JPH01212779A - Method for preventing corrosion of heat exchanger tube - Google Patents

Method for preventing corrosion of heat exchanger tube

Info

Publication number
JPH01212779A
JPH01212779A JP3785188A JP3785188A JPH01212779A JP H01212779 A JPH01212779 A JP H01212779A JP 3785188 A JP3785188 A JP 3785188A JP 3785188 A JP3785188 A JP 3785188A JP H01212779 A JPH01212779 A JP H01212779A
Authority
JP
Japan
Prior art keywords
heat exchanger
seawater
exchanger tube
chelate
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3785188A
Other languages
Japanese (ja)
Inventor
Shigeru Kiyouhara
京原 繁
Sadayasu Inagaki
定保 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP3785188A priority Critical patent/JPH01212779A/en
Publication of JPH01212779A publication Critical patent/JPH01212779A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form an effective protective coating film on the inside of a heat exchanger tube made of a Cu alloy by adding specified amts. of ferrous ions and an org. substance forming a chelate with Fe to seawater and by circulating this seawater in the tube. CONSTITUTION:0.01-10ppm ferrous ions and 0.01-10ppm org. substance forming a chelate with Fe are added to seawater and this seawater is circulated in a heat exchanger tube made of a Cu alloy to form an iron hydroxide coating film having a thickness sufficient to prevent corrosion on the inside of the tube. A carboxylic acid such as citric acid or acetic acid is used as the chelate forming org. substance and a more stable chelate compd. is formed by using a chain carboxylic acid having two or more carboxyl groups in the molecule. A protective coating film causing no exfoliation is formed and a heat exchanger tube having superior corrosion preventiveness is obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、熱交換器用伝熱管の防食方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for preventing corrosion of heat exchanger tubes.

[従来の技術] 各種熱交換器用伝熱管には、銅合金管が多用されている
。また、海水を冷却水とする熱交換器においては、この
銅合金伝熱管の防食方法の1つとして、冷却海水中へ第
一鉄イオンを注入して水酸化鉄の保護皮膜を形成する方
法が広く採用されている。
[Prior Art] Copper alloy tubes are often used as heat exchanger tubes for various heat exchangers. In addition, in heat exchangers that use seawater as cooling water, one method for preventing corrosion of copper alloy heat transfer tubes is to inject ferrous ions into the cooling seawater to form a protective film of iron hydroxide. Widely adopted.

[発明が解決しようとする課題] しかしながら、生物汚染防止の目的で海水の塩素処理が
実施されている場合とか、例えば、石油化学工業等にお
いて第一鉄イオン注入点から熱交換器迄の距離が長い場
合等においては、第一鉄イオンを注入しても保護皮膜の
形成が十分でないことがある。このため、従来の防食方
法では、上述の分野において、腐食を十分に防止するこ
とができないという難点がある。
[Problem to be solved by the invention] However, in cases where seawater is chlorinated for the purpose of preventing biological pollution, or for example in the petrochemical industry, where the distance from the ferrous ion injection point to the heat exchanger is In cases where the length is long, the formation of a protective film may not be sufficient even if ferrous ions are implanted. Therefore, conventional corrosion prevention methods have the disadvantage that they cannot sufficiently prevent corrosion in the above-mentioned fields.

本発明はかかる問題点に鑑みてなされたものであって、
海水の塩素処理が実施されている場合又は遠距離注入等
の場合においても、第一鉄イオンの注入により有効な保
護皮膜を形成することができる熱交換器管の防食方法を
提供することを目的とする。
The present invention has been made in view of such problems, and includes:
The purpose of the present invention is to provide a corrosion prevention method for heat exchanger tubes that can form an effective protective film by implanting ferrous ions even when chlorination of seawater is being carried out or in the case of long-distance injection. shall be.

[課題を解決するための手段] 本発明に係る熱交換器管の防食方法は、第一鉄イオンを
0.01乃至10ppm 、 F eとキレートを形成
する有機物を0.01乃至10ppmだけ添加した海水
を銅合金製熱交換器管内に通流させて熱交換器管内面に
保護皮膜を形成することを特徴とする。
[Means for Solving the Problems] The method for preventing corrosion of heat exchanger tubes according to the present invention includes adding 0.01 to 10 ppm of ferrous ions and 0.01 to 10 ppm of an organic substance that forms a chelate with Fe. It is characterized by forming a protective film on the inner surface of the heat exchanger tube by flowing seawater through the copper alloy heat exchanger tube.

