JPH01305699A - Driving circuit for ultrasonic oscillator - Google Patents

Driving circuit for ultrasonic oscillator

Info

Publication number
JPH01305699A
JPH01305699A JP63136438A JP13643888A JPH01305699A JP H01305699 A JPH01305699 A JP H01305699A JP 63136438 A JP63136438 A JP 63136438A JP 13643888 A JP13643888 A JP 13643888A JP H01305699 A JPH01305699 A JP H01305699A
Authority
JP
Japan
Prior art keywords
ultrasonic oscillator
ultrasonic transducer
signal
susceptance
mechanical resonance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63136438A
Other languages
Japanese (ja)
Inventor
Toshihiko Suzuta
敏彦 鈴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP63136438A priority Critical patent/JPH01305699A/en
Publication of JPH01305699A publication Critical patent/JPH01305699A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transducers For Ultrasonic Waves (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

PURPOSE:To improve driving efficiency by comparing a signal in response to susceptance at the time of driving an ultrasonic oscillator and another signal in response to the susceptance of the ultrasonic oscillator at the time of mechanical resonance and controlling the driving frequency of the ultrasonic oscillator. CONSTITUTION:The signal in response to the susceptance of an ultrasonic oscillator 1 under a driven state generated with a current detector 3, a voltage detector 4, a phase shifter 5, a multiplier 6, a filter 7, and a divider 8 and a signal omegaCd in response to the susceptance of the ultrasonic oscillator 1 under a mechanical resonance state in which the imaginary number component of a current applied to the ultrasonic oscillator 1 and another current applied to a damping capacity Cd of the ultrasonic oscillator 1 become equal are compared at a differential amplifier 9, and the frequency of a VCO 2 to drive the ultrasonic oscillator 1 is controlled according to the difference. Thus, since the mechanical resonance frequency of the ultrasonic oscillator 1 can be followed and driven even when the mechanical resonance frequency changes due to the fluctuation of a load, a temperature change, etc., the ultrasonic oscillator can be driven efficiently.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、工業用又は医療用に用いる超音波振動子の駆
動回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a drive circuit for an ultrasonic transducer used for industrial or medical purposes.

[従来の技術] 従来の超音波振動子の駆動回路は、超音波振動子の電圧
と電流の位相差が零、即ち超音波振動子のアドミッタン
スの虚数成分が零となる共振周波数を、PLL (位相
同期ループ)回路によって追尾したり、あるいは超音波
振動子に流れる電流か最大になるように駆動周波数を制
御していた。
[Prior Art] A conventional ultrasonic transducer drive circuit uses PLL ( Tracking was performed using a phase-locked loop (phase-locked loop) circuit, or the driving frequency was controlled to maximize the current flowing through the ultrasonic transducer.

上述の超音波振動子の駆動回路のうち、PLL(位相同
期ループ)回路を用いて超 音波振動子の電圧と電流の位相差か零となるよう駆動周
波数を制御する回路の一例として特開昭58−1839
68号公報かある。
Among the drive circuits for the ultrasonic transducers mentioned above, as an example of a circuit that uses a PLL (phase-locked loop) circuit to control the drive frequency so that the phase difference between the voltage and current of the ultrasonic transducer becomes zero, there is a 58-1839
There is a publication No. 68.

特開昭5E1183968号公報は電歪振動子に電圧低
減用の静電容量を並列接続し、電歪振動子に力率補正用
インダクタンスと電源を直列接続し、インダクタンスを
調整して電源側からみた駆動電圧・電流の位相差か零と
なるようにPLL回路を用いた超音波発振器を開示する
JP-A-5E1183968 discloses a method in which a capacitance for voltage reduction is connected in parallel to an electrostrictive vibrator, an inductance for power factor correction and a power source are connected in series to the electrostrictive vibrator, and the inductance is adjusted as seen from the power source side. An ultrasonic oscillator using a PLL circuit is disclosed so that the phase difference between drive voltage and current is zero.

