JPH01304916A - Large-sized heating furnace for organic material product - Google Patents

Large-sized heating furnace for organic material product

Info

Publication number
JPH01304916A
JPH01304916A JP13620488A JP13620488A JPH01304916A JP H01304916 A JPH01304916 A JP H01304916A JP 13620488 A JP13620488 A JP 13620488A JP 13620488 A JP13620488 A JP 13620488A JP H01304916 A JPH01304916 A JP H01304916A
Authority
JP
Japan
Prior art keywords
furnace
product
temperature
hot air
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13620488A
Other languages
Japanese (ja)
Inventor
Yasutaka Nakajima
康孝 中島
Toshitaka Kikui
菊井 利孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOSHIN KISETSU KK
Bridgestone Corp
Original Assignee
TOSHIN KISETSU KK
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOSHIN KISETSU KK, Bridgestone Corp filed Critical TOSHIN KISETSU KK
Priority to JP13620488A priority Critical patent/JPH01304916A/en
Publication of JPH01304916A publication Critical patent/JPH01304916A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

PURPOSE:To accelerate the rise time speed of temperature of a product by adding a means for radiating far infrared radiation to a means for jetting hot air to the product during the period of heating the product. CONSTITUTION:In order to accelerate the temperature rise of a product 2, the hot air around 170 deg.C is fed from air supplying ducts 14, 15. The hot air is introduced uniformly into a furnace from the ports provided on an inner wall 5, floor plate 8 and lower ceiling 7, as the result, the air temperature in the furnace rises up uniformly and gradually. While, the inner wall 5, floor plate 8 and the lower ceiling 7 are heated by the hot air passing through a side wall space 10, under floor space 9 and ceiling space 11, and become a temperature of 170 deg.C, after that, extreme infrared radiation is radiated from the furnace inside surface thereof (the inner wall 5, floor plate 8 and the lower ceiling 7 are made of alumite which is a material with a high radiation rate of far infrared radiation). The product 2 is heated by the heat transfer as well as the far infrared radiation, and the temperature rises up rapidly. At the time when the surface of the product 2 becomes approximately to the required temperature of 130 deg.C, the temperature of the hot air is lowered.

Description

【発明の詳細な説明】 発明の目的 プラスチック又はゴムなど有機材の大型製品を加熱する
時に使用する熱風吹込み加熱炉において、熱風吹込み装
置を改善し、熱風と製品表面との熱伝達に加え、周囲炉
材からの遠赤外線放射を与え、製品の昇温立上り時間を
短くし、且つ全体を均一に加熱することを目的とするも
のである。
[Detailed Description of the Invention] Purpose of the Invention To improve the hot air blowing device in a hot air blowing heating furnace used to heat large products made of organic materials such as plastics or rubber, and to improve heat transfer between the hot air and the surface of the product. The purpose of this is to provide far-infrared radiation from the surrounding furnace material, shorten the rise time for heating up the product, and uniformly heat the entire product.

従来の技術及び発明が解決゛しようとする課題プラスチ
ック又はゴムなど有機材の製品には成形後加熱処理を必
要とするものがある。その大型製品(以下製品と言う)
を加熱する時に用いられる大型加熱炉として蒸気吹込み
炉が用いられることがある。その場合例えば130℃程
度まで製品温度を上げる場合があるとすると蒸気圧は2
気圧(ゲージ)以上を必要とすることになる。従って耐
圧加熱炉にしなければならないから、大型耐圧蒸気炉と
なり大きな設備投資が必要となる。
Problems to be Solved by the Prior Art and the Invention Some products made of organic materials such as plastic or rubber require heat treatment after molding. The large product (hereinafter referred to as the product)
A steam blowing furnace is sometimes used as a large heating furnace for heating. In that case, for example, if the product temperature is raised to about 130℃, the vapor pressure will be 2.
This will require more than atmospheric pressure (gauge). Therefore, a pressure-resistant heating furnace must be used, which requires a large pressure-resistant steam furnace and a large investment in equipment.