[作用] 本発明においては、第一鉄イオンを0.01乃至10p
pmの濃度で注入するから、熱交換器管内面に水酸化鉄
皮膜が形成され、管内面を防食する。また、同時にFe
とキレートを形成する有機物を0.01乃至10ppm
の濃度で添加するから、水酸化鉄のコロイド粒子が、付
着力が弱い懸濁物となることが抑制される。
[Function] In the present invention, ferrous ions are added at 0.01 to 10p.
Since it is injected at a concentration of pm, an iron hydroxide film is formed on the inner surface of the heat exchanger tubes, which protects the inner surfaces of the tubes from corrosion. At the same time, Fe
0.01 to 10 ppm of organic substances that form chelates with
Since the iron hydroxide colloid particles are added at a concentration of , the colloidal particles of iron hydroxide are prevented from forming a suspension with weak adhesion.

従って、塩素処理海水中でも、また遠距離注入において
も、防食上十分な厚さの水酸化鉄皮膜が形成される。
Therefore, even in chlorinated seawater and in long-distance injection, an iron hydroxide film with a sufficient thickness for corrosion protection is formed.

[実施例] 以下、本発明の実施例について具体的に説明する。本実
施例においては、銅合金製熱交換器用伝熱管の内面に、
第一鉄イオン(Fe  ”)を帆01乃至10ppm添
加すると共に、Feとキレートを形成する有機物を0.
01乃至・10ppm添加した海水を通流させる。これ
により、伝熱管内面に水酸化鉄の皮膜が形成される。
[Examples] Examples of the present invention will be specifically described below. In this example, on the inner surface of the copper alloy heat exchanger tube,
Ferrous ions (Fe'') are added at 0.1 to 10 ppm, and organic substances that form chelates with Fe are added at 0.00 to 10 ppm.
01 to 10 ppm of seawater is passed through the tube. As a result, a film of iron hydroxide is formed on the inner surface of the heat exchanger tube.

第一鉄イオンの注入により管内面に水酸化鉄皮膜が形成
される機構については、次のように考えられる。海水中
に注入された第一鉄イオン(Fe2+)は極めて短時間
のうちに酸化を受けてγ−FeOOHになる。このγ−
FeOOHはコロイド粒子となり、時間の経過につれて
コロイド粒子が成長して大きくなり、やがては懸濁物と
なる。
The mechanism by which an iron hydroxide film is formed on the inner surface of a tube due to the implantation of ferrous ions is thought to be as follows. Ferrous ions (Fe2+) injected into seawater are oxidized to γ-FeOOH in an extremely short period of time. This γ-
FeOOH becomes colloidal particles, and as time passes, the colloidal particles grow and become larger, eventually becoming a suspension.

水酸化鉄皮膜はこのγ−F e OOHのコロイド粒子
が静電的な力によって管壁に付着したものである。
The iron hydroxide film is formed by colloidal particles of γ-Fe OOH attached to the tube wall by electrostatic force.

ところが、塩素処理海水中では塩素による酸化によって
、また、遠距離注入では時間の経過によって、γ−Fe
OOHのコロイド粒子が付着力が弱い懸濁物となってし
まう。このため、管内面への水酸化鉄皮膜の生成が不十
分となる。
However, in chlorinated seawater, γ-Fe is lost due to oxidation due to chlorine, and over time during long-distance injection.
The colloidal particles of OOH become a suspension with weak adhesion. For this reason, the formation of the iron hydroxide film on the inner surface of the tube becomes insufficient.

本願発明者等がこのような塩素による酸化又は経時変化
による影響を防止すべく種々検討した結果、冷却海水中
のFe 2+濃度を0.01乃至10ppmとし、同時
にFeとキレートを形成することができる有機物を0.
01乃至10ppmの濃度範囲で冷却海水に添加するこ
とによって、上記環境下においても水酸化鉄皮膜を十分
に生成することができることを見い出した。つまり、F
eとキレートを形成することができる有機物をo、oi
乃至10ppm+たけ海水に添加することによって、付
着力が弱い懸濁物の生成が防止され、管内面に十分に厚
い水酸化鉄皮膜が生成される。
As a result of various studies conducted by the inventors of the present application in order to prevent the effects of oxidation caused by chlorine or changes over time, it was possible to set the Fe 2+ concentration in the cooling seawater to 0.01 to 10 ppm and form a chelate with Fe at the same time. Organic matter 0.
It has been found that by adding it to cooling seawater in a concentration range of 0.01 to 10 ppm, an iron hydroxide film can be sufficiently produced even under the above environment. In other words, F
Organic substances that can form chelates with e are o and oi.
By adding 10 ppm to 10 ppm+ to seawater, the formation of suspensions with weak adhesion is prevented and a sufficiently thick iron hydroxide film is formed on the inner surface of the tube.

