JPH01306585A - Method for preventing corrosion of heat exchanger tube - Google Patents

Method for preventing corrosion of heat exchanger tube

Info

Publication number
JPH01306585A
JPH01306585A JP13675388A JP13675388A JPH01306585A JP H01306585 A JPH01306585 A JP H01306585A JP 13675388 A JP13675388 A JP 13675388A JP 13675388 A JP13675388 A JP 13675388A JP H01306585 A JPH01306585 A JP H01306585A
Authority
JP
Japan
Prior art keywords
seawater
heat exchanger
weakly reducing
tube
exchanger tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13675388A
Other languages
Japanese (ja)
Inventor
Kenki Minamoto
源 堅樹
Shigeru Kiyouhara
京原 繁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP13675388A priority Critical patent/JPH01306585A/en
Publication of JPH01306585A publication Critical patent/JPH01306585A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/18Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using inorganic inhibitors
    • C23F11/187Mixtures of inorganic inhibitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

PURPOSE:To form a protective film on the inside of a heat exchanger tube and to produce a significant corrosion preventing effect by adding weakly reducing chemicals and ferrous ions to seawater and passing this seawater through the tube. CONSTITUTION:10<-4>-10<-1>mol/m<3> weakly reducing chemicals such as sodium thiosulfate or sodium sulfite and 0.01-10g/m<3> ferrous ions are added to seawater and this seawater is passed through a heat exchanger tube to form an iron hydroxide film on the inside of the tube. The effect of the weakly reducing chemicals is enhanced by successively adding the chemicals toward the upper stream side of the passing direction of the seawater from the charge point of the ferrous ions. In a plant in which treatment with chlorine is carried out, chlorine and the weakly reducing chemicals are successively added to seawater toward the downstream side of the passing direction of the seawater from the charge point of chlorine as a matter of course. A significant corrosion preventing effect is produced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、熱交換器管の内面に水酸化鉄の保護皮膜を形
成して防食する熱交換器管の防食方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for preventing corrosion of heat exchanger tubes by forming a protective film of iron hydroxide on the inner surface of the heat exchanger tubes.

[従来の技術] 各種熱交換器用伝熱管には、銅合金管が多用されている
。また、海水又は河海水を冷却水とする熱交換器におい
ては、この銅合金伝熱管の防食方法の1つとして、冷却
海水中へ第一鉄イオンを注入して水酸化鉄の保護皮膜を
形成する方法が広く採用されている。
[Prior Art] Copper alloy tubes are often used as heat exchanger tubes for various heat exchangers. In addition, in heat exchangers that use seawater or river/seawater as cooling water, one way to prevent corrosion of copper alloy heat transfer tubes is to form a protective film of iron hydroxide by injecting ferrous ions into the cooling seawater. This method is widely used.

[発明が解決しようとする課題] しかしながら、生物汚染防止の目的で海水の塩素処理が
実施されている場合とか、例えは、石油化学工業等にお
いて第一鉄イオン注入点から熱交換器迄の距離が長い場
合等においては、第一鉄イオンを注入しても保護皮膜の
形成が十分でないことがある。このため、従来の防食方
法では、上述の分野において、腐食を十分に防止するこ
とができないという難点がある。
[Problem to be solved by the invention] However, in cases where seawater is chlorinated for the purpose of preventing biological pollution, for example, in the petrochemical industry, etc., the distance from the ferrous ion injection point to the heat exchanger In some cases, the formation of a protective film may not be sufficient even if ferrous ions are implanted. Therefore, conventional corrosion prevention methods have the disadvantage that they cannot sufficiently prevent corrosion in the above-mentioned fields.

本発明はかかる問題点に鑑みてなされたものであって、
海水の塩素処理が実施されている場合又は遠距離注入等
の場合においてら、第一鉄・イオンの注入により有効な
保護皮膜を形成することがてきる熱交換器管の防食方法
を提供することを目的とする。
The present invention has been made in view of such problems, and includes:
To provide a method for preventing corrosion of heat exchanger tubes by which an effective protective film can be formed by injection of ferrous iron/ions even when chlorination of seawater is carried out or in case of long-distance injection. With the goal.

[課題を解決するための手段] 本発明に1系る熱交換器管の防食方法は、10−4乃至
10−1モル/ nrの弱還元性薬剤と、0.01乃至
1.0 g / n(の第一鉄イオンとを添加した海水
を熱交換器管内に通流させて熱交換器管内面に保護皮膜
を形成することを特徴とする。
[Means for Solving the Problems] A corrosion prevention method for heat exchanger tubes according to the present invention includes a weak reducing agent of 10-4 to 10-1 mol/nr and 0.01 to 1.0 g/nr. The method is characterized by forming a protective film on the inner surface of the heat exchanger tube by flowing seawater to which ferrous ions (n) have been added into the heat exchanger tube.

