JPH01304319A - Flow rate detector - Google Patents
Flow rate detectorInfo
- Publication number
- JPH01304319A JPH01304319A JP13499388A JP13499388A JPH01304319A JP H01304319 A JPH01304319 A JP H01304319A JP 13499388 A JP13499388 A JP 13499388A JP 13499388 A JP13499388 A JP 13499388A JP H01304319 A JPH01304319 A JP H01304319A
- Authority
- JP
- Japan
- Prior art keywords
- light
- ball
- flow rate
- receiving element
- light emitting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001514 detection method Methods 0.000 claims abstract description 19
- 239000012530 fluid Substances 0.000 claims abstract description 19
- 238000007493 shaping process Methods 0.000 claims description 6
- 239000007788 liquid Substances 0.000 claims description 2
- 230000003287 optical effect Effects 0.000 abstract description 12
- 230000005540 biological transmission Effects 0.000 abstract description 4
- 238000005096 rolling process Methods 0.000 abstract 1
- 230000000903 blocking effect Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000008399 tap water Substances 0.000 description 2
- 235000020679 tap water Nutrition 0.000 description 2
- 101710173835 Penton protein Proteins 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Landscapes
- Measuring Volume Flow (AREA)
Abstract
Description
【発明の詳細な説明】
2・・−7
産業上の利用分野
本発明は、流路中を流れる流体の量をボールの回転によ
って検知するボール回転式の流量検出装置に関するもの
である。係る流量検出器は例えば衛生洗浄装置、給湯機
器その他の機器において液体の瞬間流量を検出して流量
を制御するのに利用することができる。Detailed Description of the Invention 2.-7 Industrial Application Field The present invention relates to a ball rotation type flow rate detection device that detects the amount of fluid flowing in a flow path by rotation of a ball. Such a flow rate detector can be used, for example, to detect the instantaneous flow rate of liquid and control the flow rate in sanitary cleaning equipment, hot water supply equipment, and other equipment.
従来の技術
従来、この種のボール回転式の流量検出装置には、磁気
検出方式と、光検出方式の2方式があった。BACKGROUND OF THE INVENTION Conventionally, there have been two types of ball-rotating flow rate detection devices: a magnetic detection method and an optical detection method.
磁気検出方式は、周囲に高電流が流れるリード線等があ
った場合リード線によって発生する磁界の影響を受けや
すいという欠点を有していた。この点で光検出方式(d
]周囲の磁界に影響されないという特長を持っており、
例えは、特開昭57〜74614においては次のような
構咬になっていた。The magnetic detection method has the disadvantage that it is easily influenced by the magnetic field generated by the lead wires when there are lead wires or the like through which high current flows. At this point, the photodetection method (d
] It has the feature of not being affected by the surrounding magnetic field,
For example, in JP-A-57-74614, the following structure was used.
第6図、第7図において、13は断面円形状の環状流路
でこの流路の外周に流入通路11、及び流出通路12が
開口している。この流入通路11にはノズ)v14が設
けられている。寸だ環状流路13内には球体15が挿入
されていると共に、透明窓17.17’が構成され、発
光素子36と受光素子19が設けられている。このよう
な構成において流体が流入通路11のノズル14から環
状流路13内に入ると、流れは環状流路13内を環流し
ながら流入通路11から流出通路12へ流れ、それと共
に球体15も図中実線の矢印の方向に環状流路13内を
周回運動する。この球体の周回回転数は流体の流量に比
例するなど相関があるだめ、球体15の回転数を発光素
子36と受光素子19によりパルス信号として検出し制
御回路を通して流量を計測する。In FIGS. 6 and 7, reference numeral 13 denotes an annular flow path having a circular cross section, and an inflow passage 11 and an outflow passage 12 are opened at the outer periphery of this flow path. This inflow passage 11 is provided with a nozzle v14. A sphere 15 is inserted into the annular channel 13, a transparent window 17, 17' is formed, and a light emitting element 36 and a light receiving element 19 are provided. In such a configuration, when fluid enters the annular channel 13 from the nozzle 14 of the inflow channel 11, the flow flows from the inflow channel 11 to the outflow channel 12 while circulating in the annular channel 13, and the sphere 15 also flows as shown in the figure. It moves around inside the annular flow path 13 in the direction of the solid arrow. Since the rotational speed of the sphere is proportional to the flow rate of the fluid, the rotational speed of the sphere 15 is detected as a pulse signal by the light emitting element 36 and the light receiving element 19, and the flow rate is measured through the control circuit.
