JPH01305391A - Neutral particle injecting apparatus - Google Patents

Neutral particle injecting apparatus

Info

Publication number
JPH01305391A
JPH01305391A JP63136518A JP13651888A JPH01305391A JP H01305391 A JPH01305391 A JP H01305391A JP 63136518 A JP63136518 A JP 63136518A JP 13651888 A JP13651888 A JP 13651888A JP H01305391 A JPH01305391 A JP H01305391A
Authority
JP
Japan
Prior art keywords
neutral particle
vacuum
ion beam
neutral
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63136518A
Other languages
Japanese (ja)
Other versions
JP2621354B2 (en
Inventor
Hiroshi Fujisawa
藤沢 博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP63136518A priority Critical patent/JP2621354B2/en
Publication of JPH01305391A publication Critical patent/JPH01305391A/en
Application granted granted Critical
Publication of JP2621354B2 publication Critical patent/JP2621354B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve accuracy in measurement of beam quantity by operating the quantity of a neutral particle beam based on the beam current and the vacuum degree which are measured with a beam-current measuring device and a vacuum gage and a neutralizing coefficient of an ion beam in a neutralizing chamber which is stored beforehand. CONSTITUTION:A beam current I<+> of an ion beam 4c which is deflected with a deflector 14 is measured with a beam-current measuring device 20. A vacuum degree P in a neutralizing chamber 8 is measured with a vacuum gage 22. The measured values are sent into an operating device 24. An alpha lead-out part 26 is provided in the device 24. Several kinds of vacuum degree vs. ion beam curves which are obtained beforehand are stored. The coefficient alpha at any time is led out. An In operating part 28 is provided in the device 24. Operation is performed by using a specified expression based on the coefficient alpha from the lead-out part 26 and the vacuum degree P from the measuring device 20. Thus, the quantity In of a neutral beam 16 which is inputted into a target 18 is operated.

Description

【発明の詳細な説明】 〔産業上の利用分野] 二の発明は、ターゲットに中性粒子ビームを入射させて
中性粒子を注入する中性粒子注入装置に関し、特にその
中性粒子ビームのビーム量を求める手段に関する。
[Detailed Description of the Invention] [Industrial Application Field] The second invention relates to a neutral particle injection device that injects neutral particles by making a neutral particle beam incident on a target, and particularly relates to a neutral particle injection device that injects neutral particles by injecting a neutral particle beam into a target. Concerning means for determining quantities.

〔従来の技術〕[Conventional technology]

第3図は、従来の中性粒子注入装置の一例を示す概略図
である。
FIG. 3 is a schematic diagram showing an example of a conventional neutral particle injection device.

この装置は、イオン源2から引き出したイオンビーム4
aを分析電磁石6で質量分析して所望質量のイオンから
成るイオンビーム4bを選択的に導出し、これを中性化
室8に導いてそこで中性化するようにしている。
This device consists of an ion beam 4 extracted from an ion source 2.
A is mass-analyzed by an analysis electromagnet 6 to selectively derive an ion beam 4b consisting of ions of a desired mass, which is led to a neutralization chamber 8 and neutralized there.

即ち中性化室8内には流量調節器11を通してアルゴン
等のガス12が導入され、イオンビーム4bをこのガス
分子と衝突させると荷電変換が行われてその一部が中性
化される。即ち中性粒子ビーム16が作られる。尚、こ
の中性化室8の上流側および下流側は、周辺の真空度を
損なわないようにコンダクタンスを小さくするスリット
9および10で仕切られている。
That is, a gas 12 such as argon is introduced into the neutralization chamber 8 through a flow rate regulator 11, and when the ion beam 4b collides with the molecules of this gas, charge conversion is performed and a portion of the gas is neutralized. That is, a neutral particle beam 16 is created. Note that the upstream and downstream sides of this neutralization chamber 8 are partitioned by slits 9 and 10 that reduce conductance so as not to impair the degree of vacuum around the chamber.

