JPH01305333A - Measuring method for wavelength dispersion of optical fiber - Google Patents
Measuring method for wavelength dispersion of optical fiberInfo
- Publication number
- JPH01305333A JPH01305333A JP13562388A JP13562388A JPH01305333A JP H01305333 A JPH01305333 A JP H01305333A JP 13562388 A JP13562388 A JP 13562388A JP 13562388 A JP13562388 A JP 13562388A JP H01305333 A JPH01305333 A JP H01305333A
- Authority
- JP
- Japan
- Prior art keywords
- optical fiber
- measured
- wavelength
- value
- optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000006185 dispersion Substances 0.000 title claims abstract description 34
- 239000013307 optical fiber Substances 0.000 title claims abstract description 34
- 238000000034 method Methods 0.000 title abstract description 21
- 230000003287 optical effect Effects 0.000 claims abstract description 23
- 238000001228 spectrum Methods 0.000 claims abstract description 17
- 238000012360 testing method Methods 0.000 claims description 3
- 239000000835 fiber Substances 0.000 abstract description 7
- 230000010355 oscillation Effects 0.000 abstract description 3
- 230000004907 flux Effects 0.000 abstract 1
- 230000010287 polarization Effects 0.000 description 14
- 238000005259 measurement Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 230000001902 propagating effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000009022 nonlinear effect Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000010408 sweeping Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M11/00—Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
- G01M11/30—Testing of optical devices, constituted by fibre optics or optical waveguides
- G01M11/33—Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face
- G01M11/338—Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face by measuring dispersion other than PMD, e.g. chromatic dispersion
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Dispersion Chemistry (AREA)
- Optics & Photonics (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Light Guides In General And Applications Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野〉
本発明は、光アイバの波長分散を高精度に測定する方法
に関する。DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for measuring chromatic dispersion of an optical fiber with high precision.
〈従来の技術とその課題〉
従来の波長分散測定方法としては、(1)被測定ファイ
バに波長の異なる光パルスを伝搬させてその遅延時間の
波長特性を測定する方法や(2)被測定ファイバを一方
の光路とする2光路光干渉計を構成し、干渉計への入射
光の波長を掃引して光ファイバを伝搬する光の相対遅延
時間の波長特性を測定する方法が用いられてきた。これ
らの方法を用いた分散測定では、分散値を遅延時間を波
長で1回微分することにより直接求めており、遅延時間
の波長による変化が非常に小さい微小分散領域では、微
分に必要な近接する波長間の遅延時間の差を正確に測定
することが難しいため、微分が不正確となり波長分散値
を精度よく測定できないという欠点を有していた。<Conventional techniques and their problems> Conventional chromatic dispersion measurement methods include (1) a method in which optical pulses with different wavelengths are propagated through a fiber under test and the wavelength characteristics of their delay times are measured; A method has been used in which a two-path optical interferometer is configured with one optical path of 1, and the wavelength characteristics of the relative delay time of light propagating through an optical fiber are measured by sweeping the wavelength of light incident on the interferometer. In dispersion measurements using these methods, the dispersion value is directly determined by differentiating the delay time once with respect to the wavelength. Since it is difficult to accurately measure the difference in delay time between wavelengths, the method has the drawback that the differentiation becomes inaccurate and the chromatic dispersion value cannot be measured accurately.
そこで、本発明の目的は、従来のかかる欠点を解決して
、光ファイバの微小な負群速度分散の値を精度よく測定
できろ群速度分散測定方法を促供することにある。SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide a method for measuring group velocity dispersion that can solve these conventional drawbacks and accurately measure the minute negative group velocity dispersion of an optical fiber.
〈課題を解決するための手段〉
上述の目的を達成する本発明は、持続波ないし擬似持続
波で単一波長の光ビームを被測定光ファイバに入射させ
、この被測定光ファイバの出射光の電力Pと光スペクト
ルとを測定し、得られた光スペクトル上の波長λ1λ2
にて上記被測定光ファイバ内にて生じる自己域し、この
変調周波数fと上記電力PとからD=に−P/f2にて
分散値りを得ることを特徴とする。<Means for Solving the Problems> The present invention achieves the above-mentioned object by making a continuous wave or pseudo-continuous wave light beam of a single wavelength enter an optical fiber to be measured, and measuring the output light of the optical fiber to be measured. Measure the power P and the optical spectrum, and the wavelength λ1λ2 on the obtained optical spectrum
is a self-range generated in the optical fiber to be measured, and from this modulation frequency f and the above-mentioned power P, a dispersion value is obtained by D=-P/f2.
