JPH01304402A - Plastic optical phase plate - Google Patents

Plastic optical phase plate

Info

Publication number
JPH01304402A
JPH01304402A JP63136105A JP13610588A JPH01304402A JP H01304402 A JPH01304402 A JP H01304402A JP 63136105 A JP63136105 A JP 63136105A JP 13610588 A JP13610588 A JP 13610588A JP H01304402 A JPH01304402 A JP H01304402A
Authority
JP
Japan
Prior art keywords
phase plate
optical phase
polyvinylidene fluoride
optical
polymethyl methacrylate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63136105A
Other languages
Japanese (ja)
Other versions
JPH0466481B2 (en
Inventor
Akira Tanaka
章 田中
Sakanobu Takahashi
栄悦 高橋
Hisashi Sawada
沢田 寿史
Shinpei Nagatani
真平 永谷
Masuji Sato
佐藤 万寿治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63136105A priority Critical patent/JPH01304402A/en
Priority to CA000600146A priority patent/CA1317716C/en
Priority to KR1019890007409A priority patent/KR920001116B1/en
Priority to DE68923739T priority patent/DE68923739T2/en
Priority to EP89305477A priority patent/EP0347063B1/en
Publication of JPH01304402A publication Critical patent/JPH01304402A/en
Publication of JPH0466481B2 publication Critical patent/JPH0466481B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polarising Elements (AREA)

Abstract

PURPOSE:To produce the large-area optical phase plate at a low cost by orienting the polar groups in a solid soln. of the polyvinylidene fluoride and polymethyl methacrylate in which the prescribed ratio of the polyvinylidene fluoride is incorporated. CONSTITUTION:This optical phase plate consists of the solid soln. of the polyvinylidene fluoride and the polymethyl methacrylate in which <=75wt.% polyvinylidene fluoride is incorporated. The plastic optical phase plate in which the polar groups of this solid soln. and oriented to the specified direction is used. The difference in elongation between both is solved and the heat resistance is improved by adding the polyvinylidene fluoride to the polymethyl methacrylate to prepare the solid soln. in such a manner. Light transmittability is improved as well while optical anisotropy is maintained.

Description

【発明の詳細な説明】 〔概要〕 表示装置などに使用される光学位相板に関し、面積の大
きな光学位相板を安価に提供することを目的とし、 ポリ弗化ビニリデンが75重量%以下で含有されるポリ
弗化ビニリデンとポリメチルメタクリレートの固溶体か
らなり、この固溶体中の極性基が一定方向に配向したプ
ラスチック光学位相板を使用する。
[Detailed Description of the Invention] [Summary] The purpose of this invention is to provide an optical phase plate with a large area at a low cost with respect to an optical phase plate used in display devices and the like. A plastic optical phase plate is used, which is made of a solid solution of polyvinylidene fluoride and polymethyl methacrylate, and the polar groups in this solid solution are oriented in a certain direction.

〔産業上の利用分野〕[Industrial application field]

本発明はプラスチック光学位相板に関する。 The present invention relates to plastic optical phase plates.

レーザを光源とする光通信の発展と共に、これに使用さ
れる光スィッチ、光変調器など各種の光制御素子も改良
が進んでいる。
With the development of optical communications using lasers as light sources, various optical control elements such as optical switches and optical modulators used therein are also being improved.

また、光制御素子は光通信に限らず液晶表示素子やプラ
ズマデイスプレィなどの表示機器に広く使用されている
Furthermore, light control elements are widely used not only in optical communications but also in display devices such as liquid crystal display elements and plasma displays.

〔従来の技術〕[Conventional technology]

位相板のような光学素子は表示機器に広く用いられてい
る。
Optical elements such as phase plates are widely used in display devices.

例えば、単純マトリックス方式をとる液晶表示装置につ
いて言えば、電気光学特性が急峻なため5TN(Sup
er Twisted Nematic)液晶を使用し
て表示が行われているが、液晶が光学的異方性を示すた
めに着色して表示されることから、そのま−では白黒表
示ができないと云う問題がある。
For example, regarding a liquid crystal display device that uses a simple matrix method, the electro-optic characteristics are steep, so 5TN (Sup
er Twisted Nematic) Display is performed using liquid crystals, but because liquid crystals exhibit optical anisotropy, the display is colored, so there is a problem that black and white display is not possible until then. .

