とさ
れるので、中間電極電位部0船と陽極(8)の間では火
花放電が発生しない。
In the ion source configured as described above, for example, argon gas is introduced from the gas inlet αΦ so that the pressure inside the ion source becomes, for example, about 5 Torr, and the cathode potential part (2) is set to negative and the anode (8 ) is positive, and a voltage of around 500 μ is applied by the discharge power source αB. Since a positive voltage is also applied to the intermediate electrode (5) l through the floating resistor 03, a spark discharge occurs between the intermediate electrode (5) and the hot cathode +11 or the cathode structure (2), resulting in a glow discharge. Transition. At this time, the hot cathode fl+ or the cathode structure (2
), the cathode potential part α and the intermediate electrode potential part 04J become short-circuited, and almost the entire voltage of the discharge power supply θB is generated across the resistor (+3), and the intermediate electrode potential part This means that a voltage of approximately 5 oov was applied between the anodes (8).In the conventional ion source, the intermediate electrode potential portion Q41
A spark discharge occurs between the anode (8) and the intermediate electrode potential part O.
Cathode spots were also formed on the surface of a, making the discharge unstable. In the ion source of this embodiment, the distance between the intermediate electrode potential part α and the anode (8) is the nozzle cover α that covers the nozzle tip.
Excluding the duck part, it is less than 3 dragons, and the value of the product of the degree of vacuum and the distance between the electrodes is approximately Q, less than 15 Torraa, and a voltage of about 1000 V or more is required to cause a spark discharge, so the intermediate No spark discharge occurs between the electrode potential unit 0 and the anode (8).

中間電極(5)のノズル先端部は磁極であり、陽極(8
)との距離も含めてイオン源の重要なパラメータとなっ
ている。このため、この部分については磁極形状などを
従来のものと変更することなく、ノズル先端部を高融点
金属材料によるノズルカバー(2alで被っているので
、火花放電が発生しても放電は持続しにくい。中間電極
電位部00と陽極(8)の間で異常放電が発生しなけれ
ば、中間電極(5)と陰極電位部Q乃の間の放電は抵抗
01により電流が制限されるので、熱陰極filあるい
は陰極構造体(2)の表面に発生した陰極点も消失し、
安定なグロー放電状態となる。熱陰極fl+および陰極
構造体(2)と陽極(8)間の放電は、放電用電源αU
の出力電圧および出力電流により制御され、熱陰極(1
)を安定に加熱し、アーク放電に移行することができる
。さらに、金属上記蒸気の発生によるイオン源内の汚染
を抑えることができる。
The nozzle tip of the intermediate electrode (5) is a magnetic pole, and the anode (8
) is an important parameter of the ion source, including the distance from the ion source. Therefore, without changing the magnetic pole shape from the conventional one, the nozzle tip is covered with a nozzle cover (2al) made of a high-melting point metal material, so even if a spark discharge occurs, the discharge will not continue. If no abnormal discharge occurs between the intermediate electrode potential section 00 and the anode (8), the current in the discharge between the intermediate electrode (5) and the cathode potential section Q is limited by the resistor 01, so there is no heat dissipation. The cathode spots generated on the surface of the cathode fil or the cathode structure (2) also disappear,
A stable glow discharge state is achieved. The discharge between the hot cathode fl+ and the cathode structure (2) and the anode (8) is generated by the discharge power supply αU.
It is controlled by the output voltage and output current of the hot cathode (1
) can be stably heated and transition to arc discharge. Furthermore, contamination within the ion source due to the generation of metal vapor can be suppressed.

なお、上記実施例では、中間電極電位部041.1!:
陽極(8)の間隔を3龍以下にした場合について示した
が、この改善により、中間電極(5)と陽極(8)間を
絶縁するために設けられた絶縁物(119の露出部の長
さが短かくなり、絶縁長さが短かくなる。絶縁長さが短
かくなると金属蒸気等が付着したりして、絶縁表面が劣
化する。そこで、他の実施例として第2図に示すように
中間電極電位部00と陽極(8)の間隔は保ったまま、
電極表面に凹凸部を設けてもよい。また、第3図に示す
ように絶縁物形状を変えた構造であってもよい。上記ど
ちらの場合にも、金属蒸気が絶縁物01lOに付着しに
<<、絶縁表面の劣化を防止できる。
In addition, in the above embodiment, the intermediate electrode potential portion 041.1! :
Although the case where the distance between the anodes (8) is set to 3 or less is shown, this improvement reduces the length of the exposed part of the insulator (119) provided to insulate between the intermediate electrode (5) and the anode (8). As the insulation length becomes shorter, the insulation length becomes shorter.If the insulation length becomes shorter, metal vapor etc. may adhere to the insulation surface, deteriorating the insulation surface.Therefore, as another example, as shown in FIG. While maintaining the distance between the intermediate electrode potential part 00 and the anode (8),
An uneven portion may be provided on the electrode surface. Alternatively, a structure in which the shape of the insulator is changed as shown in FIG. 3 may be used. In both of the above cases, it is possible to prevent metal vapor from adhering to the insulating material 011O, thereby preventing deterioration of the insulating surface.