[作用] 本発明においては、熱交換器用伝熱管の内面に第一鉄イ
オン(Fe  ”)を0 、01乃至It) g / 
niたけ添加すると共に、弱還元性薬剤を10−4乃至
10−1モル/ ni添加した海水を通流させる。この
第一鉄イオンを含有する海水の通/Pにより、伝熱管内
面に水酸化鉄の皮膜が形成される。
[Function] In the present invention, ferrous ions (Fe'') are added to the inner surface of the heat transfer tube for a heat exchanger at a concentration of 0,01 to It) g/
ni and a weakly reducing agent at 10-4 to 10-1 mol/ni is passed through the tank. Through the passage of seawater containing ferrous ions, an iron hydroxide film is formed on the inner surface of the heat exchanger tube.

第一鉄イオンの注入により管内面に水酸化鉄皮膜が形成
される機構については、次のように考えられる。海水中
に注入された第一鉄イオン(Fe  ”)は極めて短時
間のうちに酸化を受けてγ−F e OOHになる。こ
のγ−F e OOHはコロイド粒子となり、このγ−
F e OOHのコロ・イド粒子が静電的な力により管
壁に付着することによって水酸化鉄皮膜が形成される。
The mechanism by which an iron hydroxide film is formed on the inner surface of a tube due to the implantation of ferrous ions is thought to be as follows. Ferrous ions (Fe'') injected into seawater undergo oxidation in an extremely short period of time to become γ-Fe OOH. This γ-Fe OOH becomes colloidal particles, and this γ-
An iron hydroxide film is formed by the colloidal particles of F e OOH adhering to the tube wall due to electrostatic forces.

ところが、コロイド粒子は時間の経過と共に互いに凝集
して粗大な粒子となり、やがては懸濁物となる。そして
、塩素処理海水中では塩素による酸化によって、また、
遠距離注入では時間の経過によって、γ−F e OO
Hのコロイド粒子が付着力が弱い懸濁物となり易い。こ
のため、管内面への水酸化鉄皮膜の生成が不十分となる
However, over time, colloidal particles aggregate with each other and become coarse particles, eventually becoming a suspension. In chlorinated seawater, due to oxidation caused by chlorine,
In long-distance injection, γ-F e OO
Colloidal particles of H tend to form a suspension with weak adhesion. For this reason, the formation of the iron hydroxide film on the inner surface of the tube becomes insufficient.

本願発明者等がこのような塩素による酸化又は経時変化
による影響を防止すべく種々検討した結果、千オ硫酸ナ
トリウム又は亜硫酸すトリウム等の弱還元性薬剤を10
−4乃至10−’モル、/ Tl?の割合で添加し、か
つ第一鉄イオンを0.01乃至]Og/rnの割合で添
加した海水を管内に通水することによって、上記環境下
においても水酸化鉄皮膜を十分に生成することができる
ことを見い出した。つまり、塩素処理された海水の中の
遊離塩素及び溶存酸素の一部が、添加された弱還元性薬
剤との反応に消費されて減少し、海水の酸化性が弱まる
As a result of various studies by the inventors of this application in order to prevent the effects of oxidation caused by chlorine or changes over time, we found that weakly reducing agents such as sodium 100 sulfate or thorium sulfite were
-4 to 10-' mol, / Tl? By passing seawater into the pipe into which ferrous ions have been added at a ratio of 0.01 to ]Og/rn, an iron hydroxide film can be sufficiently generated even under the above environment. I discovered that it can be done. That is, some of the free chlorine and dissolved oxygen in the chlorinated seawater are consumed and reduced by the reaction with the added weakly reducing agent, and the oxidizing properties of the seawater are weakened.

従って、保護皮膜形成のために注入した第一鉄イオンか
途中で酸化されることが防止され、この第一鉄イオンは
熱交換器に到達するまて有効なFe”の形を保つのであ
る。
Therefore, the ferrous ions injected to form the protective film are prevented from being oxidized during the process, and the ferrous ions maintain their effective Fe'' form until they reach the heat exchanger.

