JPH01304345A - Gas sensor - Google Patents

Gas sensor

Info

Publication number
JPH01304345A
JPH01304345A JP13447388A JP13447388A JPH01304345A JP H01304345 A JPH01304345 A JP H01304345A JP 13447388 A JP13447388 A JP 13447388A JP 13447388 A JP13447388 A JP 13447388A JP H01304345 A JPH01304345 A JP H01304345A
Authority
JP
Japan
Prior art keywords
oscillator
laser
laser light
semiconductor laser
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13447388A
Other languages
Japanese (ja)
Inventor
Yuji Matoba
的場 有治
Yoshihiko Komatsu
義彦 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP13447388A priority Critical patent/JPH01304345A/en
Publication of JPH01304345A publication Critical patent/JPH01304345A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To switch a gas sensor at a high speed so as to improve the gas sensing speed of the sensor by changing the frequencies of modulating signals given to the 1st and 2nd semiconductor laser devices which emit laser light having slightly different wavelengths. CONSTITUTION:The 1st and 2nd oscillators 5 and 6 are oscillated and signals having an oscillating frequency f1 (Hz) are sent to a drive device 2 from the oscillator 5 so as to modulate the intensity of the laser light emitted from a laser oscillator 1. Similarly, signals having an oscillating frequency f2 (Hz) are sent to another drive device 4 from the oscillator 6 so as to modulate the laser light emitted from a laser oscillator 3 through the device 4. The two kinds of laser light having different frequencies emitted from the oscillators 1 and 3 are scattered at a scattering section 14 through a half mirror 7 and reflecting mirror 8 and condensed by a condenser lens 9. After condensation, the two kinds of laser light are made incident to a photoreceptor 10 and converted into electric signals. The output signals of the photoreceptor 10 are sent to an amplitude measuring instrument 13 respectively through BPFs 11 and 12 and subjected to amplitude measurement after the output signals are synthesized and amplified.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明はレーザ光を用いた差分吸収法によりガスを検
知するガス検知装置、特にガス検知精度の向上に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a gas detection device that detects gas by a differential absorption method using laser light, and particularly to improvement of gas detection accuracy.

〔従来の技術〕[Conventional technology]

ガス分子の化学的、物理的性質である光吸収を利用して
ガスを検知する差分吸収法は、例えば文献「センサ技術
」 (技術調査会、昭和61年2月号)第29頁〜第3
1頁に開示されている。この文献に開示されたガス検知
システムは1ie−Neレーザの3.39μm帯のメタ
ンガスに強く吸収される波長のレーザ光と、このレーザ
光と波長が僅かに異なりメタンガスに吸収されない波長
のレーザ光をメカニカルチョッパで交互に切換えたり、
あるいは1個のレーザ発振器の発振善良を機械的に変化
させて2波長のレーザ光を得て、この2波長のレーザ光
を路面や壁などの被測定部に向けて照射し、そこからの
乱反射光強度の差から光路中のメタンを検出するように
している。この差分吸収法は2波長のレーザ光を使用す
ることにより検出すべきガス以外の要因によるレーザ光
の光量の減衰を補償しているため精度良くガスを検知す
ることができる。
The differential absorption method, which detects gases using light absorption, which is a chemical and physical property of gas molecules, is described in the literature "Sensor Technology" (Technical Research Committee, February 1986 issue), pages 29 to 3, for example.
It is disclosed on page 1. The gas detection system disclosed in this document uses a 3.39 μm band laser beam from a 1ie-Ne laser with a wavelength that is strongly absorbed by methane gas, and a laser beam with a wavelength that is slightly different from this laser beam and is not absorbed by methane gas. Switching alternately with a mechanical chopper,
Alternatively, you can mechanically change the oscillation quality of one laser oscillator to obtain two wavelengths of laser light, and then irradiate the two wavelengths of laser light toward a part to be measured such as a road surface or wall, and detect the diffused reflection from there. Methane in the optical path is detected from the difference in light intensity. This differential absorption method uses laser light of two wavelengths to compensate for the attenuation of the amount of laser light due to factors other than the gas to be detected, so that gas can be detected with high accuracy.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の2波長のレーザ光を使用した差分吸収法は波長が
僅かに異なるレーザ光をメカニカルチョッパにより出射
させたり、あるいは発振善良を機械的に変化させて出射
させているため、2波長のレーザ光の波長安定と高速ス
イッチングに限界があった。このためガス検知センサを
空間的に高速で掃引することができないという問題点が
あった。
Conventional differential absorption methods using laser beams with two wavelengths emit laser beams with slightly different wavelengths using a mechanical chopper or mechanically change the oscillation quality. There were limitations in wavelength stability and high-speed switching. For this reason, there was a problem in that the gas detection sensor could not be spatially swept at high speed.