すなわち、偏光板を通すことにより円偏光を直線偏光に
して液晶セルに入射すると液晶は光学的異方性をもつた
めに光は楕円偏光となって液晶セルを出射するが、この
際に楕円偏光の度合は波長により異なってくる。
In other words, when circularly polarized light is converted into linearly polarized light by passing through a polarizing plate and enters a liquid crystal cell, the light becomes elliptically polarized light and exits the liquid crystal cell because the liquid crystal has optical anisotropy. The degree of this differs depending on the wavelength.

そのため、この出射光を光学位相板に入射させ、先に液
晶セルが入射光に対して行ったと逆な作用をさせて直線
偏光に戻し、この直線偏光を検光子を通して出射させ、
画像表示を行っている。
Therefore, this emitted light is made incident on the optical phase plate, which causes the liquid crystal cell to perform the opposite action on the incident light to return it to linearly polarized light, and this linearly polarized light is emitted through an analyzer.
An image is being displayed.

こ−で、光学位相板は今まで酸性二水素燐酸カリ(KH
2PO4略称KDP)やニオブ酸リチウム(LiNbO
*)のような異方性光学結晶を使用して構成されている
For this reason, until now optical phase plates have been made using acidic potassium dihydrogen phosphate (KH).
2PO4 abbreviation KDP) and lithium niobate (LiNbO
It is constructed using anisotropic optical crystals such as *).

然し、これらの材料について結晶成長を行い、これに切
断と研磨を行って素子を形成するには多大の時間と労力
を要し、そのためにかなり高価なものとなっている。
However, it takes a great deal of time and effort to grow crystals of these materials and then cut and polish them to form elements, making them quite expensive.

このため、上記の光学位相板に限らず光学素子について
コストの低減が要望されている。
For this reason, there is a demand for cost reduction not only for the above-mentioned optical phase plate but also for optical elements.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の光学素子は無機の単結晶を切り出して作るために
コストが高く、また面積の大きな光学素子は製造が難し
いと云う問題がある。
Conventional optical elements are manufactured by cutting out inorganic single crystals, so they are expensive, and optical elements with large areas are difficult to manufacture.

そこで、高分子材料についても光学異方性をもつ材料が
あることから、これを用いて光学位相板を実用化するこ
とが課題である。
Therefore, since some polymer materials have optical anisotropy, it is a challenge to put optical phase plates into practical use using these materials.

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題はポリ弗化ビニリデンが75重量%以下で含
有されるポリ弗化ビニリデンとポリメチルメタクリレー
トの固溶体からなり、固溶体中の極性基が一定方向に配
向されているプラスチック光学位相板の使用により解決
することができる。
The above problem can be solved by using a plastic optical phase plate made of a solid solution of polyvinylidene fluoride and polymethyl methacrylate containing 75% by weight or less of polyvinylidene fluoride, in which the polar groups in the solid solution are oriented in a certain direction. It can be solved.

〔作用〕[Effect]

本発明はポリ弗化ビリニデン(以下略してPVDF)は
分子内に大きな双極子モーメントをもつ原子団をもって
おり、これに電界を加えるか、或いは延伸することより
一方向に配向する性質を利用するものである。
The present invention utilizes the property that polyvinidene fluoride (hereinafter abbreviated as PVDF) has an atomic group with a large dipole moment in its molecule, and can be oriented in one direction by applying an electric field or stretching it. It is.

すなわち、PVDFは第4図に示すような構造式をもち
、C−F結合をもつために大きな双極子モーメントをも
っている。
That is, PVDF has a structural formula as shown in FIG. 4, and has a large dipole moment due to the C--F bond.

然し、pv叶にはα型結晶とβ型結晶の二種類があり、
α型は単位格子を構成する極性基の配向方向が互い違い
に逆向きとなっているため、打ち消し合い単位格子は極
性をもっていない。
However, there are two types of PV leaves: α-type crystals and β-type crystals.
In the α type, the orientation directions of the polar groups constituting the unit cell are alternately opposite, so the unit cell cancels out and has no polarity.

然し、β型は単位格子を構成する極性基の総てが一定方
向に配向しているため高い誘電率をもつ極性結晶を構成
している。
However, the β type forms a polar crystal with a high dielectric constant because all of the polar groups constituting the unit cell are oriented in a certain direction.

