JPH0130474B2 - - Google Patents

Info

Publication number
JPH0130474B2
JPH0130474B2 JP55092686A JP9268680A JPH0130474B2 JP H0130474 B2 JPH0130474 B2 JP H0130474B2 JP 55092686 A JP55092686 A JP 55092686A JP 9268680 A JP9268680 A JP 9268680A JP H0130474 B2 JPH0130474 B2 JP H0130474B2
Authority
JP
Japan
Prior art keywords
pigment
medium
cell
cells
cultured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55092686A
Other languages
Japanese (ja)
Other versions
JPS5718983A (en
Inventor
Yoshikazu Yamamoto
Ryuzo Mizuguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paint Co Ltd
Original Assignee
Nippon Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paint Co Ltd filed Critical Nippon Paint Co Ltd
Priority to JP9268680A priority Critical patent/JPS5718983A/en
Publication of JPS5718983A publication Critical patent/JPS5718983A/en
Publication of JPH0130474B2 publication Critical patent/JPH0130474B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明はナヌホルビア属ハナキリンに属する培
逊现胞に関し、曎に詳しくは、赀色色玠生産胜が
高くか぀安定で環境適応胜に富み、生育の旺盛な
未分化现胞圢態を有するナヌホルビア属ハナキリ
ンに属する培逊现胞に関する。 色玠は食品着色剀などずしお食品に矎感などを
付䞎するために倚甚されおいるが、合成着色剀は
その毒性、䟋えば突然倉異原性等の点で発ガン性
物質ずしおいろいろ問題を起しおいる。埓぀お、
食品等に甚いられる着色剀ずしおはその安党性の
面から倩然物に由来する色玠の䜿甚が望たれおい
る。しかしながら、倩然栜培は季節、気候、枩
床、緯床等の自然環境の制玄を受け易いために、
倩然怍物からの採取では安定した䟛絊を続けるこ
ずができない。たた、耕地を利甚した倧量の栜培
は、圓然食糧生産ず拮抗するのでその䟛絊に限界
があり、しかもその生産性にも自から限界があり
著しく高䟡なものずなる。 然るに、近幎、怍物成分を生産する手法ずし
お、怍物现胞培逊の研究が進められおいる。怍物
现胞培逊は、幎単䜍又は月単䜍で生育する倩然怍
物に比べ、はるかに速い速床で生育するので短時
間に目的ずする成分を生産するこずができ、たた
倩然栜培ず違぀お倩候等の圱響を受けず、採取に
も倚くの人手を煩わすこずなく、しかも工業的芏
暡で蚈画生産するこずができるずいう利点を有す
る。 かかる芳点から本発明者等は怍物现胞培逊によ
り倩然色玠を工業的に有利に生産すべく鋭意研究
を進めた結果、前述の劂く、ナヌホルビア属ハナ
キリンの葉を−ゞクロルプノキシ酢酞を
含む培地で培逊しお埗た赀色倩然色玠の生産胜が
高くか぀安定で環境適応胜に富み、生育の旺盛な
未分化现胞圢態を有するナヌホルビア属ハナキリ
ンに属する培逊现胞を創成するこずに成功し、本
発明をするに至぀た。 埓来品皮のナヌホルビア属ハナキリンは有甚な
倩然赀色色玠の生産胜は党くなく、埓぀おこの品
皮の組織培逊物を赀色倩然色玠の生産に利甚する
こずができなか぀た。然るに本発明者等は、ナヌ
ホルビア属ハナキリンの现胞組織を、奜たしくは
−ゞクロルプノキシ酢酞−
を10-6〜10-7Mおよびシペ糖を〜の濃床で
含む培地で培逊するこずにより赀色倩然色玠生産
胜を有する未分化现胞を誘導し、次いで赀色倩然
色玠生産性を指暙ずしお、赀色倩然色玠の高生産
胜および安定生産胜に優れた未分化现胞を、奜た
しくは−D10-6〜10-7M及びシペ糖〜
の濃床で含む培地䞊で、遞抜しおその特性を固
定させた結果、赀色倩然色玠の高生産胜および安
定生産胜に優れるずいう特性ばかりでなく、生育
が速く、環境適応性にも優れるずいう特性も同時
に固定されたナヌホルビア属ハナキリンに属する
培逊现胞を創成した。 本発明に係るナヌホルビア属怍物ハナキリンに
属する培逊现胞は䟋えば、以䞋のようにしお創成
した。 先ず、垂販の園芞品皮ハナキリンの葉を脱むオ
ン氎で充分掗浄した埌、70゚チルアルコヌルに
〜10分間、次いで10さらし粉溶液に〜10分
間浞挬しお衚面に付着しおいる雑菌を殺菌した
埌、無菌蒞留氎で残存殺菌剀を掗浄陀去する。 次に、殺菌した葉を適圓な倧きさに滅菌メスで
切断しお小片ずし、−ゞクロルプノキシ
酢酞−を含む合成培地䞊に眮床す
る。 合成培地の䞀䟋を瀺せば、以䞋の衚に瀺すよ
うな組成の無機合成培逊液に−D5×
10-7Mず衚に瀺すような組成の有機物及び寒倩
0.8を加えお固化させた培地を奜適に䜿
甚できる。
The present invention relates to a cultured cell belonging to the genus Euphorbia Hanakirin, and more particularly to a cultured cell belonging to the genus Euphorbia Hanakirin, which has an undifferentiated cell morphology that has a high ability to produce red pigment, is stable, is highly adaptable to the environment, and has a vigorous growth. Pigments are often used as food coloring agents to add aesthetic appeal to foods, but synthetic colorants pose various problems due to their toxicity, such as mutagenicity and carcinogenicity. . Therefore,
From the viewpoint of safety, it is desired to use pigments derived from natural products as coloring agents for foods and the like. However, natural cultivation is subject to constraints from the natural environment such as season, climate, temperature, latitude, etc.
It is not possible to maintain a stable supply by collecting from natural plants. In addition, large-scale cultivation using arable land naturally competes with food production, so there is a limit to its supply, and there is also a limit to its productivity, making it extremely expensive. However, in recent years, research on plant cell culture has been progressing as a method for producing plant components. Plant cell culture grows at a much faster rate than natural plants, which grow on a yearly or monthly basis, so it is possible to produce the desired ingredients in a short period of time, and unlike natural cultivation, it is less susceptible to the effects of weather etc. It has the advantage of being able to be produced in a planned manner on an industrial scale without the need for much labor for collection. From this point of view, the present inventors have carried out intensive research in order to industrially advantageously produce natural pigments by culturing plant cells, and as a result, as mentioned above, the leaves of Euphorbia sp. We have succeeded in creating cultured cells belonging to the Euphorbia genus Hanakirin, which have a high ability to produce red natural pigments obtained by culturing in a medium containing euphorbia, are stable, highly adaptable to the environment, and have an undifferentiated cell morphology that grows vigorously. This led to the present invention. The conventional variety Euphorbia Hanakirin has no ability to produce useful natural red pigments, and therefore tissue culture of this variety could not be used to produce red natural pigments. However, the present inventors have prepared cell tissues of Hanakirin of the genus Euphorbia, preferably using 2,4-dichlorophenoxyacetic acid (2,4-D).
By culturing in a medium containing 10 -6 to 10 -7 M and sucrose at a concentration of 4 to 8%, undifferentiated cells with red natural pigment production ability were induced, and then red natural pigment productivity was used as an indicator. , undifferentiated cells with excellent red natural pigment production ability and stable production ability, preferably 2,4-D10 -6 to 10 -7 M and sucrose 4 to 8
As a result of selecting and fixing its characteristics on a medium containing a concentration of We created cultured cells belonging to the Euphorbia genus Hanakirin with fixed characteristics. The cultured cells belonging to the Euphorbia plant Hanakirin according to the present invention were created, for example, as follows. First, the leaves of the commercially available garden variety Hanakirin are thoroughly washed with deionized water, and then immersed in 70% ethyl alcohol for 5 to 10 minutes and then in a 10% bleaching powder solution for 5 to 10 minutes to remove any bacteria that may have adhered to the surface. After sterilization, remove residual disinfectant by washing with sterile distilled water. Next, the sterilized leaves are cut into small pieces with a sterile scalpel to an appropriate size, and the pieces are placed on a synthetic medium containing 2,4-dichlorophenoxyacetic acid (2,4-D). An example of a synthetic medium is 2,4-D5× inorganic synthetic culture solution with the composition shown in Table 1 below.
10 -7 M and organic matter and agar with the composition shown in Table 2.
A medium solidified by adding 0.8% w/v can be preferably used.