この発明はかかる問題点を解決するためになされたもの
であり、空間的に高速で掃引することができるガス検知
装置を得ることを目的とするものであ、る。
The present invention was made in order to solve this problem, and its object is to obtain a gas detection device that can sweep spatially at high speed.

〔課題を解決するための手段〕 この発明に係るガス検知装置は、測定ガスの吸収波長に
合った波長のレーザ光を出射する第1半導体レーザ装置
と、第1半導体レーザ装置と波長が僅かに異なり、測定
ガスに吸収されない波長のレーザ光を出射する第2半導
体レーザ装置とを有し、第1半導体レーザ装置から出射
するレーザ光の強度を、周波数f1(Hz)の信号を発
振する第1発振器の信号で変調し、第2半導体レーザ装
置から出射するレーザ光の強度は第1発振器の発振周波
数L(llz)とは異なる周波数f 2 (Hz)の信
号を発振する第2発振器の信号で変調する。そして、こ
の異なる周波数f1. f2(Hz)で強度が変調され
たレーザ光を同時に被測定部に向けて投光し、被測定部
から受光したレーザ光の振幅を振幅測定器で測定してガ
スを検知することを特徴とする。
[Means for Solving the Problems] A gas detection device according to the present invention includes a first semiconductor laser device that emits a laser beam with a wavelength that matches the absorption wavelength of a gas to be measured; A second semiconductor laser device that emits laser light with a wavelength that is not absorbed by the measurement gas is different, and a first semiconductor laser device that oscillates a signal with a frequency f1 (Hz) changes the intensity of the laser light emitted from the first semiconductor laser device. The intensity of the laser light modulated by the signal of the oscillator and emitted from the second semiconductor laser device is the signal of the second oscillator that oscillates a signal with a frequency f 2 (Hz) different from the oscillation frequency L (llz) of the first oscillator. Modulate. Then, this different frequency f1. The gas is detected by simultaneously projecting laser light whose intensity is modulated at f2 (Hz) toward the part to be measured, and measuring the amplitude of the laser light received from the part to be measured with an amplitude measuring device. do.

〔作用〕[Effect]

この発明においては、第1半導体レーザ装置と第2半導
体レーザ装置に与える変調信号を異なった周波数の変調
信号とすることにより、2波長のレーザ光の強度を変化
させて、2波長のレーザ光を電気的に切換えるようにし
たものである。
In this invention, the modulation signals given to the first semiconductor laser device and the second semiconductor laser device are modulation signals of different frequencies, thereby changing the intensity of the laser beams of two wavelengths. It is designed to be switched electrically.

