JPH01304679A - Arrester for power transmission cable - Google Patents

Arrester for power transmission cable

Info

Publication number
JPH01304679A
JPH01304679A JP13467488A JP13467488A JPH01304679A JP H01304679 A JPH01304679 A JP H01304679A JP 13467488 A JP13467488 A JP 13467488A JP 13467488 A JP13467488 A JP 13467488A JP H01304679 A JPH01304679 A JP H01304679A
Authority
JP
Japan
Prior art keywords
power transmission
lightning
gap
transmission line
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13467488A
Other languages
Japanese (ja)
Other versions
JP2760488B2 (en
Inventor
Satoru Shiga
悟 志賀
Hirotsugu Koike
小池 浩継
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP63134674A priority Critical patent/JP2760488B2/en
Publication of JPH01304679A publication Critical patent/JPH01304679A/en
Application granted granted Critical
Publication of JP2760488B2 publication Critical patent/JP2760488B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Insulators (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

PURPOSE:To make large amount of electric charge in some ten thousand coulomb possible to pass in a 0.5-1.0 cycle period of operation frequency without causing destruction phenomenon by making a vacuum gap device as a series composing element in which electric current by lightning passes. CONSTITUTION:A lightning arresting element 6 is connected between a pylon and a power transmission cable either having an air gap G1 between them or not. The lighting arresting element 6 is formed by placing an upper electrode 18 and a lower electrode 19 which are kept having a gap between them and being in the opposite side in series in the inside of a vacuum insulating container 16. An electric current by lighting is conducted through the gap. The passable electric charge can be heightened by forming a gap having a long insulating distance and a relatively small surface area due to the phase of electric field formation in a gap in a high vacuum and pinch effect of a large electric current. Passing of electric current by lighting is succeeded by cutting off an electric current of an operational frequency from a power transmission cable within 1 cycle.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、地上に立設された。大地電位にある鉄塔か
ら絶縁物を介して地上の高位置に懸架され大地面とほぼ
平行に走る架空送電線と前記鉄塔との間に設置され前記
架空送電線または鉄塔への雷撃時に応動して雷撃電流を
通過せしめかつこの通過につづき前記架空送電線から流
入する運転周波数の電流を遮断して送電系統の雷撃事故
を防止する送電線用避雷装置の改良に関する。
[Detailed Description of the Invention] [Industrial Application Field] This invention was installed on the ground. It is installed between the above-mentioned above-mentioned above-mentioned above-mentioned tower and an overhead power transmission line that is suspended from a above-mentioned above-mentioned above-mentioned power transmission line which is suspended from a above-mentioned above-mentioned power transmission line through an insulator at a high position above the ground, which is at ground potential, and runs almost parallel to the ground. The present invention relates to an improvement in a lightning arrester for a power transmission line, which prevents lightning accidents in a power transmission system by allowing a lightning current to pass therethrough and blocking current at an operating frequency flowing from the overhead power transmission line following the passage of the lightning current.

〔従来の技術〕[Conventional technology]

この種の避雷装置として第3図または第4図に示すよう
なものが知られている。第3図の場合には、鉄塔1に酸
化亜鉛を主成分とする抵抗素子を碍管内に内蔵してなる
避雷要素6が鉄塔の腕1aに固設された取付は金具2を
介して取り付けられ、この避雷要素6と、避雷要素6の
下部金具6aと送電線4を懸架する懸吊碍子3の下部金
具3mに取り付けられた棒電極7との間に形成された気
中ギャップG1とにより送電線用避雷装置を構成し、万
一避雷要素6が故障した場合にも再送電を可能にしてい
る。第4図は避雷装置の設gt遣境にも配慮の上、第3
図における気中ギャップGlを省略し、避雷要素6のみ
で送電線用避雷装置を構成した場合を示す、なお、これ
らの図において5a。
As this type of lightning arrester, one shown in FIG. 3 or 4 is known. In the case of FIG. 3, the lightning protection element 6, which has a resistance element containing zinc oxide as a main component built into the insulator tube, is fixed to the arm 1a of the steel tower 1 through the metal fitting 2. , this lightning arrester element 6 and the air gap G1 formed between the lower metal fitting 6a of the lightning arrester element 6 and the rod electrode 7 attached to the lower metal fitting 3m of the suspension insulator 3 suspending the power transmission line 4. It constitutes a lightning arrester for electric wires, and makes it possible to retransmit power even if the lightning arrester element 6 should fail. Figure 4 shows the 3rd stage, taking into consideration the installation of the lightning arrester.
5a in these figures shows a case where the air gap Gl in the figures is omitted and the lightning arrester for a power transmission line is configured only with the lightning arrester element 6.