【衚】【table】

【衚】【table】

【衚】 眮床埌、20〜30℃、奜たしくは25℃前埌の䞀定
枩床条件䞋の明所、奜たしくは100ルツクス以䞊、
曎に奜たしくは3000〜100000ルツクスの光照射䞋
においお培逊する。かかる培逊により䞀週間経過
埌頃にはハナキリンの葉から前蚘赀色色玠を生産
する培逊现胞が圢成される。なお、−に
代えお、埓来䞀般的に䜿甚されおいるナフタレン
酢酞NAAをオヌキシン䜜甚物質ずしお含む
培地で誘導した埓来品皮は有甚倩然色玠クリサ
ンテミンの生成胜が党く無い。 前蚘培逊现胞を誘導又は培逊するのに甚いられ
る培地ずしおは、各皮既知の無機合成寒倩培地を
基本ずし、これにビタミン等の埮量有機物、炭玠
源、怍物ホルモンおよび各皮倩然抜出物質を添加
したものを甚いる。 前蚘無機合成寒倩培地の代衚䟋ずしおは、衚
に瀺した合成培地の他に、ホワむト培地、ヒルデ
ブランド培地、リンスマむダヌ−スクヌグ培地等
があげられる。その他、これらの培地の組成を改
良したものも䜿甚するこずができる。 前蚘ビタミン等の埮量有機物ずしおは、チアミ
ン塩酞塩、ピリドキシン塩酞塩、ニコチン酞等の
ビタミングリシン、アスパラギン等のアミノ
酞むノシツト、゜ルビツト等の䟡アルコヌル
をあげるこずができるが、これらの埮量有機物は
培地に添加しなくおも良奜な生育を瀺す堎合があ
る。 前蚘炭玠源ずしおは、特にシペ糖の䜿甚が色玠
生産性が高く奜たしい。䜿甚濃床は〜10
、奜たしくは〜である。この濃床
が高すぎるず生育が遅くなり、逆に䜎すぎるず色
玠の生産が抑えられるので奜たしい。 怍物ホルモンずしおは、前蚘した劂く、
−の䜿甚が必須であるが、オヌキシン䜜甚物質
を陀く他の怍物ホルモン、䟋えばカむメチンなど
のサむトカむニン類やゞベレリンA3などのゞベ
レリン類などの䜵甚を劚げるものではない。
−の䜿甚濃床は10-4〜10-7M、奜たしくは
10-6〜10-7Mであり、この濃床が高過ぎるず、现
胞が生育しないので奜たしくなく、逆に䜎過ぎる
堎合には緑化したり、生育しなか぀たりするので
奜たしくない。 前蚘各皮倩然抜出物質ずしおは、䟋えばカれむ
ン加氎分解物〜、ココナツツミ
ルク〜25、酵母゚キス〜
、麊芜゚キス〜などを
単独又は任意に組み合せお䜿甚するこずができ
る。 本発明においお前述の劂く现胞の培逊は、现胞
を内蔵した培逊噚を100ルツクス以䞊、奜たしく
は3000〜100000ルツクスの光照射䞋に蚭眮しお実
斜する。光源ずしおは、倪陜光、螢光灯、癜熱電
灯、氎銀灯などを甚いるこずができる。光照射を
実斜しない堎合には色玠が生産されない。 このようにしお誘導した、赀色倩然色玠の生産
胜を有する培逊现胞の䞭から赀色倩然色玠生産性
を指暙ずしお、赀色倩然色玠の高生産胜および安
定生産胜に優れた未分化现胞を遞抜しおその特性
を固定した新品皮を埗るには、䟋えば以䞋の工
繋(a)〜(d)のようにしお実斜するこずができる。 工皋(a) この工皋においおは䞊で圢成されたハナキリン
培逊现胞塊をほぐし、前蚘した培地䞭に分散さ
せ、奜たしくは懞濁培逊法により生育させる。懞
濁培逊は、枩床20〜30℃、奜たしくは25℃前埌で
明所、奜たしくは3000ルツクス以䞊の光照射䞋で
〜14日皋床実斜する。培逊が14日を超える長期
に亘るず定垞期埌半になり、逆に日未満では未
だ誘導期にあるので以䞋の工皋における正垞な生
育が期埅できない。 工皋(b) この工皋においおは、䞊蚘工皋(a)で埗た懞濁培
逊液を皮類の倧きさの網目を有する二぀のフむ
ルタヌ、奜たしくは二重フむルタヌで過し、䞡
フむルタヌの䞭間の倧きさの培逊现胞塊を遞択的
に集めお培逊现胞塊の倧きさを所定の範囲内の倧
きさに揃える。フむルタヌの網目の倧きさは任意
に遞ぶこずができるが、砎壊现胞片や巚倧现胞塊
の混入を防止するため、小さい方のフむルタヌの
網目サむズは50〜100Ό、奜たしくは100Ό、倧き
い方のフむルタヌの網目サむズは150〜200Ό、奜
たしくは150Όであるのが望たしい。フむルタヌ
の材質は现胞に圱響を䞎えない材質であれば特に
限定はないが、䟋えばステンレススチヌルやナむ
ロンが望たしい。 工皋(c) この工皋においおは、䞊蚘工皋(b)で埗られた所
定範囲内の倧きさの培逊现胞を溶解した寒倩培地
に分散させおペトリ皿のような偏平な容噚に流し
蟌み、分散した培逊现胞を生育させおコロニヌを
圢成させる。培逊现胞を生育させるためには、培
逊现胞を寒倩培地に分散する際の现胞濃床が104
〜106现胞数mlであるのが望たしく、この濃床
より高いず圢成するコロニヌが接近し過ぎるし、
逆に䜎いず生育し難くなるので奜たしくない。こ
の工皋においお䜿甚する寒倩培地は䞊蚘懞濁培逊
の培地ず同䞀の培地か、又はこれを適宜修正した
培地に䟋えば寒倩0.6〜0.8を添加したものを甚
いるのが奜たしい。培逊は枩床20〜30℃、奜たし
くは25℃前埌で明所、奜たしくは3000ルツクス以
䞊の光照射䞋に14〜28日皋床実斜する。培逊期間
が28日を超える長期に亘るず定垞期を超え、逆に
14日未満では未だ誘導期か或いは察数増殖期前期
にあり、コロニヌの倧きさが小さすぎお奜たしく
ない。 工皋(d) この工皋においおは増殖した现胞塊の䞭から赀
色色玠クリサンテミン含量の高い现胞塊を遞択す
る。所望の现胞塊の遞択は、赀色色玠濃床を目芖
で刀定しお最も色玠含量の高いず思われるものを
個又は耇数個遞択しおも良いが、目芖刀定では
なく色玠が可芖吞収をも぀おいるこずを利甚し
お、各现胞塊を半割し、半割した䞀方に含たれる
色玠を抜出しお色玠含量を枬定し、その色玠含量
の最高倀を有する半割分の他方を遞んでもよい。
この最高含量の现胞塊のほかに色玠含量の高い现
胞塊を個又はそれ以䞊曎に遞んでも良いこずは
いうたでもない。䞊蚘色玠の抜出定量法ずしお
は、0.01〜の塩酞或いはギ酞、酢酞など
を含むメタノヌル或いぱタノヌル、氎などで
もよいの䞀定量に−〜10皋床の枩床におい
お各现胞塊を浞挬し、〜時間埌抜出液の䞀定
量を比色定量するか、あるいは抜出液の䞀定量を
高速液䜓クロマトグラフむヌや薄局クロマトデン
シトメヌタヌで内郚暙準法か倖郚暙準法を甚いお
定量する方法を甚いれば良い。 このようにしお遞択した现胞塊は、必芁によ
り、曎に工皋(a)、(b)、(c)及び(d)により遞抜を所望
回数繰り返しお高色玠含量の安定株を埗るこずが
できる。 遞抜された现胞塊を培逊しお赀色色玠クリサン
テミンを生産する堎合には、生産された赀色色玠
は、公知の方法、䟋えば溶媒抜出法によ぀お分離
採取するこずができる。以䞋にその䞀䟋を説明す
る。 先ず、塩酞、酢酞、ギ酞などの酞を0.01〜重
量皋床の濃床で含む溶媒、奜たしくは氎又はメ
タノヌル、゚タノヌルなどのアルコヌル系溶媒に
培逊现胞、奜たしくは垞法に埓぀お凍結也燥した
培逊现胞を−〜10℃の枩床においお浞挬し生産
された赀色色玠を抜出する。次に埗られた抜出液
をロ過などの操䜜で固圢分を陀去した埌、40℃以
䞋の枩床この枩床が高過ぎるず赀色色玠が分解
しやすくなるので奜たしくないで枛圧濃瞮し、
この濃瞮液を分液ロヌトに移し、䟋えば゚ヌテル
゚ヌテルに代えおヘキサン、ヘプタン、石油゚
ヌテル、クロロホルム、二酞化メチレン、酢酞゚
チルなどを甚いるこずもできるを加えお振ずう
し、油溶性䞍玔物を゚ヌテルに溶解させお分離陀
去する。この゚ヌテル掗浄操䜜を数回繰り返した
埌、色玠抜出液を枛圧也燥するこずによ぀お目的
ずする赀色色玠を埗るこずができ、曎にセルロヌ
ス薄局クロマトグラフむヌ、セルロヌスカラムク
ロマトグラフむヌ、ペヌパヌクロマトグラフむヌ
などによ぀お粟補するこずができる。 前蚘した創成手段によ぀お怍物の遺䌝子構成が
倉化しおいるか吊か、即ち埓来品皮ず本発明培
逊现胞ずで遺䌝子構成が異な぀おいるか吊かは盎
接的には蚌明できない。しかしながら、本発明培
逊现胞をNAAを含む培地䞭で栜培しおも倩然赀
色色玠クリサンテミン生産胜が消えないこず及び
埓来品皮を−を含む培地で栜培しおも
色玠生産胜が生じないこずの二点からみお、これ
らの二品皮は単なる倉異株ではなく遺䌝子構成の
異なるものであるず結論するこずができる。 本発明に係る本発明培逊现胞は未分化现胞圢態
で増殖する怍物であるので分化现胞圢態で増殖す
る怍物の栜培ずはその方法を異にする。すなわ
ち、䟋えば衚に瀺すような組成の無機合成培逊
液に−D0.1ppmず衚に瀺すような組成
の有機物を加え、PH6.0でオヌトクレヌブし、こ
れを綿栓をした䞉角フラスコ又は坂口フラスコや
撹拌機の付いた槜に泚入し、その培逊液䞭で本品
皮の栜培をする。栜培条件は、䟋えば枩床20〜
35℃、奜たしくは25℃前埌の䞀定枩床䞋、明所、
奜たしくは3000〜100000ルツクスの光照射䞋に、
䟋えば100mlの培逊液を入れた300mlの䞉角フラス
コを120rpm、cmの振巟を有する埀埩振ずう機
䞊で振ずうさせるこずによ぀お実斜するこずがで
きる。 次に、本発明培逊现胞の特性を埓来品皮の特
性ず比范しながら以䞋に説明する。 生育速床は、第図に瀺すように、生育比を指
暙ずするず本発明培逊现胞は栜培14日で定垞期に
入り、玄10倍の生育比を瀺すのに察し、埓来の品
皮は栜培28日で定垞期に入り、玄倍の生育比
を瀺す。このように本発明培逊现胞は埓来品皮
に比范しお誘導期が短かく、増殖速床も倧きく、
しかも定垞期の生育比も倧きいので生育速床が著
しく倧きいこずが認められた。 次に、環境適応性に぀いお、察PH、察枩床及び
察振ずう数を調べた結果をそれぞれ第図、第
図及び第図に瀺す。 PH倉化に察する適応性は、第図に瀺したよう
に、本発明培逊现胞はPH4.5〜の範囲で安定に
生育するのに察し、埓来品皮は5.5〜6.5の狭い
範囲でしか安定に生育しない。この様に本発明培
逊现胞はPH倉化に察する広い適応性を有しおい
る。 枩床倉化に察する適応性は、第図に瀺す劂
く、本発明培逊现胞が20〜35℃の枩床範囲で安定
に生育するのに察し埓来品皮は25〜30℃の狭い
枩床範囲でしか安定に生育しない。この様に本発
明培逊现胞は枩床倉化に察しおも広い適応性を有
しおいる。 振ずう培逊機の振ずう数倉化に察する適応性
は、第図に瀺すように、本発明培逊现胞が100
〜180rpmの広い振ずう数範囲で安定に生育する
のに察し埓来品皮は100〜120rpmの狭い振ずう
数範囲でしか安定に生育しない。この様に本発明
培逊现胞は振ずう数倉化に察しおも広い適応性を
有しおいる。 本発明培逊现胞の赀色色玠クリサンテミン高生
産性及び安定生産性に぀いおは、第図〜第図
の曲線□−□で瀺したように、10也重以䞊
ず、赀色倩然色玠生産胜のない埓来品皮に比范
しおは勿論のこず、本発明培逊现胞の遞抜前の培
逊现胞の赀色色玠の生産性1.4也重ず比范し
おも玄倍匷の赀色倩然色玠生産性を有し、本発
明培逊现胞が極めお高い赀色倩然色玠生産胜をも
぀こずが明らかである。たた、第図〜第図の
結果から明らかなように、本発明培逊现胞はPH
〜6.5、枩床15〜30℃及び振ずう数60〜180rpmの
範囲で赀色倩然色玠を安定に生産し、著しく広い
安定生産性を有しおいる。 本発明の新品皮の培逊现胞の圢態的な特性に
぀いおは、その倧きさず圢は埓来品皮ず類䌌
し、倧きさは30〜50Ό皋床で圢はほが球圢であ
り、色は党䜓に赀色を垯び、この点で埓来品皮
ず党く異な぀おいる。この様に、本発明培逊现胞
ず埓来品皮の特性は党く異な぀おおり、この点
からも二぀の品皮及びは遺䌝子構成を異にす
るものず結論づけるこずができる。なお、本発明