そのためしばしば熱風吹込み加熱炉が用いられる。この
ばあい設備投資は小さくて済むが、熱風と製品表面との
熱伝達率が小さいため、製品の昇温立上り時間が長く1
作業合理化及びエネルギー節約に障害となる。又製品全
体を均一に昇温するための操作が大変難しい。
For this reason, hot air blown heating furnaces are often used. In this case, the capital investment is small, but because the heat transfer coefficient between the hot air and the product surface is small, the rise time for raising the temperature of the product is long.
It becomes an obstacle to work rationalization and energy saving. Moreover, it is very difficult to operate to uniformly raise the temperature of the entire product.

課題を解決するための手段 本発明は上記熱風吹込みによる大型加熱炉において、製
品の昇温立上り時間を短くし、且つ均一に昇温するため
炉を次に説明するような構造にするものである。即ち炉
の側壁・床・天井をほぼ全面的に二重構造とし、その二
重構造の間の空間を熱風通路とし、その通路の大部分(
例えば80〜90%)を給気通路、そして残りの部分を
排気通路とする。各熱風通路の外側は熱絶縁し、内側隔
壁に小孔をほぼ均一に多数開けて熱風が均一に炉内に吹
き出るようにする。内側隔壁を遠赤外線放射率の高い材
料(例えばアルマイト板)で作るとか、又は炉内側表面
に遠赤外線放射率の高い塗料を塗るとかする。その結果
、遠赤外線が中の製品に豊富に放射されることになり、
熱風・製品間の熱伝達に加えて遠赤外線照射により製品
の昇温立上りが早くなる。排気通路から排出された空気
を空気加熱器に送り、加熱して再び炉内に戻すことは一
般の加熱炉と同じである。
Means for Solving the Problems The present invention is a large-scale heating furnace using hot air blowing, in which the furnace is structured as described below in order to shorten the temperature rising time of the product and uniformly raise the temperature. be. In other words, the side walls, floor, and ceiling of the furnace are almost entirely double-layered, and the space between the double-layered structures is used as a hot-air passageway, with most of the passageway (
For example, 80 to 90%) is used as an air supply passage, and the remaining part is used as an exhaust passage. The outside of each hot air passage is thermally insulated, and a large number of small holes are uniformly bored in the inner partition wall so that hot air can be uniformly blown into the furnace. The inner partition wall may be made of a material with a high far-infrared emissivity (for example, an alumite plate), or the inner surface of the furnace may be coated with a paint with a high far-infrared emissivity. As a result, far-infrared rays will be abundantly radiated to the product inside,
In addition to heat transfer between hot air and products, far-infrared irradiation accelerates the rise in temperature of products. The air exhausted from the exhaust passage is sent to the air heater, heated, and returned to the furnace in the same manner as in a general heating furnace.

このようにすると、熱風は均一に炉内に入るから炉内温
度に不均一がなく、又炉内全面にある熱風通路の内側隔
壁は熱風と等しい高温になるから、隔壁内面から遠赤外
線が豊富に放射され、それが製品に吸収されて昇温立上
りを早くする。
In this way, the hot air enters the furnace uniformly, so there is no unevenness in the temperature inside the furnace, and the inner partition wall of the hot air passage located all over the inside of the furnace has a high temperature equal to that of the hot air, so far infrared rays are abundantly emitted from the inner surface of the partition wall. This radiation is absorbed by the product, increasing the temperature rise.

実施例 以下実施例につき詳細に説明する。Example Examples will be described in detail below.

第1図は実施例の横断面図、第2図は同縦断面図である
FIG. 1 is a cross-sectional view of the embodiment, and FIG. 2 is a longitudinal cross-sectional view thereof.

第1図、第2図において1は加熱炉本体、2は加熱され
る製品、3は製品を支持する台車である。
In FIGS. 1 and 2, 1 is a heating furnace main body, 2 is a product to be heated, and 3 is a cart for supporting the product.