[発明が解決しようとする課題] このように従来の超音波振動子は電圧と電流の位相差が
零となる共振周波数あるいは超音波振動子に流れる電流
が最大になる周波数で駆動されている。これらのいずれ
の駆動周波数も超音波振動子に流れる電流の虚数成分と
超音波振動子の制動容量に流れる電流が等しくなる機械
的共振周波数とは異なり、機械的共振周波数から離れた
周波数である。これらの駆動周波数における効率は機械
的共振周波数時の駆動の効率よりも悪いという欠点かあ
った。
[Problems to be Solved by the Invention] As described above, conventional ultrasonic transducers are driven at the resonant frequency at which the phase difference between voltage and current becomes zero, or at the frequency at which the current flowing through the ultrasonic transducer becomes maximum. Each of these driving frequencies is different from the mechanical resonance frequency where the imaginary component of the current flowing through the ultrasonic transducer is equal to the current flowing through the damping capacity of the ultrasonic transducer, and is a frequency far from the mechanical resonance frequency. There was a drawback in that the efficiency at these drive frequencies was lower than the efficiency of drive at the mechanical resonance frequency.

従って、本発明の目的は超音波振動子の機械的共振周波
数を追尾して駆動の効率を向上せることである。
Therefore, an object of the present invention is to improve the driving efficiency by tracking the mechanical resonance frequency of an ultrasonic transducer.

[課題を解決するための手段] この発明による超音波振動子の駆動回路は超音波振動子
を所定の周波数で駆動する駆動手段と、超音波振動子の
駆動時のサセプタンスを検出し、検出したサセプタンス
に応じた信号を出力する第1信号発生手段と、超音波振
動子に流れる電流の虚数成分と超音波振動子の制動容量
に流れる電流が等しくなる機械的共振時の超音波振動子
のサセプタンスに応じた信号を発生する第2信号発生手
段と、第1信号発生手段の出力信号と第2信号発生手段
の出力信号とを比較し、比較結果に応じて駆動手段を制
御し、超音波振動子の駆動周波数を制御する手段を具備
する。
[Means for Solving the Problems] An ultrasonic transducer drive circuit according to the present invention includes a drive means for driving an ultrasonic transducer at a predetermined frequency, and a susceptance that is detected when the ultrasonic transducer is driven. a first signal generating means that outputs a signal according to the susceptance; and a susceptance of the ultrasonic transducer at the time of mechanical resonance in which the imaginary component of the current flowing through the ultrasonic transducer is equal to the current flowing through the braking capacity of the ultrasonic transducer. A second signal generating means generates a signal according to the ultrasonic vibration, compares the output signal of the first signal generating means and the output signal of the second signal generating means, controls the driving means according to the comparison result, and generates an ultrasonic vibration. means for controlling the drive frequency of the child.

[作用] この発明によると、駆動時の超音波振動子のサセプタン
スに応じた信号と、超音波振動子に流れる電流の虚数成
分と超音波振動子の制動容量に流れる電流か等しくなる
機械的共振時の超音波振動子のサセプタンスに応した信
号とを比較し、その差に応じて超音波振動子の駆動周波
数を制御することによって超音波振動子の機械的共振周
波数を追尾することが可能となる。
[Operation] According to the present invention, a signal corresponding to the susceptance of the ultrasonic transducer during driving, a mechanical resonance in which the imaginary component of the current flowing through the ultrasonic transducer and the current flowing through the braking capacity of the ultrasonic transducer are equal. It is possible to track the mechanical resonance frequency of the ultrasonic transducer by comparing the signal corresponding to the susceptance of the ultrasonic transducer and controlling the driving frequency of the ultrasonic transducer according to the difference. Become.

[実施例] 第1図によって第1・実施例の)1■1成を説明する。[Example] 1)1 of the first embodiment will be explained with reference to FIG.