〔実施例〕〔Example〕

第1図はこの発明の一実施例を示すブロック図であり、
図において1は測定ガスの吸収波長に合った波長のレー
ザ光を出射する第1の半導体レーザ発振器(以下、レー
ザ発振器という)、2はレーザ発振器1を駆動し、かつ
その出力を制御する駆動装置、3はレーザ発振器1から
出射するレーザ光の波長と僅かに異なり、測定ガスに吸
収されない波長のレーザ光を出射する第2の半導体レー
ザ発振器、4はレーザ発振器3の駆動装置である。
FIG. 1 is a block diagram showing one embodiment of the present invention,
In the figure, 1 is a first semiconductor laser oscillator (hereinafter referred to as a laser oscillator) that emits a laser beam with a wavelength matching the absorption wavelength of the measurement gas, and 2 is a drive device that drives the laser oscillator 1 and controls its output. , 3 is a second semiconductor laser oscillator that emits a laser beam with a wavelength that is slightly different from the wavelength of the laser beam emitted from the laser oscillator 1 and is not absorbed by the measurement gas, and 4 is a driving device for the laser oscillator 3.

5は駆動装置2に接続された第1の発振器であり、発振
器5は周波数f + (Hz)の信号を発振する。
5 is a first oscillator connected to the drive device 2, and the oscillator 5 oscillates a signal with a frequency f + (Hz).

6は駆動袋N4に接続された第2の発振器であり、発振
器6は第1の発振器5の発振周波数f + (Hz)と
は異なる周波数f 2 ()12)の信号を発振する。
6 is a second oscillator connected to the drive bag N4, and the oscillator 6 oscillates a signal at a frequency f 2 ()12) different from the oscillation frequency f + (Hz) of the first oscillator 5.

7はレーザ発振器1から出射されるレーザ光とレーザ発
振器3から出射されるレーザ光とを1つの光路にする半
透鏡、8は反射鏡、9は集光レンズ、10は受光したレ
ーザ光を電気信号に変換する受光器であり、半透鏡7、
反射鏡8、集光レンズ9及び受光器10でレーザ光を投
受光する光学系を構成している。
7 is a semi-transparent mirror that combines the laser light emitted from the laser oscillator 1 and the laser light emitted from the laser oscillator 3 into one optical path; 8 is a reflecting mirror; 9 is a condenser lens; It is a light receiver that converts into a signal, and includes a semi-transparent mirror 7,
The reflecting mirror 8, the condensing lens 9, and the light receiver 10 constitute an optical system that emits and receives laser light.

11は受光器10で受光した、強度が周波数f、で変調
されたレーザ光の電気信号から光路のノイズ等を除去す
るために設りられたバンドパスフィルタ、12は強度が
周波数f2で変調されたレーザ光の電気信号からノイズ
等を除去するために設けられたバンドパスフィルタ、1
3はバンドパスフィルタ11゜12から送られる電気信
号を合成し、合成信号の振幅を測定する振幅測定器、1
4は壁等被測定部の散乱部である。
Reference numeral 11 denotes a bandpass filter installed to remove noise in the optical path from the electric signal of the laser beam received by the photoreceiver 10, whose intensity is modulated at frequency f, and 12, whose intensity is modulated at frequency f2. A band pass filter provided to remove noise etc. from the electric signal of the laser beam, 1
3 is an amplitude measuring device that synthesizes the electric signals sent from the bandpass filters 11 and 12 and measures the amplitude of the synthesized signal;
4 is a scattering part of a part to be measured such as a wall.

上記のように構成されたガス検知装置によりガスを検知
するときは、まず駆動装置2と駆動装置4を駆動して各
レーザ発振器1,3を安定状態とする。次に第1の発振
器5と第2の発振器6を発振させ、第1の発振器5から
駆動装置2に発振周波数f I(Hz)の信号を送り、
駆動装置2により例えば第2図のaに示すようにレーザ
発振器1で出射するレーザ光の強度に変調を与える。同
様に第2の発振器6から駆動装置4に発振周波数f z
 (Hz)の信号を送り、駆動装置4により第2図のb
に示すようにレーザ発振器3で出射するレーザ光の強度
に変調を与える。
When detecting gas with the gas detection device configured as described above, first, the drive device 2 and the drive device 4 are driven to bring each laser oscillator 1 and 3 into a stable state. Next, the first oscillator 5 and the second oscillator 6 are caused to oscillate, and a signal with an oscillation frequency f I (Hz) is sent from the first oscillator 5 to the drive device 2.
The driving device 2 modulates the intensity of the laser beam emitted by the laser oscillator 1, as shown in FIG. 2A, for example. Similarly, the oscillation frequency f z is transmitted from the second oscillator 6 to the drive device 4.
(Hz) signal is sent, and the drive device 4 causes b in Fig.
As shown in the figure, the intensity of the laser beam emitted by the laser oscillator 3 is modulated.