加熱炉本体lを図に示すように二重構造とする。即ち側
壁は外壁4と内壁5の二重構造とし、又天井は上天弁6
と下天井7の二重構造とし、更に又床板8の下に空間9
を設けて二重構造とする。側壁二重構造の空間(以下側
壁空間と言う)10及び13.床下空間9.天井二重構
造の空間(以下天井空間と言う)11は総て熱風通路で
ある。側壁空間は仕切り12で上下に仕切られ、下の側
壁空間10を熱風供給通路、上の側壁空間13を排気通
路どする。床下空間9.天井空間11を熱風供給通路と
する。
The heating furnace body l has a double structure as shown in the figure. That is, the side walls have a double structure of an outer wall 4 and an inner wall 5, and the ceiling has an upper tenben 6.
It has a double structure with a lower ceiling 7 and a space 9 under the floorboard 8.
It has a double structure. Spaces with double side wall structure (hereinafter referred to as side wall spaces) 10 and 13. Underfloor space9. The space 11 of the double ceiling structure (hereinafter referred to as ceiling space) is entirely a hot air passage. The side wall space is divided into upper and lower parts by a partition 12, with the lower side wall space 10 serving as a hot air supply passage and the upper side wall space 13 serving as an exhaust passage. Underfloor space9. The ceiling space 11 is used as a hot air supply passage.

側壁空間10は給気ダクト14から熱風の供給を受け、
床下空間9には側壁空間10から熱風が供給される。天
井空間11は給気ダクト15から熱風が供給される。給
気ダクト14゜15には一つの空気加熱器(図示せず)
から分岐して熱風が供給される。排気用の側壁空間(以
下排気空間と言う)13は排気ダクト16に通じ、排気
ダクト16に出た空気は前記空気加熱器(図示せず)に
送られ循環する。
The side wall space 10 receives hot air from the air supply duct 14,
Hot air is supplied to the underfloor space 9 from the side wall space 10. Hot air is supplied to the ceiling space 11 from an air supply duct 15. One air heater (not shown) in the supply air duct 14゜15
Hot air is supplied by branching from the A side wall space for exhaust (hereinafter referred to as exhaust space) 13 communicates with an exhaust duct 16, and the air exiting from the exhaust duct 16 is sent to the air heater (not shown) and circulated therein.

側壁空間10の内壁5.下天井7及び床板8には全面的
に均一に小孔が多数開けられている。その状況を第3図
に示す。第3図は板の極く一部21を示したもので、均
一に小孔22が開けられている。又排気空間13の内壁
17にも適当な大きさの小孔を全面的に開けて、空気が
平均的に吸い込まれるようにする。
Inner wall of side wall space 10 5. The lower ceiling 7 and the floorboard 8 have a large number of small holes uniformly drilled over the entire surface. The situation is shown in Figure 3. FIG. 3 shows a very small portion 21 of the plate, in which small holes 22 are uniformly bored. Also, small holes of appropriate size are made all over the inner wall 17 of the exhaust space 13 so that air can be sucked in evenly.

このようにすると空気加熱器で熱せられた空気が給気ダ
ク)14.15を通って側壁空間10、床下空間9.天
井空間11に入り、内壁5、床板8.下天井7の小孔を
通って均一に炉内に入る。そして内壁17の小孔を均一
に通って排気空間13に入り、更に排気ダクト16を通
って空気加熱器に戻る。このようにして空気が循環して
加熱炉1の中が加熱される。空気の循環は排気ダクト又
は給気ダクトの途中に設けられたファン(図示せず)に
よってなされる。
In this way, the air heated by the air heater passes through the air supply duct) 14.15 to the side wall space 10 and the underfloor space 9. Enter the ceiling space 11, the inner wall 5, the floor plate 8. It uniformly enters the furnace through a small hole in the lower ceiling 7. The air then uniformly passes through the small holes in the inner wall 17 and enters the exhaust space 13, and further passes through the exhaust duct 16 and returns to the air heater. In this way, the air circulates and the inside of the heating furnace 1 is heated. Air circulation is performed by a fan (not shown) provided in the middle of the exhaust duct or the air supply duct.

炉体1やダクト類の外気に接するところは総て断熱され
、熱損失を小さくする。その状況は第1図、第2図にお
いて線を太く書いて示しである。又内壁5.床板8.下
天井7の小孔から均一に熱風が炉内に入る状況は小さい
矢印18によって示され、排気空間13の内壁17の小
孔から均一に排気される状況は小さい矢印19によって
示されている。
All parts of the furnace body 1 and ducts that come into contact with the outside air are insulated to reduce heat loss. This situation is shown by thick lines in FIGS. 1 and 2. Also, inner wall5. Floorboard 8. A situation in which hot air uniformly enters the furnace through small holes in the lower ceiling 7 is shown by small arrows 18, and a situation in which hot air is uniformly exhausted from small holes in the inner wall 17 of the exhaust space 13 is shown by small arrows 19.