弱還元性の薬剤の添加量を10−4乃至10−1モル/
 rdと限定した理由は、弱還元性薬剤が10−4モル
/ rd未満の場合は、海水の酸化性を弱めるのに十分
でなく、またto−’モル/ nfを超えて添加すると
、海水が逆に還元性とな−)て保護皮膜の形成に有効な
γ−F e 001−(のコロイドか生成しにくくなる
からである。強還元性の薬剤も同様の理由で添加するこ
、とは好ましくない。なお、弱還元性の薬剤としてはヂ
オ硫酸ナトリウム及び亜硫酸すl〜リウム等がある。
The amount of weakly reducing agent added is 10-4 to 10-1 mol/
The reason for limiting it to rd is that if the amount of the weak reducing agent is less than 10-4 mol/rd, it will not be sufficient to weaken the oxidizing properties of seawater, and if it is added in excess of to-' mol/nf, the seawater will become On the contrary, it becomes reducing and makes it difficult to produce colloids of γ-F e 001-, which are effective in forming a protective film. Strongly reducing agents can also be added for the same reason. Not preferred. Examples of weakly reducing agents include sodium diosulfate and sulfite.

第一鉄イオンp (z  2 ’の添加酸を001乃至
10g/rfl(ppm)と限定した理由は、このFe
”濃度が0.01 g / n7未満では防食に必要な
水酸化鉄皮膜を形成することができない。また、Fe”
!a度が10g/n(を超えると、水酸化鉄皮膜が厚く
なり過ぎ、皮膜の内部応力で容易に剥離してしまうよう
になる。このような理由から、Fe”濃度を上記範囲に
限定したものである。
The reason why the added acid of ferrous ion p
"If the concentration is less than 0.01 g/n7, the iron hydroxide film required for corrosion protection cannot be formed. Also, Fe"
! When the degree of a exceeds 10 g/n, the iron hydroxide film becomes too thick and easily peels off due to the internal stress of the film.For this reason, the Fe" concentration was limited to the above range. It is something.

一方、弱還元性薬剤の添加は第一鉄イオン注入の場合と
同一場所で行なっても効果はあるものの、第一鉄イオン
注入前に海水の酸化性を弱めておく意味から、第一鉄イ
オン注入位置より海水通流方向の上流側で添加する方が
より効果的である。更に、塩素処理実施プラントにおい
ては、前記弱還元性薬剤の添加位置は、塩素処理の目的
から必然的に、海水に塩素を注入する位置より海水通流
方向の下流側になる。
On the other hand, although it is effective to add a weakly reducing agent at the same location as ferrous ion implantation, ferrous ion It is more effective to add on the upstream side of the seawater flow direction from the injection position. Furthermore, in a chlorination treatment plant, the addition position of the weakly reducing agent is necessarily downstream in the seawater flow direction from the position where chlorine is injected into the seawater for the purpose of chlorination.

[実施例コ 次に、本発明の実施例について説明する。先ず、供試管
として、外径が25.4mm、厚さが1..24mm、
長さが1000IllIIIのアルミニウム黄銅管を使
用して、本発明の実施例方法により保護皮膜を形成し、
その防食性能を試験した。この場合に、残留塩素の0、
lppmの塩素処理を実施した清浄海水を使用し、管内
流速が2 m 7秒となるようにした。
[Example] Next, an example of the present invention will be described. First, a test tube with an outer diameter of 25.4 mm and a thickness of 1.5 mm was used as a test tube. .. 24mm,
Using an aluminum brass tube with a length of 1000IllIII, a protective coating is formed by the method of the embodiment of the present invention,
Its anticorrosion performance was tested. In this case, the residual chlorine is 0,
Clean seawater that had been chlorinated at 1 ppm was used, and the flow rate in the pipe was 2 m 7 seconds.

また、第一鉄イオンの注入点から供試管までの距離は2
00 rnとし、通水時間は、第一鉄イオンの総量か同
じになるようにした。
Also, the distance from the ferrous ion injection point to the test tube is 2
00 rn, and the water flow time was set to be the same as the total amount of ferrous ions.

海水に添加した弱還元性薬剤と第一鉄イオンpe 2+
濃度を下記第1表に示す。なお、第1表には弱還元性薬
剤を添加しない場合、その添加濃度か所定の範囲から外
れる場合、又は第一鉄イオンFe”>1度が所定範囲か
ら外れる場合の比較例ら併わせで記載した。
Weakly reducing agent and ferrous ion PE2+ added to seawater
The concentrations are shown in Table 1 below. In addition, Table 1 also includes comparative examples in which a weakly reducing agent is not added, the concentration of the added agent is outside the specified range, or the ferrous ion Fe">1 degree is outside the specified range. Described.

各実施例及び比較例方法にて形成された保護皮膜の防食
性能を評価するため次の試験をおこな−)た。
The following tests were conducted to evaluate the anticorrosion performance of the protective coatings formed by the methods of each example and comparative example.