超音波振動子1の第1端子は電圧検出器4の第1端子及
び電流検出器3の第1端子に接続され、超音波振動子1
の第2端子はVCO(電圧制御発振器)2の第1端子及
びゲースに接続される。電圧検出器4の第2端子はアー
スに接続される。電圧検出器4は第1、第2端子間の電
圧即ち、超音波振動子1に印加される電圧を検出し、検
出した電圧に応じた信号を移相器5に出力する。移相器
5は入力信号の位相を90°進めた信号を掛算器6に出
力する。VCOの第2端子は電流検出器3の第2端子に
接続される。電流検出器3は第1、第2端子間の電流即
ち、超音波振動子1に流れる電流を検出し、検出した電
流に応じた信号を掛算器6に出力する。掛算器6は移相
器5の出力□と電流検出器3との出力を掛算し電力を求
め、求めた電力をフィルタフに出力する。フィルタ7は
電力の虚数成分を出力し、出力した電力の虚数成分を割
算器8に供給する。割算器8はフィルタフの出力を電圧
振幅V(固定電圧)で割算し、さらに電圧振幅■で割算
することにより、サセプタンスに比例した信号を求める
。求めた信号は差動アンプ9の非反転入力端子に供給さ
れる。差動アンプ9の反転入力端子はωCd  (機械
的共振時の角周波数ω、超音波振動子の制動容量Cd)
に比例した電圧を発生する定電圧源(図示しない)に接
続される。差動アンプ9はサセプタンスに比例した電圧
とωCdに比例した電圧とを比較し、その比較結果に応
じた出力を積分器10に供給する。積分器10は差動ア
ンプ9の出力を保持し、保持した信号をVCO(電圧制
御発振器)2の制御端子に供給する。
The first terminal of the ultrasonic transducer 1 is connected to the first terminal of the voltage detector 4 and the first terminal of the current detector 3.
The second terminal of is connected to the first terminal of VCO (voltage controlled oscillator) 2 and the gate. A second terminal of voltage detector 4 is connected to ground. The voltage detector 4 detects the voltage between the first and second terminals, that is, the voltage applied to the ultrasonic transducer 1, and outputs a signal corresponding to the detected voltage to the phase shifter 5. The phase shifter 5 outputs a signal obtained by advancing the phase of the input signal by 90 degrees to the multiplier 6. A second terminal of the VCO is connected to a second terminal of the current detector 3. The current detector 3 detects the current between the first and second terminals, that is, the current flowing through the ultrasonic transducer 1, and outputs a signal corresponding to the detected current to the multiplier 6. A multiplier 6 multiplies the output □ of the phase shifter 5 and the output of the current detector 3 to obtain power, and outputs the obtained power to the filter. Filter 7 outputs an imaginary component of power, and supplies the output imaginary component of power to divider 8 . The divider 8 divides the output of the filter by the voltage amplitude V (fixed voltage) and further divides by the voltage amplitude ■ to obtain a signal proportional to the susceptance. The obtained signal is supplied to the non-inverting input terminal of the differential amplifier 9. The inverting input terminal of the differential amplifier 9 is ωCd (angular frequency ω during mechanical resonance, damping capacity Cd of the ultrasonic vibrator)
is connected to a constant voltage source (not shown) that generates a voltage proportional to . Differential amplifier 9 compares a voltage proportional to susceptance with a voltage proportional to ωCd, and supplies an output to integrator 10 according to the comparison result. An integrator 10 holds the output of the differential amplifier 9 and supplies the held signal to a control terminal of a VCO (voltage controlled oscillator) 2.

@3図は本発明で使用する超音波振動子の等価回路であ
り、具体的に説明すると、超音波振動子の等価回路はイ
ンダクタンスLと静電容量Cと電気抵抗Rの直列共振回
路と、その直列共振回路に並列に接続された制動容量C
dからなる。超音波振動子の等価回路の全体の電流をI
として、インダクタンスL1誘導容量 C%電気抵抗R
側に流れる電流をIa、制動容量側に流れる電流をIb
とする。この時、超音波振動子の機械的共振点において
、直列共振回路のインピーダンスは電気抵抗Rのみとな
り、超音波振動子のサセプタンスはωCdとなる。
Figure @3 is an equivalent circuit of the ultrasonic transducer used in the present invention. To explain it specifically, the equivalent circuit of the ultrasonic transducer is a series resonant circuit of inductance L, capacitance C, and electric resistance R, Braking capacitance C connected in parallel to the series resonant circuit
Consists of d. The entire current of the equivalent circuit of the ultrasonic transducer is I
As, inductance L1 inductive capacitance C% electrical resistance R
The current flowing to the side is Ia, and the current flowing to the braking capacity side is Ib.
shall be. At this time, at the mechanical resonance point of the ultrasonic transducer, the impedance of the series resonant circuit is only the electrical resistance R, and the susceptance of the ultrasonic transducer is ωCd.