培逊现胞の培逊现胞を埮工研に寄蚗しようずした
が受付けられなか぀た。しかしながら、本発明の
品皮は埓来品皮のハナキリンから前述のような
創成手段により繰り返し確実に創成できるもので
ある。 以䞋に本発明の実斜䟋を説明するが、本発明の
範囲を以䞋の実斜䟋に限定するものでないこずは
いうたでもない。 実斜䟋 垂販の園芞品皮ハナキリン暹高玄30cm、葉長
玄cmの葉を充分に氎掗し、広さcm2皋床に切
断した。次いで、これらの切片を70゚チルアル
コヌルに分間浞挬し、曎に10さらし粉溶液に
10分間浞挬しお殺菌凊理した埌、無菌箱内で無菌
蒞留氎䞭に数回浞挬しお掗浄し、充分に残存殺菌
剀を陀去した。これらの葉切片を枛菌メスを甚い
お広さcm2皋床の小片に切断し、埗られたハナキ
リンの葉の小切片を以䞋の組成の合成寒倩培地に
無菌的に眮床した。 培地ずしおは、前蚘衚に瀺した無機塩培地
に、シペ糖、麊芜゚キス0.2、
−D5×10-7M、チアミン塩酞塩0.1ppm、
ピリドキシン塩酞塩0.5ppm、ニコチン酞
0.5ppm、グリシン2ppmおよびむノシトヌル
100ppmを加えおPH6.0に調敎し、寒倩0.8
を加えお垞法通り殺菌した培地を甚いた。 このような培地に眮床したハナキリンの葉の小
片を培逊枩床25℃で3000ルツクスの光照射䞋培逊
した。週間経過した頃から葉の切口呚蟺から赀
色の培逊现胞塊が生じた。 ケ月埌倧きく生長した培逊现胞塊生重
量を䞋蚘組成の液䜓培地50mlを含む100ml䞉角
フラスコに分散させた。培地ずしおは、前蚘衚
に瀺した無機塩培地に、シペ糖、麊芜
゚キス0.2、−D5×10-7M、チア
ミン塩酞塩0.1ppm、ピリドキシン塩酞塩
0.5ppm、ニコチン酞0.5ppm、グリシン2ppmお
よびむノシトヌル100ppmを加えおPH6.0に調敎し
垞法通り殺菌したものを甚いた。 次いで现胞培逊液の入぀たフラスコを振ずう数
120rpm及び振巟cmの埀埩振ずう培逊機䞊に固
定し、枩床25℃で3000ルツクスの光照射䞋に日
間培逊した。日経過埌培逊液は砎壊された现胞
や埮小な现胞塊、巚倧现胞塊の入り混じ぀た懞濁
液ずな぀た。埗られた懞濁液を、網目サむズが
100Όず150Όの倧きさの重のステンレスフむル
タヌで過し、枚のフむルタヌの間に溜た぀た
100〜150Όの倧きさの培逊现胞塊を集めた。 単離した培逊现胞塊を现胞濃床が106现胞数
mlになるように䞊蚘液䜓培地mlに加えた。この
现胞濃床の確認は䞻にトヌマ血球蚈算盀を甚いお
行な぀た。次に、この现胞液mlを20mlの溶解し
た䞋蚘組成の寒倩培地に懞濁した埌、cmのペト
リ皿に流し蟌み固化させた。寒倩培地ずしおは、
前述の懞濁培逊に甚いたのず同䞀組成の培地10ml
ず前述の懞濁培逊埌の液を曎に0.2Όのメンブラ
ンフむルタヌで過した液10mlずを合わせ、寒
倩126mg0.6を加えたものを、曎に寒
倩を溶解させた埌48℃に保぀た培地を甚いた。次
いで、このペトリ皿を25℃で3000ルツクスの光照
射䞋に静眮し、21日間培逊した。 ペトリ皿䞭で生育増殖した现胞塊26個のうち目
芖により赀色のより濃いず刀定される现胞塊を
個遞択し、各々を株及び株ず名付けた。 このようにしお、元の培逊现胞塊から株及
び株の皮類の赀色色玠生産胜の高い培逊现胞
を遞抜するこずができたが、この株及び株が
元の培逊现胞塊ず比べおどの皋床色玠生産胜が
向䞊したかを調べるために以䞋の実隓を行な぀
た。 先ず株55mg及び株52mgを各々䞊蚘
工皋(a)に甚いたのず同じ培逊液mlを含む詊隓管
に分散させ、䞊蚘工皋ず同じ培逊条件で14日間懞
濁培逊を行な぀た。次いで培逊液2.5mlをずり、
No.玙で過しお玙䞊の培逊现胞を集め、そ
の生産量を秀量した。现胞を塩酞性メタノヌ
ルに䞀時間冷浞埌、過し、液に塩酞性メ
タノヌルを加えお10mlにし、530nの吞光床を
枬定し、怜量線から色玠重量ず色玠含量を決定し
た。各株の色玠含量生重量、以䞋同じ
は株0.0862及び株0.0882であり、工皋(a)
に入る前の培逊现胞塊の色玠含量0.0708に比范
しおそれぞれ21.8及び24.6の含量の向䞊が認
められた。残りの培逊液2.5mlに含たれる培逊现
胞塊を䞊蚘工皋ず同様の操䜜でペトリ皿䞭に分散
させたずころ、株25個および株18個の现胞塊
が生育増殖した。このうち目芖により赀色のより
濃いず刀定される现胞塊を株及び株各個づ
぀遞択した。これらを、それぞれ−株及び
−株ず名づけ、前述の色玠含量枬定法に埓぀お
それぞれの含量枬定を実斜したずころ、それぞれ
0.145および0.152であ぀た。埗られた−株
及び−株に぀いお、曎に同様の遞抜工皋を
回繰り反しお最終的には−株色玠含量
0.651、以䞋同じ及び−株0.673の
株を埗た。これらの色玠含量の元の现胞塊の色
玠含量に察する含量向䞊の割合はそれぞれ9.2倍
及び9.5倍であ぀た。 色玠含量の高い−株に぀いお残りの培逊液
2.5mlを、前蚘のものず同䞀組成の培逊液50mlを
装入した100ml䞉角フラスコに加え、14日間前述
の培逊条件ず同䞀の条件䞋に培逊した。次に、こ
の培逊液ず同䞀組成の培逊液500mlの入぀たリ
ツトル䞉角フラスコに加え、、同䞀の培逊条件䞋
に14日間培逊した埌、過し、培逊现胞塊158
を埗た。これを垞法通り凍結也燥しお也燥物7.3
を埗た。この也燥物を乳鉢で磚砕埌、塩酞
性メタノヌルに冷所においお24時間浞挬した。ロ
過埌埗られた抜出液を40℃以䞋の枩床でメタノヌ
ルを飛ばしお50ml皋床たで濃瞮し、分液ロヌトに
移した埌100mlの゚ヌテルを加え、充分振ずう埌
゚ヌテル局ず分離した。かかる゚ヌテル掗浄操䜜
を数回繰り返した埌曎に40℃以䞋で枛圧濃瞮しお
也固させた。この也固物を少量の0.01塩酞性メ
タノヌル溶解し、分取HPLCに泚入しおメタノヌ
ルギ酞氎ギ酞含量0.1で流出させ、赀色
流出液を分取した。この流出液を40℃以䞋で枛圧
也固しお黒赀色粉末1030mg収率14.1察也量、
0.652察生重量を埗た。 たた、埗られた色玠ずシアニゞン−−アラビ
ノシドのUV吞収スペクトルを比范したずころ、
衚に瀺すように䞡者はほが䞀臎した。
[Table] After placing on the bed, store in a bright place under constant temperature conditions of 20 to 30℃, preferably around 25℃, preferably 100 Lux or more.
More preferably, the culture is carried out under light irradiation of 3,000 to 100,000 lux. After one week of such culturing, cultured cells that produce the red pigment are formed from the leaves of Hanakirin. The conventional cultivar A, which was induced with a medium containing the commonly used naphthalene acetic acid (NAA) as an auxin agent instead of 2,4-D, has no ability to produce the useful natural pigment chrysanthemine. The medium used for inducing or culturing the cultured cells is based on various known inorganic synthetic agar media, to which trace organic substances such as vitamins, carbon sources, plant hormones, and various natural extracts are added. use Representative examples of the inorganic synthetic agar medium are shown in Table 1.
In addition to the synthetic media shown in , White's medium, Hildebrand's medium, Linsmeyer-Skoog's medium, etc. can be mentioned. In addition, these media with improved compositions can also be used. Examples of trace organic substances such as vitamins include vitamins such as thiamine hydrochloride, pyridoxine hydrochloride, and nicotinic acid; amino acids such as glycine and asparagine; and hexahydric alcohols such as inosite and sorbitol. It may show good growth even without being added to the medium. As the carbon source, it is particularly preferable to use sucrose because it has high pigment productivity. The concentration used is 2-10% w/
v, preferably 4 to 8% w/v. If this concentration is too high, growth will be slow, and if it is too low, pigment production will be suppressed, which is preferable. As mentioned above, as plant hormones, 2,4
Although the use of -D is essential, this does not preclude the concomitant use of other plant hormones other than auxin-acting substances, such as cytokinins such as chimetin and gibberellins such as gibberellin A3 . 2,
The concentration of 4-D used is between 10 -4 and 10 -7 M, preferably
The concentration is 10 -6 to 10 -7 M, and if this concentration is too high, the cells will not grow, which is undesirable, and if it is too low, the cells will turn green or not grow, which is undesirable. Examples of the various natural extracts include casein hydrolyzate (0-2% w/v), coconut milk (0-25% w/v), yeast extract (0-2%