く作 用〉
被測定光ファイバ内を伝搬する光ビームの自己位相変調
と負波長分散との相互作用により生じろ光ビームの自己
@幅変調の変調周波数の値fから負波長分散の値りを求
めろものであり、この際分散値りは周波数fの2乗に逆
比例する関係があるため、微小な負波長分散になる程周
波数fが大きくなり、ひいてはλl、λ2の間隔が拡が
ることになって、測定が容易となり測定精度が向上する
。Effect> The value of negative chromatic dispersion is calculated from the modulation frequency f of the self-width modulation of the optical beam, which is caused by the interaction between the self-phase modulation and negative chromatic dispersion of the optical beam propagating in the optical fiber under test. In this case, the dispersion value is inversely proportional to the square of the frequency f, so the smaller the negative chromatic dispersion, the larger the frequency f becomes, and as a result, the interval between λl and λ2 becomes wider. Therefore, measurement becomes easier and measurement accuracy improves.
この場合、光フアイバ内をある程度以上の電力を有する
光ビームが伝搬した場合、光非線形効果である自己位相
変調と負波長分散の相互作用により光ビームに自己振幅
変調が生じろという事柄に関しては、フィジカルレビュ
ー レターズ(Physical Revie+v L
etters) Vol、 50.1986年135頁
〜138頁、発表者 K、タイ(K、Ta1)、A、ハ
セガ7 (A 、 I(asegawa) 、及びA、
トミタ (A 、 Tomital による論文に掲
載されている。In this case, when a light beam with power above a certain level propagates in an optical fiber, self-amplitude modulation occurs in the light beam due to the interaction between self-phase modulation and negative wavelength dispersion, which are optical nonlinear effects. Physical Review Letters (Physical Revie+v L
etters) Vol. 50. 1986, pp. 135-138, presenters K, Ta1, A, Hasega 7 (A, I (asegawa), and A,
Published in a paper by Tomital A.
自己振幅変調の変調周波数f(s−’)と負波長分散D
(5−m−2) とは次式の関係がある。Modulation frequency f(s-') of self-amplitude modulation and negative chromatic dispersion D
(5-m-2) has the following relationship.
線形屈折率、noは屈折率、P(wlは電力、人eff
(m′)は実効コア断面積、Cは光速である。そして、
C2^の外、n2.no、人eftが既知であれば上式
はD=に−P/f2と表わすことができろ。Linear refractive index, no is the refractive index, P (wl is the power, human eff
(m') is the effective core cross-sectional area, and C is the speed of light. and,
Outside C2^, n2. No, if the person eft is known, the above equation can be expressed as -P/f2 in D=.
したがって、電力Pと変調周波数fを測定することによ
り、λに対してDの値が一義的に求まる。式から判明す
るようにDがf2に反比例することがらDが小さい程f
が大きな値として測定されるので、分散値りが小さ(と
も十分な測定精度が得られることになる。Therefore, by measuring the power P and the modulation frequency f, the value of D with respect to λ can be uniquely determined. As is clear from the formula, D is inversely proportional to f2, so the smaller D is, the more f
is measured as a large value, the dispersion value is small (and sufficient measurement accuracy can be obtained).