そして、中性化室8の下流側に偏向電極や偏向磁石のよ
うな偏向器14を設けて、中性化されなかったイオンビ
ーム4cを偏向させて中性粒子ビーム16と分離し、こ
の偏向器16を通過した中性粒子ビーム16をターゲッ
ト1日に入射させてそれに注入するようにしている。図
中の19は真空容器である。
A deflector 14 such as a deflection electrode or a deflection magnet is provided on the downstream side of the neutralization chamber 8 to deflect the ion beam 4c that has not been neutralized and separate it from the neutral particle beam 16. The neutral particle beam 16 that has passed through the vessel 16 is made incident on the target and injected into it. 19 in the figure is a vacuum container.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

所がこのような中性粒子注入装置においては、ターゲッ
ト18に対する中性粒子の注入量を正確に計測する具体
的な手段がこれまではなかった。
However, in such a neutral particle injection device, there has been no specific means for accurately measuring the amount of neutral particles injected into the target 18.

そのため注入量の再現性も良くなかった。Therefore, the reproducibility of the injection amount was also poor.

これは、イオン注入の場合は、ターゲットに流れるイオ
ンビーム電流を計測することができ、それに基づいてそ
の注入量を正確に算出できるのに対して、中性粒子ビー
ム16をターゲット18に入射させてもそこに電流が流
れないため、ターゲット18に入射する中性粒子ビーム
16のビーム量が電流としては計測できないからである
This is because, in the case of ion implantation, the ion beam current flowing through the target can be measured and the implantation amount can be calculated accurately based on that, whereas the neutral particle beam 16 is injected into the target 18. This is because no current flows there, so the beam amount of the neutral particle beam 16 that is incident on the target 18 cannot be measured as a current.

もしターゲット18に入射する中性粒子ビーム16のビ
ーム量が分かれば、後はイオン注入の場合と同様にして
、ターゲット18に対する中性粒子の注入量を正確に算
出することができる。
If the amount of the neutral particle beam 16 that is incident on the target 18 is known, the amount of neutral particles to be implanted into the target 18 can be accurately calculated in the same manner as in the case of ion implantation.

そこでこの発明は、ターゲットに入射する中性粒子ビー
ムのビーム量を求めることができるようにした中性粒子
注入装置を提供することを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a neutral particle injection device that can determine the amount of a neutral particle beam incident on a target.

〔課題を解決するための手段〕[Means to solve the problem]

この発明の中性粒子注入装置は、前記偏向器で偏向され
たイオンビームのビーム電流を計測するビーム電流計測
器と、前記中性化室の真空度を計測する真空計と、これ
らによって計測した前記ビーム電流および真空度ならび
に予め記憶しておいた前記中性化室におけるイオンビー
ムの中性化に関する係数に基づいて、ターゲットに導か
れる中性粒子ビームのビーム量を演算する演算装置とを
備えることを特徴とする。
The neutral particle implantation device of the present invention includes a beam current measuring device that measures the beam current of the ion beam deflected by the deflector, a vacuum gauge that measures the degree of vacuum in the neutralization chamber, and a vacuum gauge that measures the degree of vacuum in the neutralization chamber. an arithmetic device that calculates the amount of the neutral particle beam guided to the target based on the beam current and degree of vacuum and a pre-stored coefficient related to neutralization of the ion beam in the neutralization chamber; It is characterized by

〔実施例〕〔Example〕

第1図は、この発明の一実施例に係る中性粒子注入装置
を示す概略図である。第3図の例と同一または相当する
部分には同一符号を付し、以下においては従来例との相
違点を主に説明する。
FIG. 1 is a schematic diagram showing a neutral particle injection device according to an embodiment of the present invention. The same reference numerals are given to the same or corresponding parts as in the example of FIG. 3, and the differences from the conventional example will be mainly explained below.