w/v), malt extract (0 to 2% w/v), etc. can be used alone or in any combination. In the present invention, as described above, cell culture is carried out by placing a culture vessel containing cells under light irradiation of 100 lux or more, preferably 3,000 to 100,000 lux. As a light source, sunlight, a fluorescent lamp, an incandescent lamp, a mercury lamp, etc. can be used. If no light irradiation is performed, no dye will be produced. Among the cultured cells having the ability to produce red natural pigment induced in this way, undifferentiated cells with excellent red natural pigment production ability and stable production ability are selected using red natural pigment productivity as an index. To obtain a new variety B with fixed characteristics, the following steps (a) to (d) can be carried out, for example. Step (a): In this step, the cultured Hanakirin cell mass formed above is loosened, dispersed in the above-mentioned medium, and grown preferably by a suspension culture method. Suspension culture is carried out at a temperature of 20 to 30°C, preferably around 25°C, in the light, preferably under light irradiation of 3000 lux or more for about 3 to 14 days. If the culture is continued for a long period of time, exceeding 14 days, it will be in the latter half of the stationary phase, and conversely, if it is less than 3 days, it will still be in the lag phase, so normal growth in the following steps cannot be expected. Step (b): In this step, the suspension culture obtained in step (a) above is passed through two filters having two different mesh sizes, preferably a double filter. Cultured cell clusters of various sizes are selectively collected to uniformize the size of the cultured cell clusters within a predetermined range. The mesh size of the filter can be selected arbitrarily, but in order to prevent the contamination of broken cell debris and giant cell clusters, the mesh size of the smaller filter should be 50 to 100Ό, preferably 100Ό, and the mesh size of the larger filter should be 50 to 100Ό, preferably 100Ό. It is desirable that the mesh size is 150-200Ό, preferably 150Ό. The material of the filter is not particularly limited as long as it does not affect cells, but stainless steel and nylon are preferable, for example. Step (c): In this step, the cultured cells obtained in step (b) above with a size within a predetermined range are dispersed in a dissolved agar medium, poured into a flat container such as a Petri dish, and dispersed. The cultured cells are grown to form colonies. In order to grow cultured cells, the cell concentration when dispersing cultured cells on agar medium must be 10 4
A value of ~10 6 cells/ml is desirable; if the concentration is higher than this, the colonies that form will be too close together;
On the other hand, if it is too low, it will be difficult to grow, which is not preferable. The agar medium used in this step is preferably the same medium as the suspension culture medium described above, or an appropriately modified medium to which, for example, 0.6 to 0.8% agar is added. Cultivation is carried out at a temperature of 20 to 30°C, preferably around 25°C, in the light, preferably under light irradiation of 3000 lux or more for about 14 to 28 days. If the culture period exceeds 28 days, the stationary phase will be exceeded, and conversely,
If it is less than 14 days, it is still in the lag phase or early logarithmic growth phase, and the colony size is too small, which is not preferable. Step (d): In this step, a cell mass with a high content of red pigment chrysanthemin is selected from the proliferated cell mass. Desired cell clusters may be selected by visually determining the red pigment concentration and selecting one or more cells that are considered to have the highest pigment content; Taking advantage of this fact, it is also possible to divide each cell mass in half, extract the pigment contained in one half, measure the pigment content, and select the other half with the highest pigment content. .
It goes without saying that one or more cell clusters with high pigment content may be selected in addition to the cell cluster with the highest content. For extraction and quantification of the above pigments, use 0.01 to 5% hydrochloric acid (or formic acid, acetic acid, etc.)