第4図は超音波振動子のサセプタンスとコンククタンス
の周波数特性を示す図であり、第4図の特性aはサセプ
タンスを示し、第4図の特性すはコンダクタンスを示す
。fmはアドミッタンスか極大となる周波数、t’sは
超音波振動子に流れる?lSlS流産数成分と超音波振
動子の制動容量Cdに流れる電流Ibか等しくなる機械
的共振周波数、frは超音波振動子の電圧・電流の位相
差零の共振周波数を示す。機械的共振時のサセプタンス
はωCd  (機械的共振周波数時の角周波数ω、超音
波振動子1の制動容ff1cd)に等しい。第5図は超
音波振動子のアドミッタンスの周波数特性を示す。縦軸
はサセプタンス、横軸はコンダクタンスを示す。frの
周波数時のサセプタンスは零である。
FIG. 4 is a diagram showing the frequency characteristics of susceptance and conctance of an ultrasonic transducer. Characteristic a in FIG. 4 shows susceptance, and characteristic A in FIG. 4 shows conductance. fm is the frequency at which the admittance is maximum, and t's is the flow to the ultrasonic transducer? The mechanical resonance frequency at which the lSlS miscarriage number component and the current Ib flowing through the damping capacitance Cd of the ultrasonic transducer are equal, and fr indicates the resonance frequency at which the phase difference between voltage and current of the ultrasonic transducer is zero. The susceptance at the time of mechanical resonance is equal to ωCd (angular frequency ω at the time of mechanical resonance frequency, damping capacity ff1cd of the ultrasonic transducer 1). FIG. 5 shows the frequency characteristics of the admittance of the ultrasonic transducer. The vertical axis shows susceptance, and the horizontal axis shows conductance. The susceptance at the frequency of fr is zero.

次に、第1実施例の動作を説明する。第1図によれば、
超音波振動子1かVCO2から出力される交流電圧によ
って駆動される。電圧検出器4は超音波振動子1に印加
された電圧を検出し、電流検出器3は超音波振動子1に
流れる電流を検出する。’r5.圧検出圧検出器用器5
に検出電圧を供給する。移相器5は入力信号の位相に比
べて90’位相の進んだ出力信号を掛算器6に供給する
。電流検出器3は検出電流を掛算器6に(」1給する。
Next, the operation of the first embodiment will be explained. According to Figure 1,
It is driven by an alternating current voltage output from the ultrasonic transducer 1 or the VCO 2. The voltage detector 4 detects the voltage applied to the ultrasonic transducer 1, and the current detector 3 detects the current flowing through the ultrasonic transducer 1. 'r5. Pressure detection pressure detector device 5
Supplies detection voltage to The phase shifter 5 supplies the multiplier 6 with an output signal whose phase is 90' ahead of the phase of the input signal. The current detector 3 supplies the detected current to the multiplier 6 by (1).

掛算器6は移相器5の出力信号と電流検出器3の出力信
号とを掛算し電力を求め、求めた電力をフィルタフに供
給する。フィルタ7は掛算器6の出力を処理する。フィ
ルタ7の出力信号は、電力の虚数成分に比例した信号で
ある。次に、フィルタフの出力を割算器8に供給する。
Multiplier 6 multiplies the output signal of phase shifter 5 and the output signal of current detector 3 to obtain power, and supplies the obtained power to the filter. Filter 7 processes the output of multiplier 6. The output signal of the filter 7 is a signal proportional to the imaginary component of power. The output of the filter is then supplied to a divider 8.

割算器8はフィルタ7の出力を電圧振幅V(固定電圧)
で割算することにより電流の虚数成分か求まり、さらに
′1・R圧振幅Vで割算することにより、駆動時のサセ
プタンス(アドミッタンスの虚数成分)か求まる。
Divider 8 divides the output of filter 7 into voltage amplitude V (fixed voltage)
By dividing by , the imaginary component of the current can be determined, and by further dividing by '1·R pressure amplitude V, the susceptance (imaginary component of admittance) during driving can be determined.

差動アンプ9は割算器8の出力とωCclに比例した′
電圧とを比較し、積分器]0にその差に応じた信号を1
ノえ給する。積分器h−0は差動アンプ9の出力を保持
する。積分器]0はVCO2に制御電圧を供給し、VC
O2の発振周波数を制御する。
The differential amplifier 9 is proportional to the output of the divider 8 and ωCcl.
Compare the voltage and input the signal corresponding to the difference to the integrator]0.
I'll give you something. Integrator h-0 holds the output of differential amplifier 9. Integrator] 0 supplies the control voltage to VCO2, VC
Controls the oscillation frequency of O2.