二のように波長が僅かに異なり、レーザ光の強度分布の
周波数が異なる2波長のレーザ光をレーザ発振器1,3
から同時に出射して、半透鏡7、反射鏡8を介して散乱
部14に投光する。散乱部1イに投光されたレーザ光は
、散乱部14で散乱2反射され、集光を介して受光器1
0に入1.1する。入射したレーザ光は受光器10で電
気信号に変換され、バンドパスフィルタIL 12を介
して振幅測定器13に送られ、振幅測定器13で合成 
jfQ幅されてその強度分布すなわち振幅が測定される
Laser oscillators 1 and 3 transmit laser beams with two wavelengths that are slightly different in wavelength and have different frequencies in the intensity distribution of the laser beam, as shown in Figure 2.
The light is simultaneously emitted from the mirror 7 and projected onto the scattering section 14 via the semi-transparent mirror 7 and the reflecting mirror 8. The laser beam projected onto the scattering section 1a is scattered and reflected by the scattering section 14, and then sent to the light receiver 1 through condensing.
Enter 0 and add 1.1. The incident laser beam is converted into an electrical signal by the photoreceiver 10, sent to the amplitude measuring device 13 via the bandpass filter IL 12, and synthesized by the amplitude measuring device 13.
jfQ width and its intensity distribution, ie, amplitude, is measured.

このレーザ発振器1.3から散乱部14にレーザ光を投
光したときに、レーザ光の光路中にガスが存在しないと
、レーザ発振器1から投光したレーザ光もレーザ発振器
3から投光したレーザ光と同様に吸収されず、同じ散乱
強度で受光器10に入射する。したがって振幅測定器1
3には第2回のalbて示した強度分布波形と同し周波
数の電気信号が送られる。この2つの周波数が相違し、
振幅が同一な電気信号を合成すると第2図のCに示すよ
うに大きな振幅となる。
When a laser beam is emitted from the laser oscillator 1.3 to the scattering section 14, if there is no gas in the optical path of the laser beam, the laser beam emitted from the laser oscillator 1 will also be the same as the laser emitted from the laser oscillator 3. Like light, it is not absorbed and enters the light receiver 10 with the same scattering intensity. Therefore, the amplitude measuring device 1
3, an electrical signal having the same frequency as the second intensity distribution waveform indicated by alb is sent. These two frequencies are different,
When electrical signals with the same amplitude are combined, the amplitude becomes large as shown in C in FIG.

一方、レーザ光の光路中にガスが存在すると、レーザ発
振器1から投光したガスの吸収波長と同じ波長を有する
レーザ光は、そのガスの濃度、ガスの存在する距離に応
してガスに吸収され、受光器】0に入射したときGこば
、第3図dに示すように強度分布が小さいレーザ光とな
っている。したがって、この強度分布が小さいレーザ光
と第3図のbに示ずレーザ発振器3で出射したレーザ光
による電気信号を振Ifllf測定器13で合成すると
、この合成信号は第3図のeに示すようにガスにより吸
収されたレーザ光の強度分だけ小さな振幅となる。
On the other hand, if a gas exists in the optical path of the laser beam, the laser beam having the same wavelength as the absorption wavelength of the gas emitted from the laser oscillator 1 will be absorbed by the gas depending on the concentration of the gas and the distance at which the gas exists. When the laser beam is incident on the photoreceiver, it becomes a laser beam with a small intensity distribution, as shown in FIG. 3d. Therefore, when this laser beam with a small intensity distribution and the electrical signal from the laser beam emitted by the laser oscillator 3 (shown in b of FIG. 3) are combined by the vibration Ifllf measuring device 13, this combined signal is shown in e of FIG. 3. The amplitude becomes smaller by the intensity of the laser light absorbed by the gas.