そしてα型をβ型とするにはガラス転移温度以上の温度
で高電界を加えるか、−軸または二輪延伸すればよいこ
とが知られている。
It is known that in order to change the α-type to the β-type, a high electric field may be applied at a temperature higher than the glass transition temperature, or -axis or two-wheel stretching may be performed.

一方、光学素子としては光透過率が優れていることが必
要条件であるが、PVDFは光透過率が約12%と極め
て少なく、光学材料としては使用することができない。
On the other hand, as an optical element, it is necessary to have excellent light transmittance, but PVDF has an extremely low light transmittance of about 12%, and cannot be used as an optical material.

発明者等は先にプラスチック光ファイバのクラッドまた
は平板状のライトガイドに適する材料としてPVDFと
ポリメチルメタクリレート(通称PMHへ)との固溶体
を用いることを提案している。(特願昭62−2556
83号) この提案の要旨は、従来プラスチック光ファイバのコア
としては耐熱性の優れたポリカーボネート(略称PC)
を、またクラッドとしてはPCよりも屈折率の少ないP
MMAが使用されているが、PCの伸度が90%程度で
あるのに対し、PMMAの伸度は5%程度しかなく、従
って外部応力によって容易に折を員してしまう。
The inventors have previously proposed the use of a solid solution of PVDF and polymethyl methacrylate (commonly known as PMH) as a material suitable for the cladding of a plastic optical fiber or a flat light guide. (Special application 1986-2556
No. 83) The gist of this proposal is that polycarbonate (abbreviated as PC), which has excellent heat resistance, has traditionally been used as the core of plastic optical fibers.
Also, as a cladding, P has a lower refractive index than PC.
MMA is used, but while the elongation of PC is about 90%, the elongation of PMMA is only about 5%, so it easily breaks due to external stress.

そこで、この問題を解決するためPMMAにPv叶を添
加した固溶体を用いるもので、これにより伸度の問題を
解決すると共に耐熱性も向上している。
Therefore, in order to solve this problem, a solid solution of PMMA with Pv leaf added thereto is used, which solves the elongation problem and also improves heat resistance.

本発明は逆にpv叶を主とし、これにPMMAを添加す
ることにより光学的異方性を保持しながら光透過率を改
良するものである。
On the contrary, the present invention mainly uses PV fibers and improves light transmittance while maintaining optical anisotropy by adding PMMA thereto.

第1図はPMMAとPVDFとの分率(重量%混合比率
)に対する光透過率を、また第2図はPMMAとpvD
Fとの分率に対する熱変形温度と伸度との関係を示して
いる。
Figure 1 shows the light transmittance versus the fraction (weight% mixing ratio) of PMMA and PVDF, and Figure 2 shows the light transmittance of PMMA and PVDF.
The relationship between heat deformation temperature and elongation with respect to the fraction of F is shown.

すなわち、プラスチック光学位相板を構成するにはpv
叶の分率がなるべく大きく、然も光透過率の高いことが
必要である。
That is, to construct a plastic optical phase plate, pv
It is necessary that the leaf fraction is as large as possible and that the light transmittance is high.

こ\で、第1図に示すようにPVDFのみの光透過率は
先に記したように約12%に過ぎないが、PMMAの添
加量が増すに従って透過率は急激に増加し、PVDF 
: PMM八−75%:25%を越すと光透過率は80
%以上となる。
Here, as shown in Figure 1, the light transmittance of PVDF alone is only about 12%, as mentioned earlier, but as the amount of PMMA added increases, the transmittance increases rapidly, and PVDF
: PMM8-75%: If it exceeds 25%, the light transmittance is 80
% or more.

一方、第2図から一軸延伸または二軸延伸法によって光
学的異方性をもつ位相板を形成するにはPVDF : 
PMMA = 70%:30%の混合物を使用すればよ
いことが判る。
On the other hand, as shown in Fig. 2, in order to form a phase plate with optical anisotropy by a uniaxial or biaxial stretching method, PVDF:
It turns out that it is sufficient to use a mixture of PMMA = 70%:30%.

この第1図と第2図の関係から大略PVDP : PM
MA=70%:30%の混合物が光学位相板に適してい
ると云うことができる。
From the relationship between Figures 1 and 2, approximately PVDP: PM
It can be said that a mixture of MA=70%:30% is suitable for an optical phase plate.