Each cell mass is immersed in a certain amount of methanol (or ethanol, water, etc.) containing the following at a temperature of -5 to 10%, and after 1 to 2 hours, a certain amount of the extract is quantified colorimetrically, or A method may be used in which a fixed amount of the extract is quantified using high performance liquid chromatography or a thin layer chromatodensitometer using an internal standard method or an external standard method. The cell mass selected in this manner can be further subjected to selection steps (a), (b), (c), and (d) as many times as desired to obtain a stable cell line with a high pigment content, if necessary. When producing the red pigment chrysanthemine by culturing the selected cell mass, the produced red pigment can be separated and collected by a known method, such as a solvent extraction method. An example will be explained below. First, cells are cultured in a solvent containing an acid such as hydrochloric acid, acetic acid, or formic acid at a concentration of about 0.01 to 5% by weight, preferably water or an alcoholic solvent such as methanol or ethanol, and the culture is preferably lyophilized according to a conventional method. The cells are immersed at a temperature of -5 to 10°C and the produced red pigment is extracted. Next, after removing the solid content from the obtained extract through operations such as filtration, it is concentrated under reduced pressure at a temperature of 40°C or lower (too high a temperature is not preferable because the red pigment easily decomposes),
Transfer this concentrated solution to a separating funnel, add ether (hexane, heptane, petroleum ether, chloroform, methylene dioxide, ethyl acetate, etc. can also be used in place of ether), shake it, and remove oil-soluble impurities with ether. Dissolve and separate and remove. After repeating this ether washing operation several times, the desired red pigment can be obtained by drying the pigment extract under reduced pressure. It can be purified by e.g. It is not possible to directly prove whether or not the genetic structure of the plant has been changed by the above-mentioned generation means, that is, whether or not the genetic structure is different between the conventional variety A and the cultured cells of the present invention. However, even if the cultured cells of the present invention are grown in a medium containing NAA, the ability to produce the natural red pigment chrysanthemine does not disappear, and even if the conventional variety A is grown in a medium containing 2,4-D, the ability to produce the pigment does not disappear. Considering these two points, it can be concluded that these two varieties are not simply mutant strains but have different genetic compositions. Since the cultured cells of the present invention are plants that proliferate in the form of undifferentiated cells, the cultivation method is different from that of plants that proliferate in the form of differentiated cells. That is, for example, add 0.1 ppm of 2,4-D and an organic substance with the composition shown in Table 2 to an inorganic synthetic culture solution with the composition shown in Table 1, autoclave it at pH 6.0, and place it in a triangular chamber with a cotton plug. Pour into a flask or Sakaguchi flask or a tank equipped with a stirrer, and cultivate this cultivar B in the culture solution. Cultivation conditions are, for example, temperature 20~
Under a constant temperature of 35℃, preferably around 25℃, in a bright place,
Preferably under light irradiation of 3000 to 100000 lux,
For example, this can be carried out by shaking a 300 ml Erlenmeyer flask containing 100 ml of culture solution at 120 rpm on a reciprocating shaker having a shaking width of 4 cm. Next, the characteristics of the cultured cells of the present invention will be explained below while comparing them with the characteristics of conventional variety A. Regarding the growth rate, as shown in Figure 1, when the growth ratio is used as an indicator, the cultured cells of the present invention enter the stationary phase after 14 days of cultivation, and show a growth ratio of about 10 times, whereas the conventional variety A It enters the stationary phase in 28 days and exhibits a growth ratio of about 8 times. In this way, the cultured cells of the present invention are of the conventional variety A.
The lag period is shorter and the growth rate is faster than that of
Moreover, the growth rate during the stationary phase was also large, so it was observed that the growth rate was extremely high. Next, regarding environmental adaptability, the results of examining PH, temperature, and shaking number are shown in Figures 2 and 3, respectively.
It is shown in FIG. Regarding adaptability to pH changes, as shown in Figure 2, the cultured cells of the present invention grow stably in the pH range of 4.5 to 7, whereas the conventional variety A grows stably in a narrow range of pH 5.5 to 6.5. does not grow. In this way, the cultured cells of the present invention have wide adaptability to PH changes. Regarding adaptability to temperature changes, as shown in Figure 3, the cultured cells of the present invention grow stably in a temperature range of 20 to 35°C, whereas the conventional variety A grows stably only in a narrow temperature range of 25 to 30°C. It doesn't grow. In this way, the cultured cells of the present invention have wide adaptability to temperature changes. As shown in Figure 4, the adaptability to changes in the shaking rate of the shaking culture machine is as follows:
While it grows stably in a wide range of shaking speeds from 100 to 180 rpm, conventional variety A grows stably only in a narrow range of shaking speeds from 100 to 120 rpm. In this way, the cultured cells of the present invention have wide adaptability to changes in the shaking rate. Regarding the high productivity and stable productivity of the red pigment chrysanthemine of the cultured cells of the present invention, as shown by the curves □-□ in Figures 1 to 4, the productivity is 10%/dry weight or more, and the red natural pigment production ability is 10%/dry weight or more. Of course, compared to the conventional variety A, which has no red pigment, the cultured cells of the present invention have a red pigment productivity of 1.4%/dry weight, which is about 8 times more than the red pigment productivity of the cultured cells before selection. It is clear that the cultured cells of the present invention have an extremely high ability to produce red natural pigment. Furthermore, as is clear from the results shown in Figures 2 to 4, the cultured cells of the present invention have PH4
6.5, it stably produces red natural pigment in the range of temperature 15-30℃ and shaking number 60-180rpm, and has an extremely wide stable productivity. Regarding the morphological characteristics of the cultured cells of the new variety B of the present invention, the size and shape are similar to those of the conventional variety A, and the size is about 30 to 50ÎŒ, the shape is almost spherical, and the color is red throughout. In this respect, conventional variety A
It's completely different. As described above, the characteristics of the cultured cells of the present invention and the conventional variety A are completely different, and from this point as well, it can be concluded that the two varieties A and B have different genetic compositions. It should be noted that an attempt was made to deposit the cultured cells of the present invention at the Microtech Institute, but the request was not accepted. However, variety B of the present invention can be repeatedly and reliably created from the conventional variety Hanakirin by the above-described creation means. Examples of the present invention will be described below, but it goes without saying that the scope of the present invention is not limited to the following examples. Example Leaves of a commercially available garden cultivar Hanakirin (tree height: approx. 30 cm, leaf length: approx. 5 cm) were thoroughly washed with water and cut into approximately 4 cm 2 pieces. These sections were then immersed in 70% ethyl alcohol for 5 minutes, and then in a 10% bleaching powder solution.
After being sterilized by immersion for 10 minutes, it was washed by immersion in sterile distilled water several times in a sterile box to thoroughly remove any remaining sterilizer. These leaf sections were cut into small pieces with a width of about 1 cm 2 using a sterile scalpel, and the obtained small pieces of Hanakirin leaves were placed aseptically on a synthetic agar medium having the following composition. As a medium, the inorganic salt medium shown in Table 1 above, 6% w/v of sucrose, 0.2% w/v of malt extract,
2,4-D5×10 -7 M, thiamine hydrochloride 0.1ppm,
Pyridoxine hydrochloride 0.5ppm, nicotinic acid
0.5ppm, glycine 2ppm and inositol
Add 100ppm and adjust to PH6.0, agar 0.8%w/
A medium was used which had been sterilized in a conventional manner by adding V. Small pieces of Hanakirin leaves placed on such a medium were cultured at a culture temperature of 25°C under light irradiation of 3000 lux. After one week, a red mass of cultured cells appeared around the cut end of the leaf. One month later, 1 g (fresh weight) of the cultured cell mass, which had grown significantly, was dispersed in a 100 ml Erlenmeyer flask containing 50 ml of a liquid medium having the following composition. As a medium, see Table 1 above.
4% w/v of sucrose, 0.2% w/v of malt extract, 2,4-D5×10 -7 M, 0.1 ppm of thiamine hydrochloride, and pyridoxine hydrochloride in the inorganic salt medium shown in .
The pH was adjusted to 6.0 by adding 0.5 ppm, nicotinic acid, 0.5 ppm, glycine 2 ppm, and inositol 100 ppm, and the pH was sterilized in the usual manner. The flask containing the cell culture medium was then shaken several times.
The cells were fixed on a reciprocating shaking incubator at 120 rpm and a shaking width of 4 cm, and cultured for 7 days at a temperature of 25° C. under light irradiation of 3000 lux. After 7 days, the culture solution became a mixed suspension of destroyed cells, minute cell clumps, and giant cell clumps. The resulting suspension is mixed with a mesh size of
Passed through two stainless steel filters of 100Ό and 150Ό, and accumulated between the two filters.
Cultured cell clusters with a size of 100-150Ό were collected. The isolated cultured cell mass was collected at a cell concentration of 10 6 cells/