例えば超音波振動子の駆動周波数か機械的共振周波数よ
り小さければ、割算器8の出力(サセプタンス)はωC
dより大きく、超音波振動子の駆動周波数か機械的共振
周波数より大きければ割算器8の出力はωCdより小さ
く、超音波振動子の駆動周波数か機械的共振周波数と等
しい場合は割算器8の出力はωCdに等しい。従って、
差動アンプ9は割算器8の出力(サセプタンス)とωC
dを比較し、比較結果に対応した出力を積分器]0によ
り積分し、VCO2にフィードバックすることにより割
算器8の出力(サセプタンス)かωCdより火き1すれ
ばVCO2の発振周波数を高くし、割算器8の出力(サ
セプタンス)がωCdより小さければ■C○2の発振周
波数を低くすることによって機械的共振周波数を追尾し
、駆動周波数を常に機械的共振周波数に等しくすること
かできる。
For example, if the driving frequency of the ultrasonic transducer is lower than the mechanical resonance frequency, the output (susceptance) of the divider 8 will be ωC
If it is larger than d and larger than the drive frequency of the ultrasonic transducer or the mechanical resonance frequency, the output of the divider 8 is smaller than ωCd, and if it is equal to the drive frequency of the ultrasonic transducer or the mechanical resonance frequency, the output of the divider 8 is The output of is equal to ωCd. Therefore,
Differential amplifier 9 outputs the output (susceptance) of divider 8 and ωC
d is compared, and the output corresponding to the comparison result is integrated by an integrator]0 and fed back to the VCO2, and the output (susceptance) of the divider 8 is increased by 1 from ωCd to increase the oscillation frequency of the VCO2. , if the output (susceptance) of the divider 8 is smaller than ωCd, the mechanical resonance frequency can be tracked by lowering the oscillation frequency of ■C○2, and the drive frequency can always be made equal to the mechanical resonance frequency.

第2図によって第2実施例の構成を説明する。The configuration of the second embodiment will be explained with reference to FIG.

超音波振動子]の第1端子は電圧検出器4の第1端子及
び電流検出器3の第1端子に接続される。
The first terminal of the ultrasonic transducer] is connected to the first terminal of the voltage detector 4 and the first terminal of the current detector 3.

第2端子はアンプ]1の第1端子及びアースに接続され
る。電圧検出器4の第2端子はアースに接−つ − 続される。電圧検出器4は第1、第2端子間の電圧即ぢ
、超音波振動子]に印加される電圧を検出し、検出した
電圧に応した信号を整流+!:’i 1.2に供給する
。整流器]2は入力信号を整流し、整流した信号を平滑
器]3に供給する。平滑器]3は入力信号を平滑し、平
滑した信号を可変増幅器14に供給する。可変増幅器]
4は入力信号をωCd倍し制動容量 Cdに流れる電流
に応じた信号を求め、求めた信号を差動アンプ9の反転
入力端子に供給する。アンプ1]はVCO2の出力電圧
を増幅し、増幅した電圧を超音波振動子]に印加する。
The second terminal is connected to the first terminal of the amplifier]1 and to ground. The second terminal of voltage detector 4 is connected to ground. The voltage detector 4 detects the voltage applied to the ultrasonic transducer between the first and second terminals, and rectifies the signal corresponding to the detected voltage. :'i Supply to 1.2. The rectifier [2] rectifies the input signal and supplies the rectified signal to the smoother [3]. The smoother] 3 smoothes the input signal and supplies the smoothed signal to the variable amplifier 14. Variable amplifier]
4 multiplies the input signal by ωCd to obtain a signal corresponding to the current flowing through the braking capacitor Cd, and supplies the obtained signal to the inverting input terminal of the differential amplifier 9. Amplifier 1] amplifies the output voltage of VCO 2 and applies the amplified voltage to ultrasonic transducer].

電流検出器3は第1、第2端子間の電流即ぢ、超音波振
動子に流れる電流を検出し、検出した電流に応した信号
を掛算器6に供給する。移相器5は入力信号を位相を9
0°進め、位相か90°進んだ信号を掛算器6に供給す
る。掛算器6はフィルタフに出力を供給する。フィルタ
7は電流の虚数成分に応じた信号を求め、求めた信号を
差動アンプ9の非反転入力端子に供給する。差動アンプ
9は可変増幅器14の出力とフィルタ7の出力との・差
に応じた信号を積分器10に供給する。積分器10は差
動アンプ9の出力を保持し、保持した信号をVCO2に
供給する。VCO2はアンプ11及び移相器5に出力を
供給する。
The current detector 3 detects the current between the first and second terminals, that is, the current flowing through the ultrasonic transducer, and supplies a signal corresponding to the detected current to the multiplier 6. Phase shifter 5 changes the input signal phase to 9
A signal whose phase is advanced by 0° and whose phase is advanced by 90° is supplied to the multiplier 6. Multiplier 6 provides an output to the filter. The filter 7 obtains a signal corresponding to the imaginary component of the current, and supplies the obtained signal to the non-inverting input terminal of the differential amplifier 9. The differential amplifier 9 supplies a signal corresponding to the difference between the output of the variable amplifier 14 and the output of the filter 7 to the integrator 10. Integrator 10 holds the output of differential amplifier 9 and supplies the held signal to VCO 2. VCO2 supplies output to amplifier 11 and phase shifter 5.