5bは従来から取り付けられている。懸吊碍子保膜用の
アークホーンであり、懸吊碍子表面の閃絡時にアークを
含む電流径路の形状に基づく電磁力によりアークが懸吊
碍子から離れようとするときのアーク足点の誘導路を形
成し、その先娼にアーク足点を滞留させることにより、
アークを懸吊碍子から離れた短いアークさして懸吊碍子
を熱破壊から守る役目を果たす、以下、これら避雷装置
の動作につき説明する。
5b has been conventionally attached. This is an arc horn for maintaining a suspended insulator, and is a guide path for the arc foot point when the arc tries to leave the suspended insulator due to the electromagnetic force based on the shape of the current path including the arc when the surface of the suspended insulator flashes. By forming the arc foot point and staying at the tip of the arc,
The operation of these lightning arresters will be explained below, in which a short arc separates from the suspended insulator and serves to protect the suspended insulator from thermal damage.

第3図および第4図において、もし、避雷装置がないと
した場合、たとえば鉄塔1が雷撃を受けると、雷電流と
鉄塔の塔脚接地抵抗との積により鉄塔全体の対地電位が
上昇し、送電線の対地電位との差が大きいとアークホー
ン5a、5b間が閃絡して1線地絡電流が送電線4に流
れ、この地絡電流は送電端変電所の遮断器により遮断さ
れ、送電$4の運転が停止して電力の供給障害を引き起
こすことになる。このことは送電線゛4が雷撃を受けて
アークホーン5 a * 5 b間が閃絡した場合も同
様である。しかし、第3図のように避雷要素6が設置さ
れアークホーンより低い電圧で放電する気中ギヤ・ブG
、を直列に有する避雷装置や、第4図のように気中ギャ
ップが省略された避雷装置の場合には、アークホーン間
は放電せず、雷撃電流は避雷要素6を通過して流れ、こ
の電流につづいて送電線伺から流入する運転周波数の交
流電流、いわゆる続流は酸化亜鉛を主成分とした抵抗素
子の非直線特性により0.5〜1.0サイクル以内に遮
断されるため、変電所の遮断器は動作しない(変電所の
遮断器は5+イクル程度電流が継続しないと動作しない
ようlこ継電器を設定している)、従って電力の供給障
害が発生せず、安定した電力の供給を実現することがで
きる。
In FIGS. 3 and 4, if there is no lightning arrester, for example, if tower 1 is struck by lightning, the ground potential of the entire tower will rise due to the product of the lightning current and the ground resistance of the tower's pedestal. If the difference between the electric potential of the power transmission line and the ground potential is large, a flash fault occurs between the arc horns 5a and 5b, and a one-wire ground fault current flows to the power transmission line 4, and this ground fault current is interrupted by the circuit breaker at the transmission end substation. The operation of power transmission line $4 will stop, causing a power supply failure. This also applies when the power transmission line 4 is struck by lightning and a flash short circuit occurs between the arc horns 5a*5b. However, as shown in Fig. 3, the aerial gear bu
, in series, or in which the air gap is omitted as shown in Figure 4, no discharge occurs between the arcing horns, and the lightning current flows through the lightning arrester element 6. The alternating current at the operating frequency that flows from the transmission line following the current, so-called follow-on current, is interrupted within 0.5 to 1.0 cycles due to the non-linear characteristics of the resistance element mainly composed of zinc oxide, so it is difficult to transform. The circuit breakers at the substation do not operate (the circuit breakers at the substation have relays set so that they do not operate unless the current continues for about 5 + cycles), so there is no power supply failure and a stable power supply. can be realized.