又、内壁5.床板8.下天井7.内壁17は遠赤外線放
射率の高い材料(例えばアルマイト板)で作るとか、又
は炉内側表面に遠赤外線放射率の高い塗料を塗るとかし
て遠赤外線が豊富に放射されるようにする。
Also, the inner wall 5. Floorboard 8. Lower ceiling7. The inner wall 17 is made of a material with a high far-infrared emissivity (for example, an alumite plate), or the inside surface of the furnace is coated with a paint with a high far-infrared emissivity so that far-infrared rays can be radiated abundantly.

加熱炉1の中には加熱される製品2が台車3に乗せられ
て入れられている。20はその入口扉を示している。製
品2は例えば縦、横。
A product 2 to be heated is placed in a heating furnace 1 on a cart 3. 20 indicates the entrance door. For example, product 2 is vertical and horizontal.

(又は直径)長さがそれぞれ2〜Ion程度で、肉厚は
例えば10〜100mm程度のものと考えれば良い。
(or diameter) length is approximately 2 to 1 ion, and wall thickness is, for example, approximately 10 to 100 mm.

製品2を例えば130°Cまで加熱する場合について説
明する。
A case where the product 2 is heated to, for example, 130°C will be explained.

上記加熱炉で加熱する時は空気循環用ファンで空気を循
環しながら空気加熱器で加熱して送り込めば良い。
When heating in the above-mentioned heating furnace, it is sufficient to circulate the air with an air circulation fan and heat it with an air heater before feeding it.

最初は製品2の温度は常温であるから、昇温を早めるた
め、170℃前後の熱風を給気ダク)14.15から送
り込む、熱風は内壁5.床板8.下天井7の小孔から均
一に炉内に入るから炉内の空気温度は均一に逐次上昇す
る。一方向壁5.床板8.下天井7は側壁空間10.床
下空間9.天井空間11を通る熱風で熱せられて170
℃になり、その炉内側表面は遠赤外線の放射率が高いか
ら遠赤外線が豊富に放射される。製品2を支持する台車
3は遠赤外線を遮断しないよう枠組構造にする。遠赤外
線は表面から深いところまで進入して製品2を温めるか
ら、製品2は熱伝達に加えて遠赤外線により加熱され、
急速に温度が上がる。特に製品2内部深いところが所定
の温度まで上昇する時間が短い、製品2の表面が必要な
130℃近くになったら熱風の温度を下げて130℃に
する。製品2の表面が130℃になっても、内部の個所
は同時には130℃に達しないが、熱風温度を130℃
にしたまま適当時間経過すれば製品2全体か130℃に
なる。そして必要時間130℃に保たれて加熱処理が完
了する。
Initially, the temperature of the product 2 is room temperature, so to accelerate the temperature rise, hot air of around 170°C is sent from the air supply duct) 14.15.The hot air is sent to the inner wall 5. Floorboard 8. Since the air enters the furnace uniformly through the small holes in the lower ceiling 7, the temperature of the air inside the furnace increases uniformly and sequentially. One-way wall5. Floorboard 8. The lower ceiling 7 is a side wall space 10. Underfloor space9. 170 heated by hot air passing through the ceiling space 11
℃, and the inner surface of the furnace has a high emissivity of far-infrared rays, so far-infrared rays are radiated abundantly. The cart 3 supporting the product 2 has a frame structure so as not to block far infrared rays. Since the far infrared rays penetrate deep from the surface and warm the product 2, the product 2 is heated by the far infrared rays in addition to heat transfer.
Temperature rises rapidly. In particular, it takes a short time for the deep part of the product 2 to reach a predetermined temperature, and when the surface of the product 2 reaches the required 130°C, the temperature of the hot air is lowered to 130°C. Even if the surface of product 2 reaches 130°C, the internal parts do not reach 130°C at the same time, but the temperature of the hot air is increased to 130°C.
If the temperature is kept at 130°C for a suitable period of time, the entire product 2 will reach 130°C. Then, the temperature is maintained at 130° C. for the necessary time to complete the heat treatment.