く実 施 例1〉
第1図、第2図は本発明方法の第1実施例を説明する図
であり、第1図において、1は波長可変のFセンターレ
ーザ、2は対物レンズ、3は被測定光フー?イバ、4は
対物レンズ、5は取りはずし可能な全反射ミラー、6は
光スペクトラムアナライザ、7は光パワーメータ、矢印
は光の行路を示す。10Fセンタレーザの発振波長をλ
に調整し、その出射光を対物レンズ2により被測定光フ
ァイバ3に入射させろ。次に、光ファイバ3からの出射
光を対物レンズ4を通して平行ビームとし、ミラー5で
反射させて光パワーメータ7に入れ、その光電力Pを測
定する。次にミラー5を取りはずし、被測定光ファイバ
3からの出射光を4の対物レンズ4を通して光スペクト
ラムアナライザ6に入射させそのスペクトルを測定ずろ
。被測定光ファイバ3からの出射光は光フアイバ中で前
述の自己位相変調と負群速度分散の相互作用により、自
己振幅変調を受けており、そのスペクトル上に変調側波
帯が生じている。第2図に、光スペクトラムアナライザ
6で測定される光フアイバ出射光のスペクトルの一例を
示す。スペクトル上では、中心波長λ1の両端に変調側
波帯が観測されろ。Embodiment Example 1 FIGS. 1 and 2 are diagrams for explaining the first embodiment of the method of the present invention. In FIG. 1, 1 is a wavelength-tunable F center laser, 2 is an objective lens, and 3 is a Measured light fu? 4 is an objective lens, 5 is a removable total reflection mirror, 6 is an optical spectrum analyzer, 7 is an optical power meter, and arrows indicate the path of light. The oscillation wavelength of the 10F center laser is λ
and make the emitted light enter the optical fiber 3 to be measured through the objective lens 2. Next, the light emitted from the optical fiber 3 is made into a parallel beam through an objective lens 4, reflected by a mirror 5, and input into an optical power meter 7, and its optical power P is measured. Next, the mirror 5 is removed, and the light emitted from the optical fiber 3 to be measured is made to enter the optical spectrum analyzer 6 through the objective lens 4, and its spectrum is measured. The light emitted from the optical fiber 3 to be measured undergoes self-amplitude modulation in the optical fiber due to the interaction of the above-mentioned self-phase modulation and negative group velocity dispersion, and a modulation sideband is generated on its spectrum. FIG. 2 shows an example of the spectrum of the light emitted from the optical fiber measured by the optical spectrum analyzer 6. On the spectrum, modulation sidebands are observed at both ends of the center wavelength λ1.
自己振幅変調の変調周波数fは、変調側波帯の中心波長
λ2と^、の差周波数f =C/λ、 −C/^2とし
てもとめられる。ここでCは光の速さを表わす。λ、^
2の測定により得られたfと光パワーメータ7で測定し
た光の電力Pの値を関係式り一〜〔C・■n2・P/^
3moAeffl ・f−2に代入して波長λ1におけ
ろ負分散4rli Dを算出する。The modulation frequency f of self-amplitude modulation can also be obtained as the difference frequency f = C/λ, -C/^2 between the center wavelengths λ2 and ^ of the modulation sideband. Here C represents the speed of light. λ, ^
The value of the optical power P measured by the optical power meter 7 and f obtained by the measurement in step 2 is calculated using the relational expression ~ [C・■n2・P/^
By substituting 3moAeffl·f−2, negative dispersion 4rliD at wavelength λ1 is calculated.
次に1のレーザーの発振波長を変人で同様な測定手順を
繰り返し、最終的に負波長分散の波長特性が測定される
。Next, the same procedure for measuring the oscillation wavelength of laser No. 1 is repeated by an eccentric person, and finally the wavelength characteristic of negative wavelength dispersion is measured.
く実 施 例2〉 第3図は本発明方法の第2実施例を説明する図である。Practical example 2 FIG. 3 is a diagram illustrating a second embodiment of the method of the present invention.
実施例1に偏光子8,9と回転機構付光ファイバ支持治
具10,11を加丸た構成が加丸られ、被測定光ファイ
バ3が偏波保持光ファイバである場合、光ファイバのX
偏波軸とX偏波軸の波長分散を測定できる効果を持つ。If the configuration in which the polarizers 8 and 9 and the optical fiber support jigs 10 and 11 with rotating mechanisms are rounded in Example 1 is rounded, and the optical fiber 3 to be measured is a polarization-maintaining optical fiber, the X of the optical fiber is rounded.
It has the effect of being able to measure the wavelength dispersion of the polarization axis and the X polarization axis.
すなわち、レーザ1からの光ビームを偏光子8で直線偏
光とし治具10を回転させて光ファイバ3のX偏波軸に
直線偏向が入射するようにする。光ファイバ3の出射端
においても治具11を回転してX偏波軸を偏光子9の偏
光面に合わせ、光ファイバ3のX偏波軸を伝搬してきた
光を出力として取り出す。取り出した光出力の電力Pと
スペクトルλ1λ2を実施例1の手順に従って測定し、
X偏波軸の負波長分散の値を算出する。That is, the light beam from the laser 1 is linearly polarized by the polarizer 8, and the jig 10 is rotated so that the linear polarization is incident on the X polarization axis of the optical fiber 3. Also at the output end of the optical fiber 3, the jig 11 is rotated to align the X polarization axis with the polarization plane of the polarizer 9, and the light propagating along the X polarization axis of the optical fiber 3 is extracted as output. The power P and spectrum λ1λ2 of the extracted optical output were measured according to the procedure of Example 1,
Calculate the value of negative chromatic dispersion on the X polarization axis.
