JPH01306546A - Continuous manufacture of phosphor bronze stock - Google Patents

Continuous manufacture of phosphor bronze stock

Info

Publication number
JPH01306546A
JPH01306546A JP13865588A JP13865588A JPH01306546A JP H01306546 A JPH01306546 A JP H01306546A JP 13865588 A JP13865588 A JP 13865588A JP 13865588 A JP13865588 A JP 13865588A JP H01306546 A JPH01306546 A JP H01306546A
Authority
JP
Japan
Prior art keywords
phosphor bronze
billet
continuously
continuous casting
cast slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13865588A
Other languages
Japanese (ja)
Inventor
Tomokazu Abe
智一 阿部
Manabu Hattori
学 服部
Shigeru Miyoshi
三好 茂
Shozo Sakamoto
坂本 昭造
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP13865588A priority Critical patent/JPH01306546A/en
Publication of JPH01306546A publication Critical patent/JPH01306546A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To continuously and inexpensively manufacture phosphor bronze stocks excellent in cold workability by drawing out molten phosphor bronze in the form of a continuously cast slab or billet in a horizontal direction by means of a horizontal continuous casting machine and then passing the above slab or billet through a rolling mill and heat treatment equipment provided on a continuous casting line to continuously carry out the refining of crystalline grains and the homogenization of material. CONSTITUTION:A continuously cast slab or billet 5 of phosphor bronze is drawn out in a horizontal direction from a horizontal mold having a cooling device 3 and provided to the side wall of a holding furnace 1 for molten phosphor bronze. The above continuously cast slab or billet 5 is rolled by means of a rolling mill 7 at 2-4% draft to undergo the refining of the crystalline grains of the continuously cast slab or billet 5 and is successively heated in a heating furnace 8 provided on the same line to 700-800 deg.C for 15-20min and cooled by means of a cooling device 9 to undergo the remelting of segregation phase and the homogenization of structure, and then, the plate stock, rod stock, bar stock, wire rod, etc., of phosphor bronze excellent in workability are continuously drawn out by means of a drawing device 6.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は、冷間加工性に優れたりん青銅材の連続製造方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for continuously manufacturing a phosphor bronze material having excellent cold workability.

〔従来の技術とその課題〕[Conventional technology and its issues]

りん青銅材は強度、ばね性、耐食性などの特性に優れて
おり、電気、電子機器用部材として広く使用されている
。一般にりん青銅は鋳造組織においてCuを主とする加
工に優れたα相中にこのα相とSn豊冨相で加工性を阻
害するδ相との共析晶(α+δ)を偏析しており、この
ままの状態では圧延等の加工性に劣るため熱処理により
δ成分をα相中に再溶解させる(均質化熱処理)工程を
とっており、通常この熱処理は600〜650°Cで3
時間程度行なわれるものである。
Phosphor bronze material has excellent properties such as strength, springiness, and corrosion resistance, and is widely used as a member for electrical and electronic devices. Generally, in the cast structure of phosphor bronze, eutectoid crystals (α+δ) are segregated in the α phase, which is mainly composed of Cu and has excellent workability, and the α phase and the δ phase, which is a Sn-rich phase and inhibits workability. In this state, the workability for rolling etc. is poor, so a heat treatment is used to re-dissolve the δ component in the α phase (homogenization heat treatment), and this heat treatment is usually performed at 600 to 650°C for 30 minutes.
This will be done for about an hour.

また加工性の改善に1よ鋳塊結晶粒の微細化が望ましい
とされ、電磁撹拌鋳造法、機械的回転撹拌鋳造法などに
より、主に鋳型内での凝固過程における固液界面形態で
あるデンドライト成長により生成したデンドライト結晶
を破砕し微細な初晶α相を晶出させる方法が一般に知ら
れている。
In addition, it is desirable to make the ingot crystal grains finer in order to improve workability, and by electromagnetic stirring casting method, mechanical rotational stirring casting method, etc., dendrites, which are the solid-liquid interface morphology during the solidification process in the mold, are mainly produced. A generally known method is to crush dendrite crystals produced by growth to crystallize a fine primary α phase.