次に第4図に示すこの発明の他の実施例について説明す
る。第4図の実施例において、中間電極電位部Oaと陽
極(8)の構造は第1図に示した実施例と同様である。
Next, another embodiment of the invention shown in FIG. 4 will be described. In the embodiment shown in FIG. 4, the structures of the intermediate electrode potential portion Oa and the anode (8) are the same as in the embodiment shown in FIG.

第1図と異なる点は陰極構造体取り付は部(3)を高融
点金属材料で形成し、絶縁物α5)を耐熱性絶縁物(た
とえばアルミナ等のセラミックス等)で形成し、陰極構
造体取り付は部(3)及びフランジ(4)と中間電極(
5)とをほぼ完全にシールドできる構造とした点である
The difference from Fig. 1 is that the cathode structure mounting part (3) is formed of a high-melting point metal material, the insulator α5) is formed of a heat-resistant insulator (for example, ceramics such as alumina, etc.), and the cathode structure is The installation is done by connecting the part (3) and flange (4) to the intermediate electrode (
5) is structured so that it can be almost completely shielded.

第1図で説明した熱陰極(1)あるいは陰極構造体(2
)と中間電極(5)の間の火花放電は、陰極電位部側の
表面状態あるいは各電極からの放出ガス等によって、陰
極構造体の取り付は部(3)あるいはフランジ(4)と
中間電極(5)の間で発生し、陰極構造体取り付は部(
3)あるいはフランジ(4)と中間電極(5)の間で発
生し、陰極構造体取り付は部(3)あるいはフランジ(
4)の中間電極(5)と対向した面に陰極点を形成する
。従来のイオン源では陰極構造体取り付は部(3)およ
びフランジ(4)はたとえばステンレススチール等で構
成されているので陰極点が形成された場合、人世の金属
蒸気およびガスを放出し、イオン源内の圧力が上昇する
。このため、中間型piA電位部a4+と陽pi f8
1の間隔を前述したように3R以下にした状態であって
も、中間電極電位部00と陽極(8)の間に火花放電が
発生し、ともに進展して二重のアーク放電となる。第4
図に示すイオン源では陰極構造体取り付は部(3)を高
融点金属材料とし、陰極構造体取り付は部(3)および
フランジ(4)と中間電極(5)との対向する部分のす
べてを耐熱性絶縁物0鴇でシールドしたことにより、金
属蒸気およびガスの放出が抑制され、二重のアーク放電
は発生しない。
The hot cathode (1) or cathode structure (2) explained in Fig.
) and the intermediate electrode (5). Depending on the surface condition of the cathode potential side or the gas released from each electrode, the installation of the cathode structure may be caused by the connection between the part (3) or the flange (4) and the intermediate electrode. (5), and the cathode structure is attached to the part (
3) or between the flange (4) and the intermediate electrode (5), and the cathode structure is attached to the part (3) or the flange (5).
4) A cathode spot is formed on the surface facing the intermediate electrode (5). In conventional ion sources, the cathode structure mounting part (3) and flange (4) are made of stainless steel, etc., so when a cathode spot is formed, metal vapor and gas are released and ions are released. Pressure within the source increases. Therefore, the intermediate piA potential part a4+ and the positive pi f8
Even if the interval between the electrodes 00 and 1 is set to 3R or less as described above, a spark discharge occurs between the intermediate electrode potential portion 00 and the anode (8), and both develop to form a double arc discharge. Fourth
In the ion source shown in the figure, the part (3) for attaching the cathode structure is made of a high melting point metal material, and the part (3) and the part facing the flange (4) and the intermediate electrode (5) are used for attaching the cathode structure. By shielding everything with a heat-resistant insulator, the release of metal vapor and gas is suppressed, and double arcing does not occur.