前述したような中性化室8で中性化されずに残るイオン
ビーム、即ち偏向器14で偏向されるイオンビーム4c
のビーム電流■゛は、 1” =ToexpC−αP)     ・・・ (1
)で表される。ここで、Ioは中性化室8へ入る前のイ
オンビーム4bの電流、Pは中性化室8の真空度、αは
中性化室8°におけるイオンビーム4bの中性化に関す
る係数であり、当該装置における荷電変換断面積等を表
す。
The ion beam remaining without being neutralized in the neutralization chamber 8 as described above, that is, the ion beam 4c deflected by the deflector 14
The beam current ■゛ is 1" = ToexpC-αP)
). Here, Io is the current of the ion beam 4b before entering the neutralization chamber 8, P is the degree of vacuum in the neutralization chamber 8, and α is a coefficient related to neutralization of the ion beam 4b at 8° in the neutralization chamber. It represents the charge conversion cross-sectional area, etc. in the device.

従って、中性化室8を出て注入室30内のターゲット1
8に導かれる中性粒子ビーム16のビーム量Inは、 In = Io −19 = I’ (exp(αP) −L )  ・・・(2
)から求めることができる。
Therefore, the target 1 leaves the neutralization chamber 8 and enters the injection chamber 30.
The beam amount In of the neutral particle beam 16 guided by
).

そこでこの実施例では、真空容器19の分岐部32内に
ファラデー系のようなビーム電流計測器20を設けて、
偏向器14で偏向されたイオンビーム4cのビーム電流
I゛を計測し、また中性化室8に真空計22を取り付け
て、中性化室8内の真空度Pを計測し、これらの値を演
算装置24内に取り込むようにしている。
Therefore, in this embodiment, a beam current measuring device 20 such as a Faraday system is provided in the branch part 32 of the vacuum vessel 19.
The beam current I' of the ion beam 4c deflected by the deflector 14 is measured, and a vacuum gauge 22 is attached to the neutralization chamber 8 to measure the degree of vacuum P in the neutralization chamber 8, and these values are is taken into the arithmetic unit 24.

一方、前記係数αは、当該装置固有のものであり、しか
も中性化室8の真空度P、イオンビーム4bの種類およ
びエネルギーによって変化する。
On the other hand, the coefficient α is unique to the device and changes depending on the degree of vacuum P of the neutralization chamber 8 and the type and energy of the ion beam 4b.

但し、前記(1)式を表す第2図のようなカーブを予め
実験で必要な種類だけ求めておけば、その後はそれに基
づいて、その時々の真空度P、イオンビーム4bの種類
およびエネルギーに応じた係数αを得ることができるの
で、この実施例では演算装置24内にα導出部26を設
けて、そこに上記のような何種類かのカーブを記憶して
おき、真空計22から与えられる真空度Pおよびそこに
設定される、あるいは上位の制御装置から与えられるイ
オンビーム4bの種類およびエネルギーに基づいて、そ
の時々の係数αを導出するようにしている。
However, if only the necessary types of curves as shown in Fig. 2 representing the above equation (1) are obtained in advance through experiments, then the degree of vacuum P and the type and energy of the ion beam 4b can be adjusted based on it. Therefore, in this embodiment, an α derivation unit 26 is provided in the arithmetic unit 24, and several types of curves such as those described above are stored therein, and the coefficient α can be obtained from the vacuum gauge 22. The coefficient α at each time is derived based on the degree of vacuum P set there or the type and energy of the ion beam 4b given from a higher-level control device.

更に演算装置24内にはIn演算部28を設けており、
上記α導出部26から与えられる係数α、ビーム電流計
測器20から与えられるビーム電流■3および真空計2
2から与えられる真空度Pに基づいて、上記(2)式の
演算を行って、ターゲット18に入射する中性粒子ビー
ム16のビーム量Inを演算するようにしている。
Furthermore, an In calculation section 28 is provided in the calculation device 24,
Coefficient α given from the α derivation section 26, beam current ■3 given from the beam current measuring device 20, and vacuum gauge 2
The beam amount In of the neutral particle beam 16 that is incident on the target 18 is calculated by calculating the above equation (2) based on the degree of vacuum P given by 2.