第3図は本発明で使用する超音波振動子の等価回路であ
り、第1実施例で説明したように超音波振動子の機械的
共振点において、直列共振回路のインピーダンスは電気
抵抗Rのみとなり、超音波振動子のサセプタンスはωC
dとなるので、超音波振動子の全体に流れる電流■の虚
数成分1mは超音波振動子の制動容量Cdに流れる電流
Ibに等しくなる。従って、超音波振動子に流れる電流
の虚数成分Imと超音波振動子の制動容’14 Cdに
流れる電流1bとを比較することによって、機械的共振
周波数を追尾できる。
Figure 3 shows an equivalent circuit of the ultrasonic transducer used in the present invention. As explained in the first embodiment, at the mechanical resonance point of the ultrasonic transducer, the impedance of the series resonant circuit is only the electrical resistance R. , the susceptance of the ultrasonic transducer is ωC
d, therefore, the imaginary component 1m of the current {circle around (2)} flowing through the entire ultrasonic vibrator becomes equal to the current Ib flowing through the braking capacitance Cd of the ultrasonic vibrator. Therefore, by comparing the imaginary component Im of the current flowing through the ultrasonic vibrator with the current 1b flowing through the damping capacity '14 Cd of the ultrasonic vibrator, the mechanical resonance frequency can be tracked.

第2実施例の動作を説明する。第2図によれば、超音波
振動子1かVCO2から出力されアンプ11によって増
幅される交流電圧によって駆動される。電圧検出器4は
超音波振動子1に印加される電圧を検出する。電流検出
器3は超音波振動子1に流れる電流を検出する。電圧検
出器4は整流器12に出力を供給する。整流器12は平
滑器13に出力を供給する。平滑器]3は可変増幅器1
4に出力を供給する。可変増幅器14は差動アンプ9の
反転入力端子に出力を供給する。即ち、超音波振動子1
に印加される電圧を整流、平滑器して、可変増幅器14
でωCd倍に増幅して機械的共振周波数時の制動容ff
i Cdに流れる電流1bに比例した電圧を得る。
The operation of the second embodiment will be explained. According to FIG. 2, the ultrasonic transducer 1 is driven by an alternating current voltage output from the VCO 2 and amplified by an amplifier 11. Voltage detector 4 detects the voltage applied to ultrasonic transducer 1 . The current detector 3 detects the current flowing through the ultrasonic transducer 1. Voltage detector 4 provides an output to rectifier 12 . Rectifier 12 provides an output to smoother 13. smoother] 3 is variable amplifier 1
4. The variable amplifier 14 supplies an output to the inverting input terminal of the differential amplifier 9. That is, the ultrasonic transducer 1
The voltage applied to the variable amplifier 14 is rectified and smoothed.
The damping capacity ff at the mechanical resonance frequency is amplified by ωCd.
i Obtain a voltage proportional to the current 1b flowing through Cd.

一方移相器5はVCO2の基準の電圧の位相を90°進
める。掛算器6は移相器5の出力と電流検出器3の出力
を掛算し超音波振動子に流れる電流に比例した電圧を得
る。掛算器6の出力をフィルタ7に供給する。フィルタ
7は差動アンプ9の非反転入力端子に出力を供給する。
On the other hand, the phase shifter 5 advances the phase of the reference voltage of the VCO 2 by 90°. A multiplier 6 multiplies the output of the phase shifter 5 and the output of the current detector 3 to obtain a voltage proportional to the current flowing through the ultrasonic transducer. The output of multiplier 6 is supplied to filter 7. Filter 7 supplies an output to the non-inverting input terminal of differential amplifier 9.

フィルタ7の出力信号は超音波振動子に流れる電流の虚
数成分に比例した信号である。
The output signal of the filter 7 is a signal proportional to the imaginary component of the current flowing through the ultrasonic transducer.

そこで、第4図に示すように超音波振動子の駆動周波数
か機械的共振周波数より低ければサセプタンスが大きく
なり、その結果超音波振動子1に流れる電流の虚数成分
ImはIbより太きなる。
Therefore, as shown in FIG. 4, if the driving frequency of the ultrasonic vibrator is lower than the mechanical resonance frequency, the susceptance becomes large, and as a result, the imaginary component Im of the current flowing through the ultrasonic vibrator 1 becomes thicker than Ib.