@5図は第3図、第4図に示されている避雷要素6の構
造を示す縦断面図である。酸化亜鉛を主成分とする抵抗
素子8を絶縁筒9の中に収納し、絶縁筒9に気密にねじ
込まれた上部7ランジLOaと抵抗素子の精層上端面と
の間に介装された圧縮ばね11を介して抵抗素子を上部
フランジ10aと下部7ランジ10bとの間に強固に保
持している。図中、符号12は絶縁筒9の外周面を密に
包囲するように注型成形された。ゴムのごとき柔軟性を
有する有機絶縁材からなる碍管である。絶縁筒9には複
数個の放圧孔13が設けられ、抵抗素子8が万一破壊し
た場合の避雷要素の爆発、飛散を防止している。
@Figure 5 is a longitudinal sectional view showing the structure of the lightning protection element 6 shown in Figures 3 and 4. A resistance element 8 whose main component is zinc oxide is housed in an insulating cylinder 9, and a compressor is inserted between the upper 7 flange LOa which is screwed into the insulating cylinder 9 airtightly and the upper end surface of the fine layer of the resistance element. The resistive element is firmly held between the upper flange 10a and the lower 7 flange 10b via the spring 11. In the figure, reference numeral 12 is cast molded so as to tightly surround the outer peripheral surface of the insulating cylinder 9. It is an insulator made of an organic insulating material with flexibility similar to rubber. A plurality of pressure relief holes 13 are provided in the insulating tube 9 to prevent the lightning protection element from exploding and scattering in the event that the resistor element 8 is destroyed.

以上説明したように、従来の避雷装置は酸化亜鉛を主成
分とする抵抗素子を用いて続流遮断を行う方式の避雷要
素をその構成要素としている。
As explained above, the conventional lightning arrester has as its constituent element a lightning arrester element that performs follow-on current interruption using a resistance element containing zinc oxide as a main component.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このように、酸化亜鉛を主成分とする抵抗素子を用いて
続流遮断を行う方式の避雷要素を構成要素とした送電線
用避雷装置の問題点は次の通りである。すなわち、研究
機関による組織的な雷観測の結果によれば、夏季に発生
する雷電流は数百kAの大きさに達する一方、継続時間
は数十マイクロ秒であるため、通過電荷量は数十クーロ
ン程度となり、従来の酸化亜鉛を主体とした抵抗素子で
もこれに耐えることができる。しかし、日本海側で冬季
に発生する雷電流は大きさが数百kAに達するとともに
継続時間も数613秒と長く、通過電荷量が数百クーロ
ンに達する場合も観測されており、このような場合には
夏季雷の1000倍程度0通過電荷量となるため、いわ
ゆる吸収可能エネルギとして数十クーロンが限度である
酸化徂鉛主体の抵抗素子では、日本海側の送電線に使用
可能な避雷装置を構成できない状態にあり、このため、
現在でも電力供給障害が多発している。
As described above, the problems with the lightning arrester for a power transmission line whose component is a lightning arrester element that performs follow-on current interruption using a resistance element whose main component is zinc oxide are as follows. In other words, according to the results of systematic lightning observation conducted by research institutions, the lightning current that occurs in the summer reaches a magnitude of several hundred kA, but the duration is several tens of microseconds, so the amount of charge passing through it is several tens of kiloamps. The resistance is on the order of coulombs, and even conventional resistance elements mainly made of zinc oxide can withstand this. However, the lightning currents that occur in winter on the Sea of Japan side reach several hundred kA in size, have a long duration of several 613 seconds, and have been observed to have a passing charge of several hundred coulombs. In some cases, the amount of zero-pass charge is about 1000 times that of summer lightning, so the so-called absorbable energy is limited to a few tens of coulombs.Resistance elements mainly made of lead oxide are suitable for lightning arresters that can be used on power transmission lines on the Sea of Japan side. is in a state where it is not possible to configure the
Power supply failures still occur frequently.