ちなみにこのような演算装置24は、例えばマイクロコ
ンピュータを用いて簡単に構成することができる。
Incidentally, such arithmetic device 24 can be easily configured using, for example, a microcomputer.

従って上記構成によれば、ターゲット18に入射する中
性粒子ビーム16のビーム量I nを自動的かつ連続的
に、しかも正確に求めることができる。その結果、ター
ゲット18に対する中性粒子の注入量の正確な算出が可
能になり、これがひいては注入量の再現性向上にもつな
がる。
Therefore, according to the above configuration, the beam amount In of the neutral particle beam 16 incident on the target 18 can be determined automatically, continuously, and accurately. As a result, it becomes possible to accurately calculate the amount of neutral particles to be injected into the target 18, which in turn leads to improved reproducibility of the amount to be injected.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、ターゲットに入射する
中性粒子ビームのビーム量を正確に求めることができる
As described above, according to the present invention, the beam amount of the neutral particle beam incident on the target can be accurately determined.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の一実施例に係る中性粒子注入装置
を示す概略図である。第2図は、中性化室の真空度とそ
こで中性化されずに残るイオンビーム量との関係の一例
を示す図である。第3図は、従来の中性粒子注入装置の
一例を示す概略図である。 4a〜4C・・・イオンビーム、8・・・中性化室、1
4・・・偏向器、16・・・中性粒子ビーム、18・・
・ターゲット、20・・・ビーム電流計測器、22・・
・真空計、24・・・演算装置。
FIG. 1 is a schematic diagram showing a neutral particle injection device according to an embodiment of the present invention. FIG. 2 is a diagram showing an example of the relationship between the degree of vacuum in the neutralization chamber and the amount of ion beam remaining without being neutralized therein. FIG. 3 is a schematic diagram showing an example of a conventional neutral particle injection device. 4a-4C...Ion beam, 8...Neutralization chamber, 1
4... Deflector, 16... Neutral particle beam, 18...
・Target, 20... Beam current measuring device, 22...
・Vacuum gauge, 24...Arithmetic device.

Claims (1)

【特許請求の範囲】[Claims] (1)イオンビームを中性化する中性化室と、その下流
側にあって中性化されなかったイオンビームを偏向させ
て中性粒子ビームと分離する偏向器とを備え、この偏向
器を通過した中性粒子ビームをターゲットに入射させる
よう構成した中性粒子注入装置において、前記偏向器で
偏向されたイオンビームのビーム電流を計測するビーム
電流計測器と、前記中性化室の真空度を計測する真空計
と、これらによって計測した前記ビーム電流および真空
度ならびに予め記憶しておいた前記中性化室におけるイ
オンビームの中性化に関する係数に基づいて、ターゲッ
トに導かれる中性粒子ビームのビーム量を演算する演算
装置とを備えることを特徴とする中性粒子注入装置。
(1) Equipped with a neutralization chamber that neutralizes the ion beam, and a deflector located downstream of the neutralization chamber that deflects the ion beam that has not been neutralized and separates it from the neutral particle beam. In a neutral particle implanter configured to make a neutral particle beam that has passed through a neutral particle beam enter a target, a beam current measuring device that measures the beam current of the ion beam deflected by the deflector, and a vacuum in the neutralization chamber are provided. neutral particles guided to the target based on the beam current and vacuum degree measured by the vacuum gauge and a pre-stored coefficient related to neutralization of the ion beam in the neutralization chamber; A neutral particle injection device comprising: a calculation device for calculating a beam amount of a beam.
JP63136518A 1988-06-02 1988-06-02 Neutral particle injection device Expired - Lifetime JP2621354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63136518A JP2621354B2 (en) 1988-06-02 1988-06-02 Neutral particle injection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63136518A JP2621354B2 (en) 1988-06-02 1988-06-02 Neutral particle injection device

Publications (2)

Publication Number Publication Date
JPH01305391A true JPH01305391A (en) 1989-12-08
JP2621354B2 JP2621354B2 (en) 1997-06-18