発明が解決しようとする課題
しかしながら、上記構成では、環状流路13を形成し、
この環状流路13(球体15の周回軌道面)に対し直交
する方向から発光素子36および受光素子1日を挟設し
、前記発光素子36および受光素子18のそれぞれのリ
ード部20および20′は、それぞれのターミナ/l/
32.32′を介して、それぞれのリード線27.27
″に、独立して電気的に結線されていた。まだ前記発光
素子36および受光素子18の、取付けの際にも、発光
素子36側および受光素子18側のそれぞれの方向から
。Problems to be Solved by the Invention However, in the above configuration, the annular flow path 13 is formed,
A light emitting element 36 and a light receiving element 1 are sandwiched from a direction perpendicular to this annular channel 13 (the orbital surface of the sphere 15), and the lead portions 20 and 20' of the light emitting element 36 and light receiving element 18 are , each terminal /l/
32.32' through the respective leads 27.27
When the light-emitting element 36 and the light-receiving element 18 are attached, they are electrically connected to the light-emitting element 36 and the light-receiving element 18, respectively.
ねじ35.および35′で締め付けるF4M成となって
おり、電気的な接続個所も多く、また、取付部品点数も
多いため要求機能に対しコスト的にも割高であり、又発
光素子、受光素子のリード部取付方向が、それぞれ5反
対方向に取付けられているため、スペース的にも大きな
ものとなり、最近の流体機器、例えば温水洗浄便座、自
動給湯機等小型化コンパクト化および、低コスト化の要
求に対して適応が難しい等の問題を有していた。Screw 35. It is an F4M configuration that is tightened at 35' and has many electrical connection points, and the number of parts to be installed is relatively high in terms of cost compared to the required functions. Since they are installed in 5 opposite directions, it takes up a lot of space, and is suitable for recent fluid equipment such as warm water flush toilet seats, automatic water heaters, etc., which are required to be smaller, more compact, and lower in cost. It had problems such as difficulty in adapting.
丑だ性能、信頼性面においても皿状流路13(球体15
の周回軌道面)に対し直交する方向に発光素子36およ
び受光素子19を挟設している構成のため、ボールが周
回運動するときの一点しか検出していないため高流量V
Cなるほど、ボールが光を遮断する時間が短くなり、そ
の結果パルス信号として検出しにくくなり、ノイズ、外
乱光等によってより一層検出が難しかった。In terms of performance and reliability, the dish-shaped channel 13 (sphere 15
Due to the configuration in which the light emitting element 36 and the light receiving element 19 are sandwiched in a direction perpendicular to the orbital surface of
C, the time during which the ball blocks light becomes shorter, and as a result, it becomes difficult to detect it as a pulse signal, and it is even more difficult to detect it due to noise, ambient light, etc.
また、水道水等を被検出流体として長期間使用する時等
は、水道水中に含まれるCaイオン、Mgイオン等が環
状流路1の内壁にスケール七なって付着し発光素子36
からの光が受光素子18へ到達しにくくなり検出不能と
なる場合等の問題を有していた。Furthermore, when tap water or the like is used as a fluid to be detected for a long period of time, Ca ions, Mg ions, etc. contained in the tap water adhere to the inner wall of the annular channel 1 in the form of scales, causing the light emitting element 36
This has led to problems such as light from the light receiving element 18 becoming difficult to reach and becoming undetectable.
課題を解決するだめの手段
そして、上記課題を解決する本発明の技術的な手段は、
断面が円形状の渦巻き室と、渦巻き室の外周接線方向に
設けられ流体が流入する流入口と。Means to solve the problem And the technical means of the present invention to solve the above problem are as follows:
A spiral chamber having a circular cross section, and an inlet provided in a tangential direction to the outer circumference of the spiral chamber through which fluid flows.
流体が流出する流出口を有する透光性の渦巻きケースと
、この渦巻きケース内に周回可能に設けたボールと、こ
のボールの回転数を検出する発光素子と受光素子からな
る検出手段と、発光素子と受光素子により検出した信号
波形を整形する波形整形回路と、波形整形回路から出力
するパルス信号により流体の流量を演算する演算手段と
を備え。A translucent spiral case having an outlet through which fluid flows out, a ball provided so as to be able to revolve within the spiral case, a detection means consisting of a light-emitting element and a light-receiving element for detecting the number of rotations of the ball, and a light-emitting element. and a waveform shaping circuit that shapes the signal waveform detected by the light receiving element, and a calculation means that calculates the flow rate of the fluid based on the pulse signal output from the waveform shaping circuit.