この発明の目的は、雷撃電流耐暑が大きく数百クーロン
の電荷1を破壊することなく通過させることができ、か
つ、続流の遮断を0.5〜1.0サイクルで行うことの
できる送電線用711N装置の構成を提供することであ
る。
The object of the present invention is to provide a power transmission line that has a high resistance to lightning current heat and can pass several hundred coulombs of charge 1 without being destroyed, and can cut off follow-on current in 0.5 to 1.0 cycles. 711N device configuration.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために、この発明によれば、地上に
立設された。大地電位にある鉄塔から絶縁物を介して地
上の高位置に懸架され大地蘭とほぼ平行に走る架空送電
線と前記鉄塔との間に設置され前記架空送電線または鉄
塔への雷撃時に応動して雷撃電流を通過せしめかつこの
通過につづき前記架空送電線から流入する運転周波数の
電流を1断して送電系統の雷撃事故を防止する送電線用
避雷装置の構成を、該送電線用避雷装置が真空容器内に
放電ギャップを備えた真空ギャップ装置を前記雷撃電流
が通過する直列構成要素として有する構成とするものと
する。
In order to solve the above-mentioned problem, according to the present invention, it is installed on the ground. It is installed between the above-mentioned above-mentioned above-mentioned above-mentioned above-mentioned tower and an overhead power transmission line that is suspended from the above-mentioned above-mentioned above-mentioned power transmission line which is suspended from the above-mentioned above-mentioned power transmission line through an insulator at a high position above the ground and runs almost parallel to the above-mentioned ground from the above-mentioned above-mentioned power transmission line which is at ground potential. A lightning arrester for a power transmission line is configured to allow a lightning strike current to pass therethrough and, following the passage of the lightning strike current, interrupt a current at an operating frequency flowing from the overhead power transmission line to prevent a lightning strike accident in the power transmission system. A vacuum gap device provided with a discharge gap in a vacuum container is provided as a series component through which the lightning current passes.

〔作用〕[Effect]

本発明はかかる送電線用避雷装置に要求される諸性能が
真空ギャップ装置により最も適切に溝たされる点に着目
したものである。周知のごとく、真空度が10−10−
3ffi以上の高真空中の放電ギャップは圧力に関係な
く極めて高い一定の放at圧を有し、たとえば@を他を
用いてギャップ長1mlの平等電界を形成した場合、3
7kVの放電電圧を示す。
The present invention focuses on the point that the various performances required of such a lightning arrester for power transmission lines can be most appropriately achieved by a vacuum gap device. As is well known, the degree of vacuum is 10-10-
A discharge gap in a high vacuum of 3ffi or more has an extremely high constant discharge pressure regardless of the pressure. For example, when a uniform electric field with a gap length of 1 ml is formed using @ and others,
It shows a discharge voltage of 7kV.