しかしながら上記の均質化熱処理と結晶粒の微細化はこ
れまで別々の工程で独立して行なわれているため均質化
熱処理における長時間加熱による生産性の低下する問題
があり、また撹拌鋳造法による結晶粒の微細化法では鋳
塊凝固後の初晶の形状の不規則による加工性のばらつき
が発生する問題があった。
However, since the above-mentioned homogenization heat treatment and crystal grain refinement have been performed independently in separate processes, there is a problem of reduced productivity due to long heating times in the homogenization heat treatment, and crystal grain refinement due to the stirring casting method. The grain refining method has the problem of variations in workability due to the irregular shape of the primary crystals after solidification of the ingot.

(発明が解決しようとする課題〕 本発明は上記の問題について検討の結果なされたもので
加工性向上のための結晶粒の微細化と、偏析相均質化の
ための加熱処理とを鋳造ラインと同一のライン」二で連
続的に行なって、生産性を高め、かつ特性の良好な材料
が得られるりん青銅材の連続製造方法を開発したもので
ある。
(Problems to be Solved by the Invention) The present invention has been made as a result of studies on the above problems, and it combines the refinement of crystal grains to improve workability and the heat treatment to homogenize the segregated phase into a casting line. We have developed a continuous manufacturing method for phosphor bronze materials that can be carried out continuously on the same line to increase productivity and obtain materials with good properties.

〔課題を解決するための手段および作用]本発明は、溶
湯保持炉側壁に直結した横型連続鋳造機の鋳型内でりん
青銅溶湯を冷却凝固し、鋳型内より凝固した鋳塊を引出
装置により水平に引出した後、連続鋳a機ライン上に配
置された圧延機により加工率2〜4%の圧延を施し、次
いで同ライン上の加熱炉により700〜800°Cの温
度で15〜25分熱処理を施すことを特徴とするりん青
銅材の連続製造方法である。
[Means and effects for solving the problems] The present invention cools and solidifies phosphor bronze molten metal in a mold of a horizontal continuous casting machine that is directly connected to the side wall of a molten metal holding furnace, and then horizontally transports the solidified ingot from inside the mold by a drawing device. After pulling out the caster, it is rolled at a processing rate of 2 to 4% using a rolling mill placed on the continuous casting machine line, and then heat treated for 15 to 25 minutes at a temperature of 700 to 800°C in a heating furnace on the same line. This is a continuous manufacturing method of phosphor bronze material characterized by applying.

すなわち本発明は例えば横型連続鋳造機と圧延機、加熱
炉および引出装置が同一ライン上に直線上に配置された
製造ラインにより、鋳造、圧延、熱処理の工程を連続的
に行なってりん青銅材を製造するものである。例えば第
1図に示すように溶湯保持炉(1)の側壁に鋳型(2)
と鋳型冷却装置(3)が取付けられた横型連続鋳造機(
4)により鋳造したりん青銅の鋳塊(5)は鋳塊引出装
置(6)により水平に引出されて同一ライン上の圧延@
 (71により圧延し、続いて加熱炉(8)を通過させ
て熱処理を施し、冷却装置(9)により冷却して長尺の
板材を製造するものである。
That is, the present invention uses a production line in which, for example, a horizontal continuous casting machine, a rolling mill, a heating furnace, and a drawing device are arranged in a straight line on the same line to continuously perform the steps of casting, rolling, and heat treatment to produce phosphor bronze material. It is manufactured. For example, as shown in Figure 1, a mold (2) is placed on the side wall of a molten metal holding furnace (1).
A horizontal continuous casting machine (
The phosphor bronze ingot (5) cast in step 4) is pulled out horizontally by the ingot drawing device (6) and rolled on the same line @
(71), followed by heat treatment by passing through a heating furnace (8), and cooling by a cooling device (9) to produce a long plate material.