第一鉄イオンFe  2+の濃度を帆01乃至10pp
mと限定した理由は、このFe 2+濃度が0.01p
pm未満では防食に必要な水酸化鉄皮膜を形成すること
ができない。また、Fe 2+濃度が10ppmを超え
ると、水酸化鉄皮膜が厚くなり過ぎ、皮膜の内部応力で
容易に剥離してしまうようになる。このような理由から
、Fe  2+濃度を上記範囲に限定したものである。
Adjust the concentration of ferrous ion Fe 2+ from 01 to 10 pp.
The reason why it is limited to m is that this Fe 2+ concentration is 0.01p
If it is less than pm, the iron hydroxide film required for corrosion protection cannot be formed. Furthermore, when the Fe 2+ concentration exceeds 10 ppm, the iron hydroxide coating becomes too thick and easily peels off due to the internal stress of the coating. For these reasons, the Fe 2+ concentration is limited to the above range.

一方、Feとキレートを形成することができる有機物の
濃度を0.01乃至10ppmと限定した理由は、有機
物濃度が0.01ppm未満では水酸化鉄皮膜形成の改
善効果が得られないこと、また、10ppmを超えて添
加してもその効果は飽和してしまい、無駄であるだけで
なく、水質汚染の原因ともなる。このため、有機物の濃
度範囲を0.01乃至10ppmとした。
On the other hand, the reason why the concentration of organic matter that can form a chelate with Fe is limited to 0.01 to 10 ppm is that if the concentration of organic matter is less than 0.01 ppm, the effect of improving iron hydroxide film formation cannot be obtained. Even if it is added in an amount exceeding 10 ppm, the effect will be saturated, which is not only wasteful but also causes water pollution. For this reason, the concentration range of organic matter was set to 0.01 to 10 ppm.

Feとキレートを形成することができる有機物としては
、カルボン酸又はアミン等がある。その中でもカルボン
酸を用いた場合は、防食性が更に一層優れた保護皮膜を
得ることができる。これは、カルボン酸中のカルボキシ
ル基とFeとの給合力が強いためである。また、このカ
ルボン酸としては、クエン酸又は酢酸等があるが、分子
内に2個以上のカルボキシル基を有する錯式カルボン酸
を使用することにより、更に一層防食性が優れた保護皮
膜を得ることができる。これは、Feが2個のカルボキ
シル基とキレート結合を形成することにより、さらに安
定したキレート化合物を形成することかできるためであ
る。
Examples of organic substances that can form a chelate with Fe include carboxylic acids and amines. Among them, when carboxylic acid is used, a protective film with even more excellent corrosion resistance can be obtained. This is because the bonding force between the carboxyl group in the carboxylic acid and Fe is strong. In addition, examples of this carboxylic acid include citric acid and acetic acid, but by using a complex carboxylic acid having two or more carboxyl groups in the molecule, a protective film with even better corrosion resistance can be obtained. Can be done. This is because Fe can form a more stable chelate compound by forming a chelate bond with two carboxyl groups.

次に、供試管として、外径が25.4mm、厚さが1゜
241、長さが1000m+aのアルミニウム黄銅管を
使用して、本発明の実施例方法により保護皮膜を形成し
その防食性能を試験した結果について説明する。
Next, using an aluminum brass tube with an outer diameter of 25.4 mm, a thickness of 1°241, and a length of 1000 m+a as a test tube, a protective film was formed by the method of the embodiment of the present invention, and its anticorrosion performance was evaluated. The results of the test will be explained.

残留塩素の0.lppmの塩素処理を実施した清浄海水
を使用し、管内流速が2m/秒となるようにした。
Residual chlorine: 0. Clean seawater treated with lppm of chlorine was used, and the flow velocity in the pipe was set to 2 m/sec.

また、硫酸第一鉄の注入点から供試管までの距離は20
0mとし、通水時間は、硫酸第1鉄の総量が同じになる
ようにした。
In addition, the distance from the injection point of ferrous sulfate to the test tube is 20
0 m, and the water flow time was such that the total amount of ferrous sulfate was the same.