従って送′wL電圧が66kVないし154 kVの場
合に要求される。約270 kVないし630 kV以
下の放電電圧に対しては、ギャップ電極間に準平等電界
が形成されるとして約20m■以下のギャップ長でこれ
に対応することが可能である。また、本発明の主対象で
ある放電時の雷撃電流は真空中の放電電流であるから原
理的にも大きさの制限を受けない、しかもかかる大電流
はみずからのピンチ効果により直径を収縮させる作用を
有するから、比較的直径の小さい、実用寸法の真空容器
中で波高値が大きく継続時間の長い雷撃電流を容易に通
過させることができる。さらに、交流電流遮断能力は、
真空中の電流零点通過後の絶縁回復が著しく速いことか
ら、最も単純な構成のギャップでも数千アンペア程度が
可能であり、ギャップ間のアークを磁気駆動する電極構
造とすれば、さらに大きい電流の遮断が可能である。送
電電圧が66kVないし154kVの送電系統における
1線地絡電流は数百アンペア以下であるから、単純な構
造のギャップ電極により遮断が可能である。従って、外
部絶縁距離は長いが直径は比較的小さい放電ギャップ装
置を避雷装置の直列構成要素とすることにより、通過可
能電荷量が大きく、経済的かつ軽量な送電線用避雷装置
が可能となる。なお:■このように構成された真空ギャ
ップ装置を、第3図に示されるように、気中ギャップG
1と直列にして使用する場合には、真空ギャップ装置に
並列に数十pF以上の静電容量を持つコンデンサを接続
すれば、送電線4と鉄塔1との間に印加された電圧はほ
とんど全部気中ギャップG1にかかるから、気中ギャッ
プG、のギャップ長設定を真空ギャップ装置と関係なく
行うことができ、構成要素の製造者を異にする避雷装置
を構成する上で実務上の便宜が得られる。また、送’Z
線への雷撃が送電線の2線または3gに跨がる場合には
、続流の大きさは短絡電流の大きさとなり、真空ギャッ
プの絶縁回復が小さくなるから、このような複数線′M
撃が想定される場合には、ギャップ電極を内蔵した。゛
長さの短い真空ギャップ装置を多段ζこ結合するととも
に各真空ギャップ装置に同一静電容量のコンデンサを並
列に接続して各真空ギャップが分担する電圧を均一化す
ることにより、冬季の複数線雷撃にも耐える避雷装置が
可能になる。なお、この多段型真空ギャップ装置を、第
3図のように、気中ギャップGlと直列にして使用する
場合には、各単位真空ギャップ装置に並列に接続された
コンデンサの直列静電容量が前述の単一型臭空ギャップ
装置の並列コンデンサと同一の役割を果たし、新たな追
加コンデンサは特に必要としない。
Therefore, it is required when the transmission 'wL voltage is between 66 kV and 154 kV. For a discharge voltage of about 270 kV to 630 kV or less, it is possible to cope with this with a gap length of about 20 m or less, assuming that a quasi-equal electric field is formed between the gap electrodes. In addition, since the lightning current during discharge, which is the main object of the present invention, is a discharge current in a vacuum, it is theoretically not subject to any size restrictions.Moreover, such a large current has the effect of shrinking the diameter due to its own pinch effect. Therefore, a lightning strike current with a large peak value and a long duration can easily pass through a vacuum vessel of a practical size with a relatively small diameter. Furthermore, the AC current interrupting ability is
Since the insulation recovery after passing the current zero point in vacuum is extremely fast, even the simplest gap structure can generate several thousand amperes, and if the electrode structure magnetically drives the arc between the gaps, even larger currents can be generated. Blocking is possible. Since the single-wire ground fault current in a power transmission system with a transmission voltage of 66 kV to 154 kV is several hundred amperes or less, it can be interrupted by a gap electrode with a simple structure. Therefore, by using a discharge gap device with a long external insulation distance but a relatively small diameter as a series component of a lightning arrester, it becomes possible to provide an economical and lightweight lightning arrester for a power transmission line with a large amount of charge that can pass through. Note: ■ The vacuum gap device configured in this way is connected to the air gap G as shown in Fig. 3.
1, if a capacitor with a capacitance of several tens of pF or more is connected in parallel to the vacuum gap device, almost all of the voltage applied between the power transmission line 4 and the tower 1 can be removed. Since it depends on the air gap G1, the gap length of the air gap G can be set independently of the vacuum gap device, which is convenient in practice when configuring a lightning arrester whose components are manufactured by different manufacturers. can get. Also, send 'Z
If a lightning strike to a line crosses two or three wires of the transmission line, the magnitude of the follow-on current will be the magnitude of the short circuit current, and the insulation recovery of the vacuum gap will be small.
If a shock is expected, a gap electrode is built-in.゛By combining short vacuum gap devices in multiple stages and connecting capacitors with the same capacitance in parallel to each vacuum gap device to equalize the voltage shared by each vacuum gap, it is possible to eliminate multiple lines in winter. It becomes possible to create a lightning arrester that can withstand lightning strikes. In addition, when this multi-stage vacuum gap device is used in series with the air gap Gl as shown in Fig. 3, the series capacitance of the capacitor connected in parallel to each unit vacuum gap device is as described above. It plays the same role as the parallel capacitor in the single-type odor-air gap device, and does not require any new additional capacitor.