次に治具10,11を回転させて光の偏波面を光ファイ
バ3のY偏波軸に合わせて、X偏波軸に合わせた場合と
同様な手順により光ファイバのY偏波軸の負波長分散の
値を算出する。Next, rotate the jigs 10 and 11 to align the polarization plane of the light with the Y polarization axis of the optical fiber 3, and use the same procedure as when aligning it with the X polarization axis to make the Y polarization axis of the optical fiber negative. Calculate the value of chromatic dispersion.
この測定手順をレーザ1の波長を変えて繰り返し、最終
的に端波保持光ファイバのX偏波軸およびY偏波軸の負
波長分散の波長特性をもとめる。This measurement procedure is repeated by changing the wavelength of the laser 1, and finally the wavelength characteristics of the negative chromatic dispersion of the X polarization axis and the Y polarization axis of the edge wave maintaining optical fiber are determined.
以上実施例1,2にて波長分散測定方法を説明したので
あるが、この方法を光フアイバ製造において、母材の線
引き工程後の特性測定に用い、その結果を前工程にフィ
ードバックさせることにより、極めて精密に分散を制御
したシングルモードファイバを得ろことができろ。The wavelength dispersion measuring method has been explained above in Examples 1 and 2. This method is used to measure the characteristics of the base material after the drawing process in optical fiber manufacturing, and the results are fed back to the previous process. It is possible to obtain a single mode fiber with extremely precisely controlled dispersion.
〈発明の効果〉
以上説明したように、本発明による波長分散測定方法で
は、自己振幅変調の変調周波数の値から負波長分散の値
を算出する方法を用いており、微小な負波長分散の値も
精度よくもとめられるという利点を有している。また、
本発明の光ファイバの波長分散測定方法を光ファイバの
製造に適用することにより、極めて精密に分散を制御し
たシングルモードファイバを製造できろ。また、得られ
たシングルモードファイバをいわゆるコヒーレント通信
やソ゛ノトン通信に適用することにより、非常に大きな
伝送容凰の光通信を実現できる利点がある。<Effects of the Invention> As explained above, the chromatic dispersion measuring method according to the present invention uses a method of calculating the value of negative chromatic dispersion from the value of the modulation frequency of self-amplitude modulation, and the value of minute negative chromatic dispersion is It also has the advantage that it can be determined with high precision. Also,
By applying the optical fiber chromatic dispersion measurement method of the present invention to the production of optical fibers, it is possible to produce single mode fibers with very precisely controlled dispersion. Furthermore, by applying the obtained single mode fiber to so-called coherent communication or sonoton communication, there is an advantage that optical communication with a very large transmission capacity can be realized.
第1図ないし第3図は本発明方法の実施例を説明ずろも
ので、第1図は第1実施例のための構成図、第2図は自
己振幅変調にょるスペクトルを示すグラフ、第3図は第
2実施例のための構成図である。
図 中、
1は波長可変Fセンターレーザ、
2.4は対物レンズ、
3は被測定光ファイバ、
5は全反射ミラー、
6は光スペクトラムアナライザ、
7は光パワーメータ、
8.9は偏光子、
10.11は回転機構付光フアイバ支持治具である。
特 許 出 願 人
日本電信Ti話株式会社
代 理 人1 to 3 are for explaining an embodiment of the method of the present invention, FIG. 1 is a block diagram for the first embodiment, FIG. 2 is a graph showing a spectrum due to self-amplitude modulation, and FIG. The figure is a configuration diagram for the second embodiment. In the figure, 1 is a wavelength tunable F center laser, 2.4 is an objective lens, 3 is an optical fiber to be measured, 5 is a total reflection mirror, 6 is an optical spectrum analyzer, 7 is an optical power meter, 8.9 is a polarizer, 10.11 is an optical fiber support jig with a rotating mechanism. Patent applicant: Agent of Nippon Telegraph Tiwa Co., Ltd.