しかして本発明は上記の圧延機により加工率2〜4%で
圧延して鋳塊の結晶粒を微細化して加工性の向上を図る
ものであるが、加工率をこのようにした理由は、加工率
が2%より少ないと、この後の加熱均質化処理を行なっ
ても鋳塊結晶粒の微細化効果が充分に得られず、また加
工率4%程度で鋳塊結晶粒の微細化効果が飽和し、これ
を越えると鋳塊の結晶粒界への応力集中の度合が鋳塊の
表層部と中心部で差が太き(なり、後の加熱による応力
の緩和がなされる時点の延性回復による差が生じ粒界割
れが発生する。
However, in the present invention, the ingot is rolled at a processing rate of 2 to 4% using the above-mentioned rolling mill to refine the crystal grains of the ingot and thereby improve workability. If the processing rate is less than 2%, the effect of refining the ingot crystal grains will not be sufficiently obtained even if the subsequent heating homogenization treatment is performed, and if the processing rate is about 4%, the effect of refining the ingot crystal grains will not be obtained. saturates, and once this is exceeded, the degree of stress concentration on the grain boundaries of the ingot becomes larger (the difference between the surface layer and the center of the ingot becomes large), and the ductility at the point when the stress is relaxed by later heating increases. Differences occur due to recovery and intergranular cracks occur.

また上記圧延加工後加熱炉により700〜800′Cの
温度で15〜25分間熱処理を施して偏析相の再イ容解
とMi織均質化を図るものであるが、温度が700°C
未満では均質化処理に長時間を要し、また800°Cを
越えると鋳塊偏析高中に熱間脆化が現われ粒界割れが発
生し易くなる。
In addition, after the above-mentioned rolling process, heat treatment is performed in a heating furnace at a temperature of 700 to 800'C for 15 to 25 minutes to redissolve the segregated phase and homogenize the Mi texture, but the temperature is 700C.
If it is less than 800°C, it will take a long time to homogenize, and if it exceeds 800°C, hot embrittlement will appear in the ingot segregation and intergranular cracking will likely occur.

さらに加熱時間を15〜25分としたのは15分未満で
は充分な均質化ができず、25分を越えても効果は同じ
であり経済的、能率的でないからである。
Furthermore, the reason why the heating time is set to 15 to 25 minutes is that sufficient homogenization cannot be achieved if the heating time is shorter than 15 minutes, and the effect is the same even if the heating time exceeds 25 minutes, which is not economical or efficient.

本発明は上記したように鋳型から出た鋳塊に連続的に圧
延機による加工歪を与えて結晶粒を微細化し、続いて加
熱炉を通して加熱処理を施して加工歪の緩和、再結晶微
細化を行なうと同時に偏析相の再7容解、am均質化を
連続的に行なうもので、この方法により製造されたりん
青銅材は加工性および曲げ特性の良好なものが得られる
ものである。
As described above, the present invention continuously applies working strain to the ingot that has come out of the mold to refine the crystal grains, and then heats it through a heating furnace to alleviate the working strain and refine the recrystallization. At the same time, redissolution of the segregated phase and homogenization are carried out continuously, and the phosphor bronze material produced by this method has good workability and bending properties.

また鋳造、圧延、熱処理を同一ライン上で行なうので、
製造工程の大111な節減が可能となるものである。
In addition, since casting, rolling, and heat treatment are performed on the same line,
This makes it possible to save 111 times in the manufacturing process.

なお本発明においては前記したりん青!r!板材の他、
条材、棒材など種々の材料が製造可能である。
In addition, in the present invention, the above-mentioned phosphorus blue! r! In addition to board materials,
Various materials such as strips and rods can be manufactured.

〔実施例〕〔Example〕

以下に本発明の一実施例について説明する。 An embodiment of the present invention will be described below.

S n 8.0%、PO,12%、残部Cuと不可避的
不純物からなるりん青銅の厚さ16ffiI11、巾4
00m1の断面を有する鋳塊を第1図に示すヘルトリー
型横型連続鋳造fi (41により鋳塊(5)/E:鋳
造し、引出装置(6)により水平に引出ライン上に設け
られた圧延機(7)により、加工率を0.2.3.4%
と変えて圧延し、続いて加熱炉(8)により、700°
Cに25分、750°Cに20分、s o o ’cに
15分の熱処理を施した。次いでこれを長さ1mに切断
し、16m+8から15+u[Iまで面前し、欠陥のな
いことを硫認した上で、冷間圧延により加工率60%と
して厚さ6mのりん青銅板を作製した。この試料につい
て、圧延加工率と結晶粒度との関係を調べた。
Phosphor bronze consisting of S n 8.0%, PO, 12%, balance Cu and unavoidable impurities, thickness 16ffiI11, width 4
An ingot with a cross section of 00 m1 was cast by the Heltley type horizontal continuous casting fi (41) shown in Fig. (7), the processing rate is 0.2.3.4%
700° in a heating furnace (8).
Heat treatment was performed at C for 25 minutes, at 750°C for 20 minutes, and at SO'C for 15 minutes. Next, this was cut into a length of 1 m, and after sulfurizing it from 16 m + 8 to 15 + u[I and confirming that there were no defects, a 6 m thick phosphor bronze plate was produced by cold rolling at a processing rate of 60%. Regarding this sample, the relationship between rolling reduction rate and grain size was investigated.