〔実施例〕〔Example〕

第1図に本発明における真空ギャップ装置の第1の実施
例を示す。絶縁容器16の両端面をそれぞれ気密に封止
する上部フランジ17aおよび下部フランジ17bをそ
れぞれ挿通して上部電極18と下部電極19とが軸線方
向に対向して配置されている。
FIG. 1 shows a first embodiment of a vacuum gap device according to the present invention. An upper electrode 18 and a lower electrode 19 are disposed facing each other in the axial direction by passing through an upper flange 17a and a lower flange 17b, respectively, which hermetically seal both end surfaces of the insulating container 16.

これらの電極はいずれも金属丸棒の先端に同−形7ラン
ジ17aと同電位にある円筒状の金属シールドnにより
包囲され、外部導体による電極間電界の乱れを防止して
いる。符号加はベローズを示し、工場試験による放電間
隙長の調整時に用いられるもので、調整終了後は下部電
極19は下部7ランジ17aに固着される。なお、図中
の符号21,23.24はそれぞれ絶縁容器16内を真
空に封じ切るための封じ切り部、上部電極18に形成さ
れた端子、下部電極19に形成された端子を示す。
Each of these electrodes is surrounded by a cylindrical metal shield n having the same potential as the same-shaped seven flange 17a at the tip of a metal round bar, to prevent disturbance of the electric field between the electrodes due to the external conductor. The numeral ``addition'' indicates a bellows, which is used when adjusting the discharge gap length by factory testing. After the adjustment is completed, the lower electrode 19 is fixed to the lower 7 flange 17a. Note that reference numerals 21, 23, and 24 in the figure indicate a sealing section for sealing off the inside of the insulating container 16 to a vacuum, a terminal formed on the upper electrode 18, and a terminal formed on the lower electrode 19, respectively.

四の両端面を気密に封止する上部フランジ27Jl。Upper flange 27Jl that airtightly seals both end surfaces of 4.

下部7ランジ27bにはそれぞれ、軸線方向に対向する
円板状電極面間のギャップ長が所定の寸法会差内に収ま
るように上部電極部と下部電極器とが固設され、さらに
絶縁容器にの外側で上部フランジ27aと下部7ランジ
2′7bとの間に同一静電容量のコンデンサIが接続さ
れている。このように形成された各単位真空ギャップ装
置は上、下フランジに固着された取付は金具31.32
を用いて軸方向に多段(本夾施例では2段)に結合され
、さらに最下段の単位真空ギャップ装置の下部7ランジ
27bIこは、第3図に示される気中ギャップG、の一
方の電極を構成する棒電極おが固設されている。そして
、この場合には、単位真空ギャップ装置の並列コンデン
サ加は直列方向に多段型真空ギャップ装置全体の並列コ
ンデンサを形成する。
An upper electrode portion and a lower electrode device are fixed to each of the lower 7 flange 27b so that the gap length between the disc-shaped electrode surfaces facing each other in the axial direction is within a predetermined dimensional difference, and an insulating container is further provided with an upper electrode portion and a lower electrode device. A capacitor I having the same capacitance is connected between the upper flange 27a and the lower 7 flange 2'7b on the outside. Each unit vacuum gap device formed in this way is fixed to the upper and lower flanges using metal fittings 31 and 32.
are connected in multiple stages (two stages in this example) in the axial direction using A rod electrode that constitutes the electrode is fixedly installed. In this case, the parallel capacitor addition of the unit vacuum gap device forms a parallel capacitor of the entire multi-stage vacuum gap device in the series direction.