この振幅の減少を測定することにより、レーザ光の光路
中のガスの存在及びその濃度を測定することができる。
By measuring this decrease in amplitude, the presence and concentration of gas in the optical path of the laser beam can be determined.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したように、波長の僅かに異なるレ
ーザ光を出射する第1半導体レーザ装置と第2半導体レ
ーザ装置に与える変調信号を異なった周波数とすること
により、2波長のレーザ光の強度を変化させて、2波長
のレーザ光を切換えるようにしたので高速スイッチング
を行なうことができる。
As explained above, the present invention is capable of increasing the intensity of the laser beams of two wavelengths by giving different frequencies to the modulation signals given to the first semiconductor laser device and the second semiconductor laser device, which emit laser beams with slightly different wavelengths. Since the laser beams of two wavelengths are switched by changing the wavelength, high-speed switching can be performed.

また、この高速スイッチングにより、空間を高速に掃引
することができ、ガス検知速度を大幅に向上させること
ができる。
Moreover, this high-speed switching allows the space to be swept at high speed, and the gas detection speed can be greatly improved.

さらに、2波長のレーザ光の強度を切換えるときに、レ
ーザ光の波長の変動がないため、安定した波長でガスを
検知することができ、ガス検知精度を高めることができ
る効果も有する。
Furthermore, since there is no fluctuation in the wavelength of the laser light when switching the intensity of the laser light of two wavelengths, gas can be detected at a stable wavelength, which also has the effect of increasing gas detection accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例を示すブロック図、第2図、
第3図は各々レーザ光の強度分布を示す説明図である。 1.3・・・半導体レーザ発振器、2.4・・・駆動装
置、5.6・・・発振器、■・・・半透鏡、8・・・反
射鏡、9・・・集光レンズ、10・・・受光器、11.
12・・・バンドパスフィルタ、13・・振幅測定器。
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG.
FIG. 3 is an explanatory diagram showing the intensity distribution of each laser beam. 1.3... Semiconductor laser oscillator, 2.4... Drive device, 5.6... Oscillator, ■... Semi-transparent mirror, 8... Reflecting mirror, 9... Condensing lens, 10 ...light receiver, 11.
12...Band pass filter, 13...Amplitude measuring device.

Claims (1)

【特許請求の範囲】[Claims] 測定ガスの吸収波長に合った波長のレーザ光を出射する
第1半導体レーザ装置と、該第1半導体レーザ装置から
出射するレーザ光の波長と僅かに異なり測定ガスに吸収
されない波長のレーザ光を出射する第2半導体レーザ装
置と、周波数f_1(Hz)の信号を発振し第1半導体
レーザ装置に入力して、第1半導体レーザ装置から出射
するレーザ光の強度を変調する第1発振器と、該第1発
振器の発振周波数f_1(Hz)とは異なる周波数f_
2(Hz)の信号を発振し第2半導体レーザ装置に入力
して、第2半導体レーザ装置から出射するレーザ光の強
度を変調する第2発振器と、第1半導体レーザ装置と第
2半導体レーザ装置から出射するレーザ光を同時に投光
し、受光する光学系と、該光学系で受光したレーザ光の
振幅を測定する振幅測定器とを備えたことを特徴とする
ガス検知装置。
a first semiconductor laser device that emits a laser beam with a wavelength that matches the absorption wavelength of the measurement gas; and a first semiconductor laser device that emits a laser beam with a wavelength that is slightly different from the wavelength of the laser beam that is emitted from the first semiconductor laser device and is not absorbed by the measurement gas. a first oscillator that oscillates a signal with a frequency f_1 (Hz) and inputs it to the first semiconductor laser device to modulate the intensity of the laser light emitted from the first semiconductor laser device; A frequency f_ that is different from the oscillation frequency f_1 (Hz) of the 1 oscillator
a second oscillator that oscillates a signal of 2 (Hz) and inputs it to the second semiconductor laser device to modulate the intensity of laser light emitted from the second semiconductor laser device; a first semiconductor laser device; and a second semiconductor laser device. What is claimed is: 1. A gas detection device comprising: an optical system that simultaneously emits and receives laser light emitted from a gas detector; and an amplitude measuring device that measures the amplitude of the laser light received by the optical system.
JP13447388A 1988-06-02 1988-06-02 Gas sensor Pending JPH01304345A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13447388A JPH01304345A (en) 1988-06-02 1988-06-02 Gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13447388A JPH01304345A (en) 1988-06-02 1988-06-02 Gas sensor