〔実施例〕〔Example〕

実施例1: PVDP : PMMA = 70%:30%の混合物
をガラス製の坩堝に入れ、試料溶融時に気泡が入るのを
防ぐために減圧装置に入れて装置内の空気を排気した状
態で、この組成比の熱変形温度である150℃よりも2
0℃高い170℃に加熱して溶融し、この溶融体を用い
て厚さが0.511の薄板を形成した。
Example 1: A mixture of PVDP:PMMA = 70%:30% was placed in a glass crucible, and in order to prevent air bubbles from entering during sample melting, this composition was placed in a vacuum device and the air inside the device was evacuated. 2 than 150℃, which is the heat distortion temperature of the ratio.
It was heated to 170° C., which is 0° C. higher, to melt it, and this melt was used to form a thin plate with a thickness of 0.511.

次に、このプラスチックス薄板を平行平板電極で挟み、
150℃の温度で5KV/cmの直流電界を印加するこ
とにより電界の方向を2方向として配向分極させた後、
電界印加の状態で室温にまで自然冷却し、電極をとり外
すことにより波長633nm用1ノ4波長板を得た。
Next, this plastic thin plate is sandwiched between parallel plate electrodes,
After applying a direct current electric field of 5 KV/cm at a temperature of 150° C., the direction of the electric field is set to two directions, and polarization is performed.
A 1/4 wavelength plate for a wavelength of 633 nm was obtained by naturally cooling to room temperature while an electric field was applied and removing the electrodes.

実施例2: 実施例1と同様ニPVDP : PMMA=70%:3
0%からなる混合物を熱変形温度である150℃で4倍
に一軸延伸し、厚さが0.5鶴の波長633nm用1/
4波長板を得た。
Example 2: Same as Example 1 PVDP: PMMA=70%:3
A mixture consisting of 0% was uniaxially stretched 4 times at the heat deformation temperature of 150°C, and a 1/4-fold film for a wavelength of 633 nm with a thickness of 0.5% was drawn.
A four-wavelength plate was obtained.

第3図はか−る二つの方法で作った1/4波長板につい
て、検光子の回転角を変えた場合の透過光強度を示して
いる。
FIG. 3 shows the intensity of transmitted light when the rotation angle of the analyzer is changed for quarter-wave plates made by these two methods.

すなわち、同図(A)は波長633nmの直線偏光を入
射した場合で、綺麗な円偏光が得られていることが判る
。                   で一方、同
図(B)は偏光子を取り除いて円偏光を入射させた場合
で円偏光が直線偏光になっていることが判る。
In other words, it can be seen that Figure (A) shows the case where linearly polarized light with a wavelength of 633 nm is incident, and that beautiful circularly polarized light is obtained. On the other hand, in the same figure (B), the polarizer is removed and circularly polarized light is incident, and it can be seen that the circularly polarized light has become linearly polarized light.

〔発明の効果〕〔Effect of the invention〕

本発明の実施により形成したプラスチック光学位相板は
KDPやLiNb0tのような無機光学結晶を用いて形
成したものと同等な性能を示すことができ、これにより
面積の大きな光学位相板を低コストで製作することが可
能となる。
A plastic optical phase plate formed according to the present invention can exhibit performance equivalent to that formed using an inorganic optical crystal such as KDP or LiNb0t, and thus a large-area optical phase plate can be manufactured at low cost. It becomes possible to do so.

【図面の簡単な説明】 第1図はPMMAとPVDFの分率と光透過率との関係
図、 第2図はPMMAとPVDFの分率に対する熱変形温度
と伸度との関係図、 第3図(A)、  (B)は検光子回転角に対する透過
光弾度を示す図、 第4図はPVDFの構造式、 ある。 F’M沖社PVDFの分午乙范透過ヤ乙の関係口分遵
[Brief explanation of the drawings] Figure 1 is a relationship diagram between the fraction of PMMA and PVDF and light transmittance, Figure 2 is a relationship diagram between heat distortion temperature and elongation with respect to the fraction of PMMA and PVDF, and Figure 3 Figures (A) and (B) are diagrams showing the transmitted light elasticity with respect to the analyzer rotation angle, and Figure 4 shows the structural formula of PVDF. F'M Okisha PVDF's related accounts

Claims (1)