〔発明の効果〕〔Effect of the invention〕

以上に述べたように、本発明ζこよれば、送電線用避雷
装置を、真空容器内に放電ギャップを備えた真空ギャッ
プ装置を雷撃電流が通過する直列構成要素として構成し
たため、下記の効果がある。
As described above, according to the present invention, a lightning arrester for a power transmission line is constructed by configuring a vacuum gap device having a discharge gap in a vacuum container as a series component through which lightning current passes, so that the following effects can be achieved. be.

+11日本海側で発生する冬季雷といわれる。放電電荷
量が数百クーロンに達する雷撃電流を実用寸法の大きさ
で確実に通過させることができ、かつこの通過につづい
て送電線から流入する運転周波数の電流を1サイクル以
内に遮断できる送電線用避N装置の提供が可能となった
+11 It is said to be winter lightning that occurs on the Sea of Japan side. A power transmission line that can reliably pass a lightning strike current with a discharge charge of several hundred coulombs in a practical size, and that can cut off the operating frequency current that flows from the transmission line within one cycle after this passage. It is now possible to provide an evacuation N device.

伐)送電線の鉄塔に設置する避雷装置は軽量であること
が必須要件であるが、鉄塔側に設置される真空ギャップ
装置はギャップ電極間を放電させるだけの構成であるか
ら部品数が少なく、また絶縁容器内は真空であるからこ
の要件を容易に満たすことができる。
It is essential for lightning arresters installed on transmission line towers to be lightweight, but vacuum gap devices installed on the tower side only have a small number of parts because they only allow discharge between the gap electrodes. Moreover, since the inside of the insulating container is a vacuum, this requirement can be easily satisfied.

(3)前記第2項の理由から送電線用避雷器を経済的に
構成することが可能である。
(3) For the reason stated in item 2 above, it is possible to economically construct a lightning arrester for a power transmission line.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による送電線用避雷装置を構成する真空
ギャップ装置構造の第1の実施例を示す縦断面図、第2
図は同じく第2の実施例を示す部分縦断面図、第3図お
よび第4図はそれぞれ従来の送電線用避雷装置の異なる
構成を示す説明図、第5図は第3図および第4図に示さ
れた避雷要素の構造例を示す縦断面図である。 1・・・鉄塔、3・・・送電線(架空送電線)、6・・
・避雷要素、16.26・・・絶縁容器、18.28・
・・上部電橿、19 、29・・・下部電極、δ、35
・・・真空。 第1図 第3図
FIG. 1 is a vertical cross-sectional view showing a first embodiment of a vacuum gap device structure constituting a lightning arrester for power transmission lines according to the present invention;
The figure is a partial vertical cross-sectional view showing the second embodiment, FIGS. 3 and 4 are explanatory diagrams showing different configurations of conventional lightning arresters for power transmission lines, and FIG. It is a longitudinal cross-sectional view which shows the structural example of the lightning protection element shown in FIG. 1... Steel tower, 3... Power transmission line (overhead power transmission line), 6...
・Lightning protection element, 16.26...Insulating container, 18.28・
...Top electrode, 19, 29...Bottom electrode, δ, 35
···vacuum. Figure 1 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1)地上に立設された、大地電位にある鉄塔から絶縁物
を介して地上の高位置に懸架され大地面とほぼ平行に走
る架空送電線と前記鉄塔との間に設置され前記架空送電
線または鉄塔への雷撃時に応動して雷撃電流を通過せし
めかつこの通過につづき前記架空送電線から流入する運
転周波数の電流を遮断して送電系統の雷撃事故を防止す
る送電線用避雷装置において、該送電線用避雷装置が真
空容器内に放電ギャップを備えた真空ギャップ装置を前
記雷撃電流が通過する直列構成要素として有することを
特徴とする送電線用避雷装置。
1) The above-mentioned overhead power transmission line is installed between the above-mentioned steel tower and an overhead power transmission line that is suspended from a steel tower at ground potential and is suspended at a high position above the ground via an insulator and runs approximately parallel to the ground plane. Or, in a lightning arrester for a power transmission line, which reacts to a lightning strike on a steel tower and allows the lightning current to pass through, and following this passage, interrupts the current at the operating frequency flowing from the overhead power transmission line to prevent a lightning strike accident in the power transmission system. A lightning arrester for a power transmission line, characterized in that the lightning arrester for a power transmission line has a vacuum gap device provided with a discharge gap in a vacuum container as a series component through which the lightning current passes.
JP63134674A 1988-06-01 1988-06-01 Transmission line lightning arrester Expired - Lifetime JP2760488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63134674A JP2760488B2 (en) 1988-06-01 1988-06-01 Transmission line lightning arrester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63134674A JP2760488B2 (en) 1988-06-01 1988-06-01 Transmission line lightning arrester