海水中の有機物とFe  2+濃度を下記第1表に示す
。なお、第1表には有機物を添加しない場合、その有機
物の濃度が低い場合、又はFe  2+濃度が所定範囲
から外れる場合の比較例も掲載した。
The organic matter and Fe 2+ concentrations in seawater are shown in Table 1 below. Note that Table 1 also lists comparative examples in which no organic substance was added, the concentration of the organic substance was low, or the Fe 2+ concentration was outside the predetermined range.

各実施例及び比較例方法にて形成された保護皮膜の防食
性能を評価するため次の試験をおこなった。
The following tests were conducted to evaluate the anticorrosion performance of the protective films formed by the methods of each example and comparative example.

(a)保護皮膜の生成状況 半裁し、目視により皮膜の生成状況を観察した。(a) Formation status of protective film The film was cut in half and the state of film formation was visually observed.

(b)Fe付着量 保護皮膜を塩酸で溶解し、原子吸光分析により被膜中の
Fe量を求めた。
(b) Amount of Fe deposited The protective film was dissolved in hydrochloric acid, and the amount of Fe in the film was determined by atomic absorption spectrometry.

(C)ジェット試験 供試管を半裁した試料に対し、清浄海水の高流速ジェッ
トを試料面に垂直に当てて、その部分の腐食深さを測定
した。試験は20日間継続した。
(C) Jet test A high-velocity jet of clean seawater was applied perpendicularly to the sample surface of a sample of the test tube cut in half, and the corrosion depth of that portion was measured. The test lasted 20 days.

(d)通水試験 高流速(5m/秒)の清浄海水を2ケ月間通水し、潰食
による試料の減肉量を測定した。
(d) Water flow test Clean seawater was passed through the sample at a high flow rate (5 m/sec) for 2 months, and the amount of thinning of the sample due to erosion was measured.

これらの試験の結果を前記第1表に併せて示した。The results of these tests are also shown in Table 1 above.

この第1表から明らかなように、本発明の実施例方法に
より形成した保護皮膜は剥離することがなく防食性が優
れたものであり、その結果、ジェット試験・通水試験で
の腐食程度が極めて軽度である。
As is clear from Table 1, the protective film formed by the example method of the present invention does not peel off and has excellent corrosion resistance, and as a result, the degree of corrosion in the jet test and water flow test was low. Very mild.

一方、比較例方法により形成した保護皮膜は、防食性能
が十分でなく、腐食の程度が大きい。
On the other hand, the protective film formed by the method of the comparative example did not have sufficient anticorrosion performance and suffered a large degree of corrosion.

[発明の効果] 以上説明したように、本発明に係る熱交換器管の防食方
法によれば、0.01乃至10ppmの第一鉄イオンの
外に、Feとキレートを形成する有機物を0.01乃至
10ppmだけ添加した海水を熱交換器管内に通流させ
るから、海水の塩素処理が実施されている熱交換器の場
合又は第一鉄イオン注入点から熱交換器迄の距離が長い
場合等においても十分に高い防食効果を得ることができ
る。
[Effects of the Invention] As explained above, according to the method for preventing corrosion of heat exchanger tubes according to the present invention, in addition to 0.01 to 10 ppm of ferrous ions, 0.01 to 10 ppm of organic matter that forms a chelate with Fe is added. Since seawater added at 0.01 to 10 ppm is passed through the heat exchanger tubes, this may be the case if the heat exchanger is undergoing chlorination of seawater or if the distance from the ferrous ion injection point to the heat exchanger is long. A sufficiently high anti-corrosion effect can be obtained even in this case.

Claims (3)