たとえ絶縁物α9と陰極構造体(2)のすきまを通して
火花放電が発生した場合でも、イオン源内の圧力上昇は
少なく、中間電極電位部α1と陽極(8)の間で火花放
電は発生せず、抵抗αりにより電流が制限されるための
放電が消失するか、あるいは正常な放電に移行する。
Even if a spark discharge occurs through the gap between the insulator α9 and the cathode structure (2), the pressure increase within the ion source is small and no spark discharge occurs between the intermediate electrode potential portion α1 and the anode (8). Since the current is limited by the resistance α, the discharge disappears or shifts to normal discharge.

さらにまた、上記実施例においては、デュオプラズマト
ロンの場合について述べたが、中間電攪(5)が非磁性
材料であり、ソースマグネットコイルのないモノプラズ
マトロンの場合であってもよく、第5図に示すようなデ
ュオプラズマトロンを変形したデュオピガトロンの場合
であっても同様の効果を奏する。
Furthermore, in the above embodiment, the case of a duo plasmatron was described, but a monoplasmatron in which the intermediate electric stirrer (5) is made of a non-magnetic material and has no source magnet coil may be used. Even in the case of Duopigatron, which is a modified version of Duo Plasmatron as shown in the figure, the same effect can be achieved.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、陰極構造体により保
持される熱陰極、ノズル部を有する中間電極、及び陽極
を備え、熱陰極と上記中間電極間の火花放電により絶縁
破壊してグロー放電を引き起こし、このグロー放電によ
って熱陰極を加熱して熱陰極と陽極間にアーク放電によ
る放電プラズマを発生させるイオン源において、中間電
極のノズル先端部を高融点金属材料で被うと共に、ノズ
ル先端部を除く中間電極と、この中間電極に対向する陽
極との間隔を、パソシヱンの法則における最小火花電圧
を与える真空度と電極間距離の積の値の条件を満足する
電極間距離よりも小さくしたことにより、イオン源内の
異常な放電を抑制でき、熱陰極の加熱を安定にして、容
易にアーク放電に移行させることができ、不安定な放電
による陰極劣化も抑制でき、また金属蒸気による絶縁の
劣化も抑制できる効果がある。
As described above, the present invention includes a hot cathode held by a cathode structure, an intermediate electrode having a nozzle portion, and an anode, and a spark discharge between the hot cathode and the intermediate electrode causes dielectric breakdown and glow discharge. In an ion source that heats the hot cathode by this glow discharge and generates discharge plasma by arc discharge between the hot cathode and the anode, the nozzle tip of the intermediate electrode is covered with a high melting point metal material, and the nozzle tip is The distance between the intermediate electrode, except for This makes it possible to suppress abnormal discharge within the ion source, stabilize heating of the hot cathode and easily transition to arc discharge, suppress cathode deterioration due to unstable discharge, and prevent insulation deterioration due to metal vapor. It also has the effect of suppressing

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例によるイオン源を示す断面
図、第2図および第3図はそれぞれこの発明の他の実施
例によるイオン源の要部を示す断面図、第4図はこの発
明のさらに他の実施例を示す断面図、第5図はこの発明
のさらに他の実施例として、デュオプラズマトロンを変
形したデュオピガトロンであるイオン源を示す断面図、
第6図は従来の一例であるデュオプラズマトロンイオン
源を示す断面図である。 閏において、+11は熱陰極、(2)は陰極構造体、(
3)は陰極構造体の取り付は部、(5)は中間電極、(
8)は陽極、0りは絶縁物、(2tIは中間電極先端部
である。 なお、図中、同一符号は同一、又は相当部分を示す。 特許出願人 工業技術院長  飯 塚 幸 三第1図 2θ:、%局史、亡タA打才十 第2図 第3図 第4図 第5図 第6図
FIG. 1 is a sectional view showing an ion source according to one embodiment of the present invention, FIGS. 2 and 3 are sectional views showing main parts of an ion source according to other embodiments of the invention, and FIG. FIG. 5 is a cross-sectional view showing still another embodiment of the invention; FIG.
FIG. 6 is a sectional view showing a duoplasmatron ion source, which is an example of the conventional technology. In the leap, +11 is the hot cathode, (2) is the cathode structure, (
3) is the attachment part of the cathode structure, (5) is the intermediate electrode, (
8) is the anode, 0 is the insulator, (2tI is the tip of the intermediate electrode. In the figures, the same reference numerals indicate the same or corresponding parts. Patent applicant: Director of the Agency of Industrial Science and Technology Sachizo Iizuka Figure 1 2θ:, % game history, dead A batting ability, 2nd figure, 3rd figure, 4th figure, 5th figure, 6th figure