発光素子から受光素子に至る光軸は、ボールの周回軌道
上をほぼ通過するように設けかつ発光素子6、、、・
および受光素子のリード部は渦巻きケースを挟んで互い
に略平行に配設し、前記発光素子および受光素子のリー
ド部の先端は一枚の基板に配線してなるものである。The optical axis from the light emitting element to the light receiving element is arranged so as to pass almost on the orbit of the ball, and the lead parts of the light emitting element 6, ... and the light receiving element are arranged substantially parallel to each other with the spiral case in between. The tips of the lead portions of the light emitting element and the light receiving element are wired on a single substrate.
作 用
本発明においては、発光素子から受光素子に至る光軸は
、ボールの周回軌道面上を、はぼ通過するように設け、
かつ発光素子、受光素子のリード部は、渦巻きケースを
挟んで互に略平行に配設すると共に、それぞれのリード
部の先端は、−枚の基板に配線する構成としているため
、電気的接続も、同一平面で一度に接続できる。丑だ周
回軌道面上に光軸中心がほぼ通過するように前記渦巻き
ケースヲ挟設しているのでボールが渦巻き室を周回する
時発光素子部から受光素子部間を通過する才でにわたり
光を遮断することができる。Function In the present invention, the optical axis from the light emitting element to the light receiving element is provided so as to pass approximately on the orbital surface of the ball,
In addition, the lead parts of the light emitting element and the light receiving element are arranged approximately parallel to each other with the spiral case in between, and the tips of each lead part are wired to the second board, making electrical connection possible. , can be connected at once on the same plane. Since the spiral case is sandwiched so that the center of the optical axis almost passes through the orbital surface, when the ball revolves around the spiral chamber, it passes from the light emitting element section to the light receiving element section, thereby blocking light. can do.
実施例
以下、本発明の一実施例を添付図面にもとづいて説明す
る。Embodiment Hereinafter, one embodiment of the present invention will be described based on the accompanying drawings.
第1図は、流量検出装置の一実施例を示す水平断面図、
第2図は同縦断面図である。FIG. 1 is a horizontal sectional view showing an embodiment of a flow rate detection device;
FIG. 2 is a longitudinal sectional view of the same.
1は透光性を有する樹脂、例えばポリザルホン樹脂等か
らなる渦巻きケースであり垂直断面が円形状の渦巻き室
2と、その円(φD)の外周のjと線方向で上方向(V
方向)に配した流入113と、渦巻き室2の水平中心軸
方向(H方向)に設けた流出口4とを一体に形成してい
る。Reference numeral 1 denotes a spiral case made of a translucent resin, such as polysulfone resin, which includes a spiral chamber 2 having a circular vertical cross section, and an upward direction (V
The inlet 113 arranged in the horizontal direction (direction) and the outlet 4 arranged in the horizontal central axis direction (H direction) of the swirl chamber 2 are integrally formed.
5は被検出流体の渦流によって渦巻き室2を略垂直方向
に周回するボールであり、光を反射しない不透明な色で
渦巻きケース1よりも若干硬い]オ質例えば黒色のテフ
ロン樹脂等からなるボールが艮い。5 is a ball that orbits the swirl chamber 2 in a substantially vertical direction due to the vortex flow of the fluid to be detected, and the ball is made of an opaque color that does not reflect light and is slightly harder than the swirl case 1. Costume.
寸だボール5の外径(φd)は、渦巻き室2の内径(φ
D)の約1/2の寸法になっている。The outer diameter (φd) of the ball 5 is equal to the inner diameter (φd) of the spiral chamber 2.
The size is approximately 1/2 that of D).
6はボー/I15が渦巻き室2の流出口4へ流れ込才な
いように渦巻き室2の略円錐部の先端2aから流出口4
方向に突出1〜でいる円錐状の突起であり、流入口3よ
り流入した被検出流体の渦巻き運動を促進する働きもあ
る。6 is an outlet 4 from the tip 2a of the substantially conical portion of the swirl chamber 2 so that the bow/I15 does not flow into the outlet 4 of the swirl chamber 2.
It is a conical protrusion that protrudes in the direction 1 and has the function of promoting the swirling movement of the fluid to be detected that has flowed in from the inlet 3 .
7は被検出流体をシールするためのOIJングである。7 is an OIJ ring for sealing the fluid to be detected.
9