Claims (1)
光ファイバに入射させ、この被測定光ファイバの出射光
の電力Pと光スペクトルとを測定し、得られた光スペク
トル上の波長λ_1λ_2にて上記被測定光ファイバ内
にて生じる自己振幅変調の変調周波数fをf=c/λ_
1−c/λ_2にて算出し、この変調周波数fと上記電
力Pとから D=K・P/f^2にて分散値Dを得る光ファイバの波
長分散測定方法。ただしKは定数、Cは光速である。[Claims] A continuous wave or pseudo-continuous wave light beam of a single wavelength is incident on an optical fiber to be measured, and the power P and optical spectrum of the light emitted from the optical fiber to be measured are measured. The modulation frequency f of self-amplitude modulation occurring in the optical fiber under test at wavelength λ_1λ_2 on the optical spectrum is f=c/λ_
1-c/λ_2, and from this modulation frequency f and the above-mentioned power P, a dispersion value D is obtained as D=K·P/f^2. However, K is a constant and C is the speed of light.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13562388A JPH01305333A (en) | 1988-06-03 | 1988-06-03 | Measuring method for wavelength dispersion of optical fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13562388A JPH01305333A (en) | 1988-06-03 | 1988-06-03 | Measuring method for wavelength dispersion of optical fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01305333A true JPH01305333A (en) | 1989-12-08 |
Family
ID=15156135
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13562388A Pending JPH01305333A (en) | 1988-06-03 | 1988-06-03 | Measuring method for wavelength dispersion of optical fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01305333A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001264212A (en) * | 2000-03-14 | 2001-09-26 | Advantest Corp | Waveform measuring device, method and recording medium |
-
1988
- 1988-06-03 JP JP13562388A patent/JPH01305333A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001264212A (en) * | 2000-03-14 | 2001-09-26 | Advantest Corp | Waveform measuring device, method and recording medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107655599B (en) | Method for measuring micro stress of optical element | |
CN110243574B (en) | Device and method for measuring birefringence coefficient of polarization-maintaining optical fiber based on soliton self-frequency shift | |
CN106706272B (en) | A kind of device and method measuring nonlinear crystal thermal focal length | |
FR2468099A1 (en) | METHOD AND APPARATUS FOR LASER INTERFEROMETRY WITH TWO WAVE LENGTHS | |
Yu et al. | Distributed measurement of polarization characteristics for a multifunctional integrated optical chip: A review | |
JPH06229922A (en) | Very accurate air refractometer | |
CN106813901A (en) | The measurement apparatus and its measuring method of optics phase-delay quantity | |
US3708229A (en) | System for measuring optical path length across layers of small thickness | |
CN110530531A (en) | Fountain type belted atomic vapor beam phase measure of the change apparatus and method based on Michelson interference | |
CN102608043B (en) | Method for measuring concentration of trace gas molecules based on laser loop photonic crystal gas chamber | |
JPS63274842A (en) | Method for measuring humidity with high sensitivity by utilizing second order differential curve of steam light absorption line | |
US7551267B2 (en) | Systems and methods for measuring ultra-short light pulses | |
KR100810867B1 (en) | Apparatus and method for residual stress measuring of optical fiber | |
CN100451581C (en) | Method and apparatus for measuring laser wave-length using heterodyne in interference method | |
JPS58169004A (en) | Highly accurate interference length measuring method in atmosphere | |
JPH01305333A (en) | Measuring method for wavelength dispersion of optical fiber | |
Imran et al. | Measurement of the group-delay dispersion of femtosecond optics using white-light interferometry | |
JPS60104236A (en) | Method and device for measuring mode double refractive index of polarized wave maintaining optical fiber | |
JPS6338091B2 (en) | ||
RU85236U1 (en) | OPTICAL SUBSTANCE CONCENTRATION SENSOR | |
JPS60173429A (en) | Method and device for measuring dispersion of polarized wave | |
JPH037062B2 (en) | ||
CN109883952B (en) | Nonlinear coefficient measuring device based on weak measurement technology and measuring method thereof | |
JPH01143931A (en) | Method and device for measuring mode double refractive index of birefringent fiber | |
US20220291056A1 (en) | High accuracy frequency measurement of a photonic device using a light output scanning system and a reference wavelength cell |