【特許請求の範囲】[Claims] (1)第一鉄イオンを0.01乃至10ppm、Feと
キレートを形成する有機物を0.01乃至10ppmだ
け添加した海水を銅合金製熱交換器管内に通流させて熱
交換器管内面に保護皮膜を形成することを特徴とする熱
交換器管の防食方法。
(1) Seawater to which 0.01 to 10 ppm of ferrous ions and 0.01 to 10 ppm of organic matter that forms a chelate with Fe is added is passed through a copper alloy heat exchanger tube to coat the inner surface of the heat exchanger tube. A method for preventing corrosion of heat exchanger tubes, characterized by forming a protective film.
(2)前記有機物がカルボン酸であることを特徴とする
請求項1に記載の熱交換器管の防食方法。
(2) The method for preventing corrosion of heat exchanger tubes according to claim 1, wherein the organic substance is a carboxylic acid.
(3)前記有機物が分子内に2個以上のカルボキシル基
を有する錯式カルボン酸であることを特徴とする請求項
2に記載の熱交換器管の防食方法。
(3) The method for preventing corrosion of a heat exchanger tube according to claim 2, wherein the organic substance is a complex carboxylic acid having two or more carboxyl groups in the molecule.
JP3785188A 1988-02-20 1988-02-20 Method for preventing corrosion of heat exchanger tube Pending JPH01212779A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3785188A JPH01212779A (en) 1988-02-20 1988-02-20 Method for preventing corrosion of heat exchanger tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3785188A JPH01212779A (en) 1988-02-20 1988-02-20 Method for preventing corrosion of heat exchanger tube

Publications (1)

Publication Number Publication Date
JPH01212779A true JPH01212779A (en) 1989-08-25

Family

ID=12509040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3785188A Pending JPH01212779A (en) 1988-02-20 1988-02-20 Method for preventing corrosion of heat exchanger tube

Country Status (1)

Country Link
JP (1) JPH01212779A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008546910A (en) * 2005-06-24 2008-12-25 ハネウェル・インターナショナル・インコーポレーテッド Method for inhibiting corrosion on brazed metal surfaces, and coolants and additives for use therein
US9023235B2 (en) 2012-09-07 2015-05-05 Prestone Products Corporation Heat transfer fluid additive composition

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008546910A (en) * 2005-06-24 2008-12-25 ハネウェル・インターナショナル・インコーポレーテッド Method for inhibiting corrosion on brazed metal surfaces, and coolants and additives for use therein
US9660277B2 (en) 2005-06-24 2017-05-23 Prestone Products Corporation Methods for inhibiting corrosion in brazed metal surfaces and coolants and additives for use therein
US9023235B2 (en) 2012-09-07 2015-05-05 Prestone Products Corporation Heat transfer fluid additive composition
US9598624B2 (en) 2012-09-07 2017-03-21 Prestone Products Corporation Heat transfer fluid additive composition
US10017678B2 (en) 2012-09-07 2018-07-10 Prestone Products Corporation Heat transfer fluid additive composition
US10119058B2 (en) 2012-09-07 2018-11-06 Prestone Products Corporation Heat transfer fluid additive composition

Similar Documents

Publication Publication Date Title
DE69905640D1 (en) Agents for treating metal surfaces, surface-treated metal material and coated metal material
US3658710A (en) Method of removing tubercles using organic polymers and silica and/or chromium compounds
US4325744A (en) Method and composition for cleaning metal surfaces with a film-forming composition
JPH01212779A (en) Method for preventing corrosion of heat exchanger tube
JPH0248981B2 (en)
US20040256030A1 (en) Corrosion resistant, chromate-free conversion coating for magnesium alloys
JPH0428792B2 (en)
JPH01306585A (en) Method for preventing corrosion of heat exchanger tube
US5720902A (en) Methods and compositions for inhibiting low carbon steel corrosion
EP0039228B1 (en) Method for protecting the inner surface of a copper alloy condenser tube from corrosion and a copper alloy condenser tube protected thereby
US3703418A (en) Method of preventing rust on steel surface
JPH07207455A (en) Surface treatment for steel excellent in weather resistance
JP3367437B2 (en) Method to generate uniform weathering stable rust early
Legault et al. Sodium nitrite as a corrosion inhibitor for mild steel
JP2699733B2 (en) Method for promoting rust stabilization of steel
JPS5835268B2 (en) Anticorrosion agent for highly concentrated water in the circulation system
EP0064295B1 (en) Method of improving the corrosion resistance of chemical conversion coated aluminum
JP3331794B2 (en) Surface-treated steel sheet having zinc-based plating film and excellent in white rust resistance and method for producing the same
JPH0438958B2 (en)
JPH02169996A (en) Heat transfer pipe for heat exchanger and manufacture thereof
Wagner et al. An investigation of microbiologically mediated corrosion of copper-nickel piping systems selectively treated with ferrous sulfate
JPH08311690A (en) Rust preventing method for copper or copper alloy material
Kane et al. Behavior of Thermal Spray Aluminum Coating in Wet H2S Environments
JPH0386316A (en) Heat-transfer tube for heat exchanger and its manufacture
JPH04232285A (en) Water treating agent composition (1) for boiler