この装置によれば製品2は従来の熱風吹込炉によるより
ずっと早い温度上昇が得られて熱消費量が少なく、しか
も製品2全体が温度の不均一なく加熱され、加熱処理に
好結果をもたらす。
With this device, the temperature of the product 2 can be increased much faster than with a conventional hot air blowing furnace, and the amount of heat consumed is small, and the entire product 2 is heated without unevenness in temperature, resulting in good results in heat treatment.

今までの説明では壁、床、天井全体を二重構造にし、全
面的に遠赤外線を放射することで説明したが、それ程厳
重な均一温度を必要としない場合は、一部を一重構造に
しても良い(例えば天井の二重構造を省略するなど)。
Up until now, we have explained that the walls, floor, and ceiling are all double-layered and emit far-infrared rays over the entire surface, but if you do not need such strict uniform temperature, you can partially have a single-layered structure. (for example, omitting the double structure of the ceiling).

又排気通路13を側壁上部として説明したが、これは側
壁下部、天井、床下など都合の良いところにして差支え
ない、更に又実施例の説明では加熱温度を130℃とし
たが、これは製品に適当する温度にその都度定めて操業
すれば良い。
In addition, although the exhaust passage 13 has been described as being located at the top of the side wall, it may be located at the bottom of the side wall, on the ceiling, under the floor, or any other convenient location.Furthermore, in the explanation of the embodiment, the heating temperature was set at 130°C, but this may vary depending on the product. It is sufficient to operate at an appropriate temperature each time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例の横断面図、第2図は同縦断面図
、第3図は加熱炉の内壁、床板、下天井を構成する板材
一部の平面図である。 l・・・加熱炉本体、2・・・大型有機材製品、3・・
・台車、4・・・外壁、5・・・内壁、6・・・上天弁
、7・・・下天井、8・・・床板、9・・・床下空間、
10・・・側壁二重構造の空間、11・・・天井二重構
造の空間、12・・・仕切り、13・・・排気通路、1
4゜15・・・給気ダクト、16・・・排気ダクト、1
7・・・内壁、18.19・・・空気通行矢印、20・
・・扉、21・・・内壁、下天井、床板を構成する板の
一部、22・・・板に開けられた小孔。 以   上
FIG. 1 is a cross-sectional view of an embodiment of the present invention, FIG. 2 is a longitudinal cross-sectional view of the same, and FIG. 3 is a plan view of a portion of plate materials constituting the inner wall, floor plate, and lower ceiling of the heating furnace. l... Heating furnace body, 2... Large organic material product, 3...
- Trolley, 4... External wall, 5... Inner wall, 6... Upper heaven valve, 7... Lower ceiling, 8... Floor plate, 9... Underfloor space,
10... Space with side wall double structure, 11... Space with double ceiling structure, 12... Partition, 13... Exhaust passage, 1
4゜15...Air supply duct, 16...Exhaust duct, 1
7...Inner wall, 18.19...Air passage arrow, 20.
...door, 21...part of the board that makes up the inner wall, lower ceiling, and floorboard, 22...small hole drilled in the board. that's all

Claims (1)