(a)保護皮膜の生成状況 半裁し、目視により皮膜の生成状況を観察した。(a) Formation status of protective film The film was cut in half and the state of film formation was visually observed.

(b)Fe付着量 保護皮膜を塩酸で溶解し、原子吸光分析により被膜中の
Fe量を求めた。
(b) Amount of Fe deposited The protective film was dissolved in hydrochloric acid, and the amount of Fe in the film was determined by atomic absorption spectrometry.

(C)ジェット試験 供試管を半裁した試料に対し、清浄海水の高流速ジェッ
トを試料面に垂直に当てて、その部分のfIIJ食深さ
を測定した。試験は20日間継続した1(d)通水試験 高流速(5m/秒)の清浄海水を2ケ月間通水し、潰食
による試料の減肉量を測定した。
(C) Jet test A high-velocity jet of clean seawater was applied perpendicularly to the sample surface of a sample cut into half of the sample tube, and the fIIJ erosion depth of that portion was measured. The test continued for 20 days. 1(d) Water flow test: Clean seawater was passed at a high flow rate (5 m/sec) for 2 months, and the amount of thinning of the sample due to erosion was measured.

これらの試験の結果を前記第1表に併せて示した。The results of these tests are also shown in Table 1 above.

この第1表から明らかなように、本発明の実施例方法に
より形成した保護皮膜は剥離することがなく防食性が優
れたものであり、その結果、ジェット試験・通水試験で
の腐食程度か極めて軽度である。
As is clear from Table 1, the protective film formed by the example method of the present invention does not peel off and has excellent corrosion resistance, and as a result, the corrosion level in the jet test and water flow test was Very mild.

一方、比較例方法により形成した(′A護護膜膜、防食
性能が十分でなく、腐食の程度が大きい。
On the other hand, the protective film formed by the method of the comparative example ('A) did not have sufficient anticorrosion performance and the degree of corrosion was large.

し発明の効果] 以上説明したように、本発明に係る熱交換器管の防食方
法によれは、弱還元性薬剤を添加することにより海水の
酸化力を弱めるから、保護皮膜生成のために添加した第
一鉄イオンが熱交換器管内面に到達するまでの途中で酸
化消耗されるのを防止することができるので、海水の塩
素処理か実施されている熱交換器の場合又は第一鉄イオ
ン注入点から熱交換器迄の距離が長い場合等においても
汁−分に高い防食効果を得ることがてきる。
[Effects of the Invention] As explained above, the method for preventing corrosion of heat exchanger tubes according to the present invention weakens the oxidizing power of seawater by adding a weakly reducing agent, so it is necessary to add a weakly reducing agent to form a protective film. This prevents the ferrous ions from being oxidized and consumed on the way to the inner surface of the heat exchanger tubes. Even when the distance from the injection point to the heat exchanger is long, a high anticorrosion effect can be obtained.

Claims (4)

【特許請求の範囲】[Claims] (1)10^−^4乃至10^−^1モル/m^3の弱
還元性薬剤と、0.01乃至10g/m^3の第一鉄イ
オンとを添加した海水を熱交換器管内に通流させて熱交
換器管内面に保護皮膜を形成することを特徴とする熱交
換器管の防食方法。
(1) Seawater added with 10^-^4 to 10^-^1 mol/m^3 of a weakly reducing agent and 0.01 to 10 g/m^3 of ferrous ion is placed in the heat exchanger tube. A method for preventing corrosion of a heat exchanger tube, the method comprising forming a protective film on the inner surface of the heat exchanger tube by passing water through the tube.
(2)前記弱還元性薬剤がチオ硫酸ナトリウム及び/又
は亜硫酸ナトリウムであることを特徴とする請求項1に
記載の熱交換器管の防食方法。
(2) The method for preventing corrosion of heat exchanger tubes according to claim 1, wherein the weakly reducing agent is sodium thiosulfate and/or sodium sulfite.
(3)前記弱還元性薬剤は第一鉄イオンの注入位置より
海水通流方向の上流側で注入されることを特徴とする請
求項1又は2に記載の熱交換器管の防食方法。
(3) The method for preventing corrosion of heat exchanger tubes according to claim 1 or 2, wherein the weakly reducing agent is injected upstream in the seawater flow direction from the ferrous ion injection position.
(4)前記海水は塩素処理された後、前記弱還元性薬剤
の注入を受けることを特徴とする請求項3に記載の熱交
換器管の防食方法。
(4) The method for preventing corrosion of heat exchanger tubes according to claim 3, wherein the seawater is chlorinated and then injected with the weakly reducing agent.
JP13675388A 1988-06-03 1988-06-03 Method for preventing corrosion of heat exchanger tube Pending JPH01306585A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13675388A JPH01306585A (en) 1988-06-03 1988-06-03 Method for preventing corrosion of heat exchanger tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13675388A JPH01306585A (en) 1988-06-03 1988-06-03 Method for preventing corrosion of heat exchanger tube