駆動周波数が機械的共振周波数より高ければサセプタン
スが小さくなり、その結果超音波振動子1に流れる電流
の虚数成分1mはIbより小さくなる。
If the driving frequency is higher than the mechanical resonance frequency, the susceptance becomes smaller, and as a result, the imaginary component 1m of the current flowing through the ultrasonic transducer 1 becomes smaller than Ib.

この特性を用いて、IbとImを差動アンプで比較し差
を積分しVCO2にフィードバックすることにより、I
+++がIbより大きければ駆動周波数を高くし、1m
かIbより小さければ駆動周波数を低くし、Irrlが
Ibと等しい所を追尾して常に機械的共振周波数で駆動
できる。さらに、第2実施例に示す超音波振動子の駆動
回路は第1実施例に示す超音波振動子の駆動回路と比較
して割算器が不要となり、より安価となる。
Using this characteristic, by comparing Ib and Im with a differential amplifier, integrating the difference, and feeding it back to VCO2, I
If +++ is larger than Ib, increase the driving frequency and
If Irrl is smaller than Ib, the driving frequency is lowered, and the part where Irrl is equal to Ib can be tracked and driven at the mechanical resonance frequency at all times. Further, the ultrasonic transducer drive circuit according to the second embodiment does not require a divider and is therefore cheaper than the ultrasonic transducer drive circuit according to the first embodiment.

[発明の効果] 負荷の変動や温度変化などによって超音波振動子の機械
的共振周波数が変化しても常に機械的共振周波数を追尾
して駆動できるので超音波振動子を効率よく駆動できる
。又効率が良いため超音波振動子の破損、発熱等を防ぐ
ことができる。
[Effects of the Invention] Even if the mechanical resonance frequency of the ultrasonic transducer changes due to load fluctuations, temperature changes, etc., the ultrasonic transducer can be driven efficiently by always tracking the mechanical resonance frequency. Furthermore, since the efficiency is high, damage to the ultrasonic transducer, heat generation, etc. can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の超音波振動子の駆動回路を
示す図、第2図は本発明の他の実施例の超音波振動子の
駆動回路を示す図、第3図は本発明の超音波振動子の等
価回路を示す図、第4図は本発明の超音波振動子の周波
数特性を示す図、第5図は本発明の超音波振動子のアド
ミッタンス特性を示す図である。 1・・・超音波振動子、2・・・VCO13・・・電流
検出器、4・・・電圧検出器、5・・・移相器、6・・
・掛算器、7・・フィルタ、8・・割算器、9・・・差
動アンプ、10・・・積分器、11・・アンプ、12・
・・整流器、13・・・平滑器、14・・・可変増幅器
。 出願人代理人 弁理士  坪井 淳 (’;’−L’)  EIL’T、bLah(SLLJ
)  ’l  ’l”JlyL、、b’−、ロツ罰火宍
鼠市 鱒体聚腎穆市
FIG. 1 is a diagram showing a drive circuit for an ultrasonic transducer according to an embodiment of the present invention, FIG. 2 is a diagram showing a drive circuit for an ultrasound transducer according to another embodiment of the present invention, and FIG. FIG. 4 is a diagram showing an equivalent circuit of the ultrasonic transducer of the invention, FIG. 4 is a diagram showing the frequency characteristics of the ultrasonic transducer of the invention, and FIG. 5 is a diagram showing the admittance characteristics of the ultrasonic transducer of the invention. . DESCRIPTION OF SYMBOLS 1... Ultrasonic vibrator, 2... VCO13... Current detector, 4... Voltage detector, 5... Phase shifter, 6...
- Multiplier, 7... Filter, 8... Divider, 9... Differential amplifier, 10... Integrator, 11... Amplifier, 12...
... Rectifier, 13... Smoother, 14... Variable amplifier. Applicant's agent Patent attorney Jun Tsuboi (';'-L') EIL'T, bLah (SLLJ
) 'l 'l'JlyL,, b'-, Lots Punishment Fire Shishi Rat City Masu Body Ju Kidney Mu City

Claims (1)