この結果を第1表に示す。The results are shown in Table 1.

第1表から明らかなように本発明のNo、 1〜3はい
ずれも平均結晶粒度が非常に微細であり、冷間圧延にお
いても欠陥のない板材が得られる。これに対し従来の方
法によるに4.No、5は結晶粒度が大きく、冷間圧延
においても軽微な割れが発生した。
As is clear from Table 1, samples Nos. 1 to 3 of the present invention all have a very fine average grain size, and a defect-free plate material can be obtained even when cold rolled. In contrast, according to the conventional method, 4. No. 5 had a large grain size, and slight cracks occurred even during cold rolling.

また上記の加工率0%の従来材NQ4と加工率4%の本
発明材Nα3について60mmX300mnの試料を採
取して第2図に示す曲げ試験方法により曲げ径Rと荷重
下との関係について調べた。この結果を第3図に示した
。第3図から明らかなように本発明材は曲げ加工性につ
いても従来材に比べて優れた特性を示すことが認められ
る。
In addition, 60 mm x 300 mm samples were taken from the conventional material NQ4 with a processing rate of 0% and the inventive material Nα3 with a processing rate of 4%, and the relationship between the bending radius R and the load was investigated using the bending test method shown in Figure 2. . The results are shown in FIG. As is clear from FIG. 3, it is recognized that the material of the present invention exhibits superior properties in terms of bending workability compared to the conventional material.

〔効果〕〔effect〕

以上に説明したように本発明によれば、加工性に優れた
りん青銅材が同一ラインで連続的に製造できるため製造
工程が大巾に節減可能となるもので工業上顕著な効果を
奏するものである。
As explained above, according to the present invention, phosphor bronze material with excellent workability can be manufactured continuously on the same line, so that the manufacturing process can be greatly reduced, which has a significant industrial effect. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例にかかる製造方法を説明する
概略図、第2図は本発明の一実施例に用いた曲げ試験方
法を示す斜視図、第3図は本発明の一実施例に係る材料
の曲げ特性を示す図である。 1・・・溶湯保持炉、 2・・・鋳型、 3・・・sh
型冷却装置、 4・・・横型連続鋳造機、 5・・・鋳
塊、 6・・・鋳塊引出装置、 7・・・圧延機、 8
・・・加熱炉、9・・・冷却装置、  lO・・・曲げ
試料、  11・・・曲げ試験台。
FIG. 1 is a schematic diagram illustrating a manufacturing method according to an embodiment of the present invention, FIG. 2 is a perspective view showing a bending test method used in an embodiment of the present invention, and FIG. 3 is an embodiment of the present invention. FIG. 3 is a diagram showing the bending properties of an example material. 1... Molten metal holding furnace, 2... Mold, 3... sh
Mold cooling device, 4... Horizontal continuous casting machine, 5... Ingot, 6... Ingot drawing device, 7... Rolling machine, 8
... Heating furnace, 9... Cooling device, lO... Bending sample, 11... Bending test stand.

Claims (2)