ml of the above liquid medium. This cell concentration was mainly confirmed using a Thoma hemocytometer. Next, 1 ml of this cell suspension was suspended in 20 ml of dissolved agar medium having the following composition, and then poured into a 9 cm Petri dish and solidified. As an agar medium,
10 ml of medium with the same composition as used for the suspension culture described above
Combine the above suspension culture solution with 10ml of the solution passed through a 0.2ÎŒ membrane filter, add 126mg of agar (0.6% w/v), and after dissolving the agar, heat to 48℃. A maintained medium was used. Next, this Petri dish was left standing under light irradiation of 3000 lux at 25°C, and cultured for 21 days. Of the 26 cell clusters that grew and proliferated in the Petri dish, 2 cell clusters that were determined to be deeper in red by visual inspection were selected.
They were selected and named the X strain and the Y strain, respectively. In this way, we were able to select two types of cultured cells with high red pigment production ability, the X strain and the Y strain, from the original cultured cell mass P. In order to investigate how much the pigment production ability was improved compared to P, the following experiment was conducted. First, strain X (55 mg) and strain Y (52 mg) were each dispersed in test tubes containing 5 ml of the same culture solution used in step (a) above, and suspension culture was performed for 14 days under the same culture conditions as in the above step. Summer. Next, take 2.5 ml of the culture solution and
The cultured cells on the paper were collected by passing through No. 2 paper, and the production amount was weighed. The cells were cooled in 2% hydrochloric methanol for 1 hour, filtered, 2% hydrochloric methanol was added to the solution to make 10 ml, the absorbance at 530 nm was measured, and the dye weight and pigment content were determined from the calibration curve. Pigment content of each strain (%/g fresh weight, same below)
is 0.0862% for X stock and 0.0882% for Y stock, and step (a)
Compared to the pigment content of the cultured cell mass before entering the culture cell mass, which was 0.0708%, an improvement of 21.8% and 24.6%, respectively, was observed. When the cultured cell clusters contained in the remaining 2.5 ml of culture solution were dispersed in a Petri dish in the same manner as in the above step, 25 cell clusters of the X strain and 18 cell clusters of the Y strain grew and proliferated. Among these, cell clusters that were visually determined to have a deeper red color were selected from each of the X and Y strains. These were 2-X strain and 2-X strain, respectively.
-Y strain, and the content of each pigment was measured according to the pigment content measurement method described above.
They were 0.145 and 0.152%. The obtained 2-X strain and 2-Y strain were further subjected to the same selection process for 4 times.
After repeating the process several times, the final strain 6-X (pigment content
Two strains, 0.651% (the same applies hereinafter) and 6-Y strain (0.673%), were obtained. The ratios of improvement in these pigment contents to those of the original cell mass were 9.2 times and 9.5 times, respectively. Remaining culture solution for 6-Y strain with high pigment content
2.5 ml was added to a 100 ml Erlenmeyer flask containing 50 ml of a culture solution with the same composition as above, and cultured for 14 days under the same culture conditions as above. Next, this culture solution was added to a 1 liter Erlenmeyer flask containing 500 ml of a culture solution with the same composition, and after culturing for 14 days under the same culture conditions, the cultured cell mass (158 g) was filtered.
I got it. This was freeze-dried in the usual manner and the dried product was 7.3
I got g. This dried product was ground in a mortar and then immersed in 2% hydrochloric acid methanol in a cold place for 24 hours. The extract obtained after filtration was concentrated to about 50 ml by removing methanol at a temperature below 40° C., transferred to a separating funnel, 100 ml of ether was added, and after thorough shaking, it was separated from the ether layer. After repeating this ether washing operation several times, it was further concentrated under reduced pressure at 40°C or lower to dryness. This dried product was dissolved in a small amount of 0.01% hydrochloric acid methanol, injected into preparative HPLC, and eluted with methanol/formic acid water (formic acid content 0.1%), and a red effluent was fractionated. This effluent was dried under reduced pressure at 40℃ or below to obtain 1030 mg of black-red powder (yield 14.1% vs. dry weight,
0.652% fresh weight) was obtained. Furthermore, when we compared the UV absorption spectra of the obtained dye and cyanidin-3-arabinoside, we found that
As shown in Table 3, both results were almost in agreement.