【特許請求の範囲】[Claims] プラスチック又はゴムなど有機材の大型製品を加熱する
時に使用する熱風吹込み加熱炉において、炉内の側壁・
床・天井をほぼ全面的に二重構造とし、その二重構造の
大部分を給気通路、残り部分を排気通路とし、排気が循
環ファン、空気加熱器を通って給気通路に入り循環する
よう配置し、給気通路・排気通路の内側隔壁にほぼ均一
に小孔を多数開けて熱風が均一に炉内に給気され、且つ
排気されるようにし、前記内側隔壁を遠赤外線放射率の
高い材料で作るとか、又は内側隔壁の炉内側表面に遠赤
外線放射率の高い塗料を塗るとかして、炉内側に遠赤外
線が豊富に放射されるようにし、炉の中の大型有機材製
品を加熱するに際し、昇温立上り時間を短くして熱消費
量を少なくし、且つ大型有機材製品の温度を均一に保つ
ようにすることを特徴とする大型有機材製品加熱炉。
In hot air blowing heating furnaces used to heat large products made of organic materials such as plastic or rubber, the side walls and
The floor and ceiling are almost entirely double-layered, with most of the double-walled structure serving as an air supply passage and the rest as an exhaust passage, with the exhaust passing through a circulation fan and an air heater into the air supply passage for circulation. A large number of small holes are made almost uniformly in the inner partition wall of the air supply passage and the exhaust passage so that hot air can be uniformly supplied into the furnace and exhausted, and the inner partition wall has a far infrared emissivity. By making the furnace using high-quality materials or by coating the inner surface of the furnace with a paint with high far-infrared emissivity, far-infrared rays can be radiated abundantly inside the furnace, and large organic products inside the furnace can be heated. A large-sized organic material product heating furnace characterized by shortening the temperature rise time to reduce heat consumption and maintaining a uniform temperature of the large-sized organic material product.
JP13620488A 1988-06-02 1988-06-02 Large-sized heating furnace for organic material product Pending JPH01304916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13620488A JPH01304916A (en) 1988-06-02 1988-06-02 Large-sized heating furnace for organic material product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13620488A JPH01304916A (en) 1988-06-02 1988-06-02 Large-sized heating furnace for organic material product

Publications (1)

Publication Number Publication Date
JPH01304916A true JPH01304916A (en) 1989-12-08

Family

ID=15169763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13620488A Pending JPH01304916A (en) 1988-06-02 1988-06-02 Large-sized heating furnace for organic material product

Country Status (1)

Country Link
JP (1) JPH01304916A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003025342A (en) * 2001-07-13 2003-01-29 Tlv Co Ltd Steam vulcanization apparatus
JP2003025340A (en) * 2001-07-13 2003-01-29 Tlv Co Ltd Steam vulcanization apparatus
JP2005001323A (en) * 2003-06-13 2005-01-06 Mitsubishi Rayon Eng Co Ltd Heating chamber for belt machine, and belt heating method and device using the chamber

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6157485B2 (en) * 1980-05-29 1986-12-06 Chuo Hatsujo Kk

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6157485B2 (en) * 1980-05-29 1986-12-06 Chuo Hatsujo Kk

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003025342A (en) * 2001-07-13 2003-01-29 Tlv Co Ltd Steam vulcanization apparatus
JP2003025340A (en) * 2001-07-13 2003-01-29 Tlv Co Ltd Steam vulcanization apparatus
JP4615773B2 (en) * 2001-07-13 2011-01-19 株式会社テイエルブイ Steam vulcanizer
JP2005001323A (en) * 2003-06-13 2005-01-06 Mitsubishi Rayon Eng Co Ltd Heating chamber for belt machine, and belt heating method and device using the chamber

Similar Documents

Publication Publication Date Title
KR100385575B1 (en) Paint drying furnace with radiation energy floor and drying method
US3704523A (en) Microwave dryer for ceramic articles
KR100663842B1 (en) A drier
KR960014869A (en) Drying System
WO2019066341A2 (en) Photothermal drying device and drying method using photothermal drying device
JPWO2019059159A1 (en) Heating apparatus and heating method using superheated steam
JP2525652B2 (en) Paint drying oven
JPH01304916A (en) Large-sized heating furnace for organic material product
EP0867421B1 (en) Method for drying shaped ceramic bodies
JPH0826760A (en) Method for bending and tempering of sheet glass
JP2541345B2 (en) Radiation panel
JP2006349272A (en) Method and apparatus for regulating wet-bulb temperature inside wood drying chamber
KR101459827B1 (en) The drying machine for agricultural and marine products
CN205593306U (en) All -round circulation heat supply oven system
JPS61174967A (en) Drying furnace of coated product
JPS625400A (en) Method and device for drying thick bedquilt
GB2105975A (en) Dough proving
JPS6110156Y2 (en)
JP2001336878A (en) Dryer and drying method
KR101268430B1 (en) Apparatus For Drying Leather Of Continuous Painting System
JPH0525741Y2 (en)
JPH02635Y2 (en)
JPH0222318B2 (en)
US1381109A (en) Electrically-heated incubator
JPH0482690U (en)