Publications (2)

Publication Number Publication Date
JPH01304679A true JPH01304679A (en) 1989-12-08
JP2760488B2 JP2760488B2 (en) 1998-05-28

Family

ID=15133913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63134674A Expired - Lifetime JP2760488B2 (en) 1988-06-01 1988-06-01 Transmission line lightning arrester

Country Status (1)

Country Link
JP (1) JP2760488B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104833903A (en) * 2015-03-04 2015-08-12 国家电网公司 Method for determining gap distance of surge arresters containing series gapped structures along with altitude change

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH065823U (en) * 1991-08-12 1994-01-25 東芝タンガロイ株式会社 Gun reamer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH065823U (en) * 1991-08-12 1994-01-25 東芝タンガロイ株式会社 Gun reamer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104833903A (en) * 2015-03-04 2015-08-12 国家电网公司 Method for determining gap distance of surge arresters containing series gapped structures along with altitude change

Also Published As

Publication number Publication date
JP2760488B2 (en) 1998-05-28

Similar Documents

Publication Publication Date Title
US8861144B2 (en) Triggered arc flash arrester and switchgear system including the same
JP5514801B2 (en) High voltage insulator and high voltage power line using the same
US9570901B2 (en) Electronic circuit and low voltage arc flash system including an electromagnetic trigger
US6002571A (en) Lightning arrester assembly for an overhead electricity line with a device for flagging an arrester malfunction
EP3217416B1 (en) Vacuum circuit breaker and direct current circuit breaker
US9570900B2 (en) Low voltage arc flash switch
US3538382A (en) Triggered vacuum gap overvoltage protective device
US2288428A (en) Device for protecting electrical apparatus from voltage surges
US3654520A (en) High voltage surge diverter
JPH01304679A (en) Arrester for power transmission cable
US3858089A (en) Electrical protective device using a reed relay
US4754363A (en) Metal-encapsulated gas-insulated high-voltage installation with an overvoltage arrester
JPH0729665A (en) Lightning arrestor and method for assembling it
JP2509741B2 (en) Lightning arrester device for power lines
JPS60124381A (en) Lightning tube
US3218422A (en) Compressed gas circuit breaker having a spherical metal reservoir forming part of an arcing gap
JPH0498782A (en) Lightning protection device for power line
JPS5922357B2 (en) Gas insulation protective gap device
JP2007158041A (en) Arrester
JPH02236917A (en) Wire supporting type lightning protection insulator
JPS6035797B2 (en) protective gap device
JP2915148B2 (en) Transmission line lightning arrester
JPH0591611A (en) Gas-insulated switchgear
JPS63150677A (en) Accident detecting method for high-voltage composite device
JPS6074901A (en) Special high voltage protector of ac electric railcar