Publications (1)

Publication Number Publication Date
JPH01306585A true JPH01306585A (en) 1989-12-11

Family

ID=15182696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13675388A Pending JPH01306585A (en) 1988-06-03 1988-06-03 Method for preventing corrosion of heat exchanger tube

Country Status (1)

Country Link
JP (1) JPH01306585A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0293083A (en) * 1988-09-28 1990-04-03 Mitsubishi Heavy Ind Ltd Method for preventing corrosion of inner surface of copper alloy pipe
AT398306B (en) * 1992-12-24 1994-11-25 Austrian Energy & Environment Process for the surface protection of copper-alloy condenser tubes
US5591392A (en) * 1992-11-24 1997-01-07 Nippon Steel Corporation Steel plate having good corrosion resistance to condensed water
WO1998011277A1 (en) * 1996-09-12 1998-03-19 T R Oil Services Limited Corrosion inhibitor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5355427A (en) * 1976-10-30 1978-05-19 Furukawa Electric Co Ltd Antioxidation method for metals
JPS53108075A (en) * 1977-03-04 1978-09-20 Daiki Engineering Co Antiicorrosion method for sea water using system
JPS5742715A (en) * 1980-08-25 1982-03-10 Texaco Development Corp Manufacture of polyurethane elastomer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5355427A (en) * 1976-10-30 1978-05-19 Furukawa Electric Co Ltd Antioxidation method for metals
JPS53108075A (en) * 1977-03-04 1978-09-20 Daiki Engineering Co Antiicorrosion method for sea water using system
JPS5742715A (en) * 1980-08-25 1982-03-10 Texaco Development Corp Manufacture of polyurethane elastomer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0293083A (en) * 1988-09-28 1990-04-03 Mitsubishi Heavy Ind Ltd Method for preventing corrosion of inner surface of copper alloy pipe
US5591392A (en) * 1992-11-24 1997-01-07 Nippon Steel Corporation Steel plate having good corrosion resistance to condensed water
AT398306B (en) * 1992-12-24 1994-11-25 Austrian Energy & Environment Process for the surface protection of copper-alloy condenser tubes
WO1998011277A1 (en) * 1996-09-12 1998-03-19 T R Oil Services Limited Corrosion inhibitor

Similar Documents

Publication Publication Date Title
US3658710A (en) Method of removing tubercles using organic polymers and silica and/or chromium compounds
Wachter Sodium Nitrite as Corrosion Inhibitor for Water.
JPH01306585A (en) Method for preventing corrosion of heat exchanger tube
Schleich Application of copper-nickel alloy UNS C70600 for seawater service
Schleich Typical failures of CuNi 90/10 seawater tubing systems and how to avoid them
JPH01212779A (en) Method for preventing corrosion of heat exchanger tube
US5587025A (en) Nuclear steam generator chemical cleaning passivation solution
US3703418A (en) Method of preventing rust on steel surface
JPH0293083A (en) Method for preventing corrosion of inner surface of copper alloy pipe
GB1579217A (en) Her closed circuit water system composition for addition to a central heating system or ot
US5194223A (en) Methods for inhibiting the corrosion of iron-containing and copper-containing metals in boiler feedwater systems
LYNES Corrosion off Copper and Brass in Ammonia Containing Chromate
US4941979A (en) Method of stabilizing manganese in aqueous systems
JPS5835268B2 (en) Anticorrosion agent for highly concentrated water in the circulation system
Wagner et al. An investigation of microbiologically mediated corrosion of copper-nickel piping systems selectively treated with ferrous sulfate
GB2125833A (en) Conversion coatings
US5064612A (en) Inhibitor treatment program for chlorine dioxide corrosion
JPH0386316A (en) Heat-transfer tube for heat exchanger and its manufacture
Cornwell et al. Pitting corrosion in copper tubes in cold water service
EP0064295B1 (en) Method of improving the corrosion resistance of chemical conversion coated aluminum
Kane et al. Behavior of Thermal Spray Aluminum Coating in Wet H2S Environments
JPH05156466A (en) Method for accelerating rust-stabilization of steel
Jones Effect of water chemistry on the erosion-corrosion of aluminum in high temperature high velocity water
Acherman Corrosion properties of molybdenum, tungsten, vanadium, and some vanadium alloys
JP4456387B2 (en) Anticorrosion method for copper water piping.