【特許請求の範囲】[Claims] ポリ弗化ビニリデンが75重量%以下で含有されるポリ
弗化ビニリデンとポリメチルメタクリレートの固溶体か
らなり、該固溶体中の極性基が一定方向に配向されてい
ることを特徴とするプラスチック光学位相板。
A plastic optical phase plate comprising a solid solution of polyvinylidene fluoride and polymethyl methacrylate containing 75% by weight or less of polyvinylidene fluoride, wherein polar groups in the solid solution are oriented in a certain direction.
JP63136105A 1988-06-02 1988-06-02 Plastic optical phase plate Granted JPH01304402A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63136105A JPH01304402A (en) 1988-06-02 1988-06-02 Plastic optical phase plate
CA000600146A CA1317716C (en) 1988-06-02 1989-05-18 Plastic optical phase sheet
KR1019890007409A KR920001116B1 (en) 1988-06-02 1989-05-31 Plastic optical phase sheet and process for prepartion thereof
DE68923739T DE68923739T2 (en) 1988-06-02 1989-05-31 Liquid crystal display device and plastic film with optical phase.
EP89305477A EP0347063B1 (en) 1988-06-02 1989-05-31 Liquid crystal display device and plastic optical phase sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63136105A JPH01304402A (en) 1988-06-02 1988-06-02 Plastic optical phase plate

Publications (2)

Publication Number Publication Date
JPH01304402A true JPH01304402A (en) 1989-12-08
JPH0466481B2 JPH0466481B2 (en) 1992-10-23

Family

ID=15167397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63136105A Granted JPH01304402A (en) 1988-06-02 1988-06-02 Plastic optical phase plate

Country Status (1)

Country Link
JP (1) JPH01304402A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04120512A (en) * 1990-09-12 1992-04-21 Asahi Chem Ind Co Ltd New optical sheet and liquid crystal display device provided therewith
US5159477A (en) * 1989-11-22 1992-10-27 Sharp Kabushiki Kaisha Active matrix display device having additional capacitors connected to switching elements and additional capacitor common line
JP2014132353A (en) * 2007-09-17 2014-07-17 Lg Chem Ltd Optical film and method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5159477A (en) * 1989-11-22 1992-10-27 Sharp Kabushiki Kaisha Active matrix display device having additional capacitors connected to switching elements and additional capacitor common line
JPH04120512A (en) * 1990-09-12 1992-04-21 Asahi Chem Ind Co Ltd New optical sheet and liquid crystal display device provided therewith
JP2014132353A (en) * 2007-09-17 2014-07-17 Lg Chem Ltd Optical film and method of manufacturing the same
US9187633B2 (en) 2007-09-17 2015-11-17 Lg Chem, Ltd. Optical film and method of manufacturing the same

Also Published As

Publication number Publication date
JPH0466481B2 (en) 1992-10-23

Similar Documents

Publication Publication Date Title
Crooker et al. Polymer‐dispersed chiral liquid crystal color display
KR920009824B1 (en) Liquid crystal display device
EP0047162B1 (en) Kerr effect electro-optical element
JPH05157911A (en) Birefringent film and its manufacture, phase difference plate, elliptic polarizing plate and liquid crystal display device
JPS62210423A (en) Liquid crystal cell utilizing electric control double refraction effect and making of the same and negative optical anisotropic single axis medium use therefor
JPH07333597A (en) Liquid crystal display device
JPH0572416A (en) Light scattering apparatus and manufacture thereof
US6093344A (en) Polymer dispersed liquid crystal display device
KR20040044997A (en) Method for making polarization rotators and articles containing the polarization rotators
JP2933261B2 (en) Liquid crystal display
WO2007025111A1 (en) Biaxial liquid crystal electro-optic devices
CA2123259C (en) Liquid crystal light modulation device
JPH01304402A (en) Plastic optical phase plate
JP3289386B2 (en) Color liquid crystal display
JPS5922031A (en) Liquid crystal display device
KR920001116B1 (en) Plastic optical phase sheet and process for prepartion thereof
JPH0466482B2 (en)
JPH0259702A (en) Phase difference plate
JP2835831B2 (en) STN liquid crystal display
JPH0688909A (en) Production of double refraction film and liquid crystal display device using the double refraction film
Tanaka et al. Application of poly (vinylidene fluoride) and poly (methyl methacrylate) blends to optical material
US5093882A (en) Wavelength conversion device
Karppinen et al. Electrically controlled optical attenuators and switches with ferroelectric liquid crystals
JPH0274925A (en) Optical switching element for multi-electrode type high speed liquid crystal
JP2975463B2 (en) Organic nonlinear optical material and nonlinear optical device using the same