【特許請求の範囲】[Claims] 超音波振動子を所定の周波数で駆動する駆動手段と、前
記超音波振動子の駆動時のサセプタンスを検出し、検出
したサセプタンスに応じた信号を出力する第1信号発生
手段と、前記超音波振動子に流れる電流の虚数成分と前
記超音波振動子の制動容量に流れる電流が等しくなる機
械的共振時の前記超音波振動子のサセプタンスに応じた
信号を発生する第2信号発生手段と、前記第1信号発生
手段、の出力信号と前記第2信号発生手段の出力信号と
を比較し、比較結果に応じて前記駆動手段を制御し、前
記超音波振動子の駆動周波数を制御する手段を具備する
超音波振動子の駆動回路。
a driving means for driving the ultrasonic vibrator at a predetermined frequency; a first signal generating means for detecting the susceptance of the ultrasonic vibrator when it is driven and outputting a signal according to the detected susceptance; and the ultrasonic vibration. a second signal generating means for generating a signal corresponding to the susceptance of the ultrasonic vibrator at the time of mechanical resonance in which the imaginary component of the current flowing through the ultrasonic vibrator is equal to the current flowing through the braking capacity of the ultrasonic vibrator; The ultrasonic transducer comprises means for comparing the output signal of the first signal generating means and the output signal of the second signal generating means, controlling the driving means according to the comparison result, and controlling the driving frequency of the ultrasonic transducer. Ultrasonic transducer drive circuit.
JP63136438A 1988-06-02 1988-06-02 Driving circuit for ultrasonic oscillator Pending JPH01305699A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63136438A JPH01305699A (en) 1988-06-02 1988-06-02 Driving circuit for ultrasonic oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63136438A JPH01305699A (en) 1988-06-02 1988-06-02 Driving circuit for ultrasonic oscillator

Publications (1)

Publication Number Publication Date
JPH01305699A true JPH01305699A (en) 1989-12-08

Family

ID=15175129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63136438A Pending JPH01305699A (en) 1988-06-02 1988-06-02 Driving circuit for ultrasonic oscillator

Country Status (1)

Country Link
JP (1) JPH01305699A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7157830B2 (en) * 2003-04-02 2007-01-02 Piezomotor Uppsala Ab Near-resonance wide-range operating electromechanical motor
JP2012507208A (en) * 2008-10-23 2012-03-22 ヴァーサタイル パワー インコーポレイテッド System and method for driving an ultrasonic transducer
JP2017220990A (en) * 2016-06-03 2017-12-14 国立大学法人神戸大学 Ultrasonic non-contact power supply system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7157830B2 (en) * 2003-04-02 2007-01-02 Piezomotor Uppsala Ab Near-resonance wide-range operating electromechanical motor
JP2012507208A (en) * 2008-10-23 2012-03-22 ヴァーサタイル パワー インコーポレイテッド System and method for driving an ultrasonic transducer
JP2017220990A (en) * 2016-06-03 2017-12-14 国立大学法人神戸大学 Ultrasonic non-contact power supply system

Similar Documents

Publication Publication Date Title
US5130619A (en) Drive control apparatus for an ultrasonic motor
JP2936232B2 (en) Power supply for piezoelectric transducer actuation
US4081706A (en) Oscillatory circuit for an ultrasonic cleaning device with feedback from the piezoelectric transducer
JP3251087B2 (en) Plasma processing equipment
US4577500A (en) Driving control method of ultrasonic transducer
JP2002501283A (en) Method and apparatus for minimizing plasma instability in high frequency processors
JP2002248153A (en) Ultrasonic cosmetic device
JPH0347912B2 (en)
JPH03145976A (en) Drive unit for ultrasonic motor
EP0215362B2 (en) AC power supply device
US3644847A (en) Frequency-following voltage-controlled filter providing substantially constant output amplitude
JPH01305699A (en) Driving circuit for ultrasonic oscillator
JP3286606B2 (en) Ultrasonic transducer drive
JP2521104B2 (en) Ultrasonic motor actuator lock detector
CN113934137B (en) Ultrasonic power supply resonant frequency tracking method and system
JPS5881470A (en) Oscillator circuit for ultrasonic processing machine
JP3891659B2 (en) Adaptive automatic tuning device
JP3695773B2 (en) Drive unit for ultrasonic transducer
JPS606710B2 (en) Ultrasonic oscillator output control method
JPH0329989Y2 (en)
JPS61139111A (en) Automatic load matching circuit of high frequency sputtering device
JPS5881469A (en) Power source apparatus for ultrasonic processing
JPS6335828Y2 (en)
JP2001033533A (en) Magnetic impedance sensor circuit
JPH0580361B2 (en)