Family

ID=15177050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63136518A Expired - Lifetime JP2621354B2 (en) 1988-06-02 1988-06-02 Neutral particle injection device

Country Status (1)

Country Link
JP (1) JP2621354B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11144671A (en) * 1997-11-06 1999-05-28 Hitachi Ltd Ion implanting apparatus
JP2011526065A (en) * 2008-06-25 2011-09-29 アクセリス テクノロジーズ, インコーポレイテッド System and method for controlling broad beam uniformity
WO2013030996A1 (en) * 2011-08-31 2013-03-07 株式会社日立製作所 Charged particle beam irradiation system and operating method of charged particle beam irradiation system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6675789B2 (en) 2017-02-27 2020-04-01 住友重機械イオンテクノロジー株式会社 Ion implanter

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11144671A (en) * 1997-11-06 1999-05-28 Hitachi Ltd Ion implanting apparatus
JP2011526065A (en) * 2008-06-25 2011-09-29 アクセリス テクノロジーズ, インコーポレイテッド System and method for controlling broad beam uniformity
WO2013030996A1 (en) * 2011-08-31 2013-03-07 株式会社日立製作所 Charged particle beam irradiation system and operating method of charged particle beam irradiation system
GB2509842A (en) * 2011-08-31 2014-07-16 Hitachi Ltd Charged particle beam irradiation system and operating method of charged particle beam irradiation system
JPWO2013030996A1 (en) * 2011-08-31 2015-03-23 株式会社日立製作所 Charged particle beam irradiation system and method of operating charged particle beam irradiation system
US9199094B2 (en) 2011-08-31 2015-12-01 Hitachi, Ltd. Charged particle beam irradiation system and operating method of charged particle beam irradiation system
GB2509842B (en) * 2011-08-31 2018-12-26 Hitachi Ltd Charged particle beam irradiation system and operating method of charged particle beam irradiation system

Also Published As

Publication number Publication date
JP2621354B2 (en) 1997-06-18

Similar Documents

Publication Publication Date Title
KR100402183B1 (en) Injection quantity control device and method used in ion implanter
Taylor et al. Validation of the analytical linearity and mass discrimination correction model exhibited by a multiple collector inductively coupled plasma mass spectrometer by means of a set of synthetic uranium isotope mixtures
EP0964426A3 (en) Ion dosage measurement apparatus for an ion beam implanter and method
US5889281A (en) Method for linearization of ion currents in a quadrupole mass analyzer
CN109716481B (en) Elemental analysis device and elemental analysis method
Geweniger et al. Measurement of the kaon mass difference mL-mS by the two regenerator method
JPH01305391A (en) Neutral particle injecting apparatus
EP2037253B1 (en) Differential mobility analyser
CA1087689A (en) Four-collector flux sensor
JP3716711B2 (en) Measuring method of ion component ratio in ion irradiation equipment
Jory Transport coefficients for low energy electrons in crossed electric and magnetic fields
JP2008282749A (en) Mass spectrometry system and its correcting method for ion implanting device
RU1685172C (en) Method of determining distribution of density of ion beam flux
CN219203091U (en) Ion source gas supply device, collision cell gas supply device and gas circuit system of mass spectrometer
JP2000036280A (en) Ionization device
US10651018B2 (en) Apparatus for and method of mass analysis
JPH10256110A (en) Method for adjusting offset of forming deflector and charged particle beam writer using the same
SU782517A1 (en) Method of measuring energy of electrons in beam from accelerator
JP2828265B2 (en) Gas leak inspection device
JP2720651B2 (en) Ion implanter
Henrichs et al. Semiclassical analysis of measurements of the total cross section Q and the small-angle differential cross section for Csf Ar: An accurate method for absolute Q values
JPH0384843A (en) Ion implanter
JPH04149951A (en) Method of measuring inflow rate and its apparatus
Kanter et al. An automatic control system for the MEIRA ion source
JPH01161649A (en) Ion implanter