【特許請求の範囲】[Claims] (1)溶湯保持炉側壁に直結した横型連続鋳造機の鋳型
内でりん青銅溶湯を冷却凝固し、鋳型内より凝固した鋳
塊を引出装置により水平に引出した後、連続鋳造機ライ
ン上に配置された圧延機により加工率2〜4%の圧延を
施し、次いで同ライン上の加熱炉により700〜800
℃の温度で15〜25分熱処理を施すことを特徴とする
りん青銅材の連続製造方法。
(1) The phosphor bronze molten metal is cooled and solidified in the mold of a horizontal continuous casting machine that is directly connected to the side wall of the molten metal holding furnace. After the solidified ingot is pulled out horizontally from the mold by a drawing device, it is placed on the continuous casting machine line. Rolling is performed at a processing rate of 2 to 4% using a rolling mill, and then rolling is performed at a processing rate of 700 to 800% using a heating furnace on the same line.
1. A method for continuously producing phosphor bronze material, which comprises performing heat treatment at a temperature of 15 to 25 minutes at a temperature of .degree.
(2)りん青銅材が板材、条材、棒材、線材などである
ことを特徴とする請求項1記載のりん青銅材の連続製造
方法。
(2) The method for continuously manufacturing a phosphor bronze material according to claim 1, wherein the phosphor bronze material is a plate material, a strip material, a bar material, a wire material, or the like.
JP13865588A 1988-06-06 1988-06-06 Continuous manufacture of phosphor bronze stock Pending JPH01306546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13865588A JPH01306546A (en) 1988-06-06 1988-06-06 Continuous manufacture of phosphor bronze stock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13865588A JPH01306546A (en) 1988-06-06 1988-06-06 Continuous manufacture of phosphor bronze stock

Publications (1)

Publication Number Publication Date
JPH01306546A true JPH01306546A (en) 1989-12-11

Family

ID=15227053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13865588A Pending JPH01306546A (en) 1988-06-06 1988-06-06 Continuous manufacture of phosphor bronze stock

Country Status (1)

Country Link
JP (1) JPH01306546A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109518105A (en) * 2018-12-04 2019-03-26 贵溪骏达特种铜材有限公司 A kind of cooling equipment of special type copper rod smelting molding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109518105A (en) * 2018-12-04 2019-03-26 贵溪骏达特种铜材有限公司 A kind of cooling equipment of special type copper rod smelting molding
CN109518105B (en) * 2018-12-04 2020-08-21 贵溪骏达特种铜材有限公司 Cooling equipment for special copper bar smelting and forming

Similar Documents

Publication Publication Date Title
JP2021520059A (en) Manufacturing method of 1XXX cathode foil for aluminum electrolytic capacitors
GB2027621A (en) Processes for preparing low earing aluminium alloy strip
CA2548788A1 (en) Method for producing al-mg-si alloy excellent in bake-hardenability and hemmability
CN114277272A (en) Composite rare earth alloy for modifying aluminum alloy and preparation method thereof
EP0460234B1 (en) Sheet of titanium-aluminum intermetallic compound and process for producing the same
CN112030018A (en) Preparation method of 6-series aluminum alloy thick plate
KR20150047246A (en) Method for manufacturing of Al-Zn-Mg-Cu alloy sheet with refined crystal grains
JP3767492B2 (en) Method for producing aluminum flexible foil
JP2007186741A (en) Aluminum alloy sheet having excellent high-temperature and high-speed formability, and its production method
JPH01272750A (en) Production of expanded material of alpha plus beta ti alloy
US5798008A (en) Method for producing copper alloy materials for molds for continuous steel casting, and molds made of the materials
EP0202336B1 (en) Process for producing a thin plate of a high ferrosilicon alloy
JP2007063621A (en) Sputtering target material, method for producing aluminum material for sputtering target material, and aluminum material for sputtering target material
JP2798842B2 (en) Manufacturing method of high strength rolled aluminum alloy sheet
JPS6358907B2 (en)
JP2007136467A (en) Cast ingot of copper alloy, method for producing cast ingot of copper alloy, method for producing copper alloy strip and production device for cast ingot of copper alloy
CN114905010A (en) Nickel-based alloy wire and preparation method thereof
KR20150042099A (en) Method for manufacturing of Al-Zn-Cu-Mg alloy sheet and Al-Zn-Cu-Mg alloy sheet thereby
KR101757733B1 (en) Method for manufacturing of Al-Zn-Mg-Cu alloy sheet with refined crystal grains
JPH01306546A (en) Continuous manufacture of phosphor bronze stock
CN114369748A (en) Preparation method of corrosion-resistant aluminum alloy plate
CN114000020A (en) Ingot for large-size die forging and preparation method thereof
KR20160091863A (en) Method for manufacturing of Al-Zn-Cu-Mg alloy sheet and Al-Zn-Cu-Mg alloy sheet thereby
JPH02267247A (en) Continuous production of phosphor bronze stock
JPH03294043A (en) Method for continuously casting beryllium copper alloy