Claims (1)

【特許請求の範囲】[Claims] 陰極構造体により保持される熱陰極、ノズル部を有する
中間電極、及び陽極を備え、上記熱陰極と上記中間電極
間の火花放電により絶縁破壊してグロー放電を引き起こ
し、このグロー放電によって上記熱陰極を加熱して上記
熱陰極と上記陽極間にアーク放電による放電プラズマを
発生させるイオン源において、上記中間電極のノズル先
端部を高融点金属材料で被うと共に、上記ノズル先端部
を除く中間電極と、この中間電極に対向する陽極との間
隔を、パッシェンの法則における最小火花電圧を与える
真空度と電極間距離の積の値の条件を満足する電極間距
離よりも小さくしたことを特徴とするイオン源。
A hot cathode held by a cathode structure, an intermediate electrode having a nozzle portion, and an anode are provided, and spark discharge between the hot cathode and the intermediate electrode causes dielectric breakdown and glow discharge, and the glow discharge causes the hot cathode to In an ion source that generates discharge plasma by arc discharge between the hot cathode and the anode by heating the hot cathode and the anode, the nozzle tip of the intermediate electrode is covered with a high melting point metal material, and the intermediate electrode other than the nozzle tip is , an ion characterized in that the distance between the intermediate electrode and the opposing anode is smaller than the distance between the electrodes that satisfies the condition of the product of the degree of vacuum and the distance between the electrodes that provides the minimum spark voltage according to Paschen's law. source.
JP13750888A 1988-06-06 1988-06-06 Ion source Granted JPH01307145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13750888A JPH01307145A (en) 1988-06-06 1988-06-06 Ion source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13750888A JPH01307145A (en) 1988-06-06 1988-06-06 Ion source

Publications (2)

Publication Number Publication Date
JPH01307145A true JPH01307145A (en) 1989-12-12
JPH0559538B2 JPH0559538B2 (en) 1993-08-31

Family

ID=15200308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13750888A Granted JPH01307145A (en) 1988-06-06 1988-06-06 Ion source

Country Status (1)

Country Link
JP (1) JPH01307145A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109655725A (en) * 2019-01-04 2019-04-19 合肥聚能电物理高技术开发有限公司 The quickly device and method of detection solid insulating layer Paschen performance at low pressure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109655725A (en) * 2019-01-04 2019-04-19 合肥聚能电物理高技术开发有限公司 The quickly device and method of detection solid insulating layer Paschen performance at low pressure

Also Published As

Publication number Publication date
JPH0559538B2 (en) 1993-08-31

Similar Documents

Publication Publication Date Title
JP2010192454A (en) Cathode assembly used for indirectly heated cathode ion source
US4297612A (en) Electron gun structure
US4725449A (en) Method of making radio frequency ion source antenna
JP3899898B2 (en) Short arc type mercury lamp
JPH01307145A (en) Ion source
JP2010009977A (en) Electron tube
JP3107190U (en) Improvement of cold cathode tubes
US4095083A (en) Electron-beam apparatus for thermal treatment by electron bombardment
JPS63195262A (en) Apparatus for stabilizing arc between anode and cathode
KR100548930B1 (en) Ion source
US2313646A (en) Gaseous discharge lamp
JPH0443546A (en) Discharge electrode
US6323586B1 (en) Closed drift hollow cathode
US2412842A (en) Electronic discharge cathode
JPH01186780A (en) Vacuum trigger gap device
JP2540492B2 (en) Arc chamber device for ion source
US2242786A (en) Pool-type discharge device
JPS62195837A (en) Plasma x-ray source
JP3060647B2 (en) Freeman ion source
JPH0554812A (en) Ion source
JPH0541566Y2 (en)
JPH07272657A (en) Ion source device
JPH0536460A (en) Discharge type surge absorbing element
KR200227340Y1 (en) Ion beam generator
JP2002155355A (en) Method for starting pressure-gradient type plasma generator

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term