Publications (1)

Publication Number Publication Date
JPH01304345A true JPH01304345A (en) 1989-12-07

Family

ID=15129143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13447388A Pending JPH01304345A (en) 1988-06-02 1988-06-02 Gas sensor

Country Status (1)

Country Link
JP (1) JPH01304345A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007248126A (en) * 2006-03-14 2007-09-27 Mitsubishi Electric Corp Differential absorbing rider device
JP2007309800A (en) * 2006-05-18 2007-11-29 Japan Science & Technology Agency Simultaneous measurement device of plurality of gas concentrations
JP5367196B1 (en) * 2012-09-10 2013-12-11 株式会社シンクロン Measuring apparatus and film forming apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007248126A (en) * 2006-03-14 2007-09-27 Mitsubishi Electric Corp Differential absorbing rider device
JP2007309800A (en) * 2006-05-18 2007-11-29 Japan Science & Technology Agency Simultaneous measurement device of plurality of gas concentrations
JP5367196B1 (en) * 2012-09-10 2013-12-11 株式会社シンクロン Measuring apparatus and film forming apparatus
WO2014038090A1 (en) * 2012-09-10 2014-03-13 株式会社シンクロン Measuring apparatus and film-forming apparatus

Similar Documents

Publication Publication Date Title
US5080491A (en) Laser optical ultarasound detection using two interferometer systems
JP2859292B2 (en) Method and apparatus for optical detection of transient motion from scattering surfaces
JP3279116B2 (en) Laser Doppler velocimeter
NL1006016C2 (en) Ellipsometer with two lasers.
JPH0315742A (en) Gas detector
JPS58182524A (en) System for detecting change in light frequency
US4958930A (en) Apparatus for monitoring thickness variations in a film web
JPS6162885A (en) Distance/speed meter
JPH0843020A (en) Optical displacement detector
JP2973639B2 (en) Equipment for measuring characteristics of sheet-like objects
JPS62127685A (en) Laser distance measuring instrument
JP2796650B2 (en) Multi-gas detector
JPH01304345A (en) Gas sensor
JP2744728B2 (en) Gas concentration measuring method and its measuring device
US5008558A (en) System for detecting minute particles on or above a substrate
JPH06186337A (en) Laser distance measuring equipment
JPH01304344A (en) Gas sensor
JPH01307639A (en) Gas detecting device
JPS57118136A (en) Fault searching method by optical fiber
JPH01307640A (en) Gas detecting device
JPH0875433A (en) Surface form measuring device
JPS6363944A (en) Method and apparatus for measuring dust in semiconductor production process
SU1221504A1 (en) Laser-interferometric system of measuring extralow vibrations
JPH0921752A (en) Method for measuring photothermal displacement
RU2231762C2 (en) Optoelectronic pressure transducer