【衚】 アラビノシド
シアニゞン〓7〓 533275 27 131 
アラビノシド
[Table] Arabinosides
Cyanidin〓7〓 533275 27 131 +
Arabinoside

Claims (1)

【特蚱請求の範囲】[Claims]  ナヌホルビア属ハナキリンの葉を−ゞ
クロルプノキシ酢酞を含む培地で培逊しお埗た
赀色倩然色玠の生産胜が高くか぀安定で環境適応
胜に富み、生育の旺盛な未分化现胞圢態を有する
ナヌホルビア属ハナキリンに属する培逊现胞。
1. Undifferentiated cell morphology with high ability to produce red natural pigment, stability, environmental adaptability, and vigorous growth obtained by culturing the leaves of Euphorbia genus Hanakirin in a medium containing 2,4-dichlorophenoxyacetic acid. A cultured cell belonging to the Euphorbia genus Hanakirin having the following.
JP9268680A 1980-07-09 1980-07-09 Cultivated cell belonging to new variety of euphorbia millii ch. des moulins of genus euphorbia Granted JPS5718983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9268680A JPS5718983A (en) 1980-07-09 1980-07-09 Cultivated cell belonging to new variety of euphorbia millii ch. des moulins of genus euphorbia

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9268680A JPS5718983A (en) 1980-07-09 1980-07-09 Cultivated cell belonging to new variety of euphorbia millii ch. des moulins of genus euphorbia

Publications (2)

Publication Number Publication Date
JPS5718983A JPS5718983A (en) 1982-01-30
JPH0130474B2 true JPH0130474B2 (en) 1989-06-20

Family

ID=14061366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9268680A Granted JPS5718983A (en) 1980-07-09 1980-07-09 Cultivated cell belonging to new variety of euphorbia millii ch. des moulins of genus euphorbia

Country Status (1)

Country Link
JP (1) JPS5718983A (en)

Also Published As

Publication number Publication date
JPS5718983A (en) 1982-01-30

Similar Documents

Publication Publication Date Title
CN1226408C (en) Method for obtaining haploid plant strain by culturing anther or pollen
Trione et al. In vitro culture of somatic wheat callus tissue
JPH08112045A (en) Method for mass production of seed and seedling of plant of genus fritillaria
DE2224336A1 (en) Production of metabolites by synthesis in plant cells
DE68916407T2 (en) BREEDING PROCEDURE FOR VEGETABLE TISSUE.
Poovaiah et al. Effects of Ethephon on Growth of Grasses 1
DE3126001A1 (en) Process for the selective cultivation and improvement of plant cell cultures
JPH0130474B2 (en)
CS244812B2 (en) Production method of propiferating plant cell agglomerates
CN101331851B (en) Chinese chestnut tissue culture method and special culture medium thereof
EP0134536B1 (en) Process for obtaining and multiplying defective, non infectious virus genomes
KR100533793B1 (en) Mass propagation Method for Stock and Adventitious Root of Acanthopanax Koreanum Nakai Using Bioreactor
GB2142535A (en) Preparation of a pharmaceutical camomile product
DE2533437A1 (en) METHOD OF NUTRITIONING IN VITRO-CULTURES OF PLANT CELLS WITH CARBON
JPS6232889A (en) Biosynthesis of rosemaric acid
JPH04126091A (en) Production of quercetin glucuronide and cultured cell containing the same
JPS61216684A (en) Production of gynostemma pentaphyllum by tissue culture
Genyu 28. Callus Formation and Plant Regeneration from Young Stem Segments of Ricinus communis L.
JP4491655B2 (en) Method for producing anthocyanins using cultured strawberry cells
CN1602675A (en) Tall fescue regeneration plant obtaining method through tissue culture
JPH0420596B2 (en)
JPS6331200B2 (en)
JPS6141556B2 (en)
CN1144037A (en) Selection and breeding method for new strain of blunt top spirulina
JPH07298889A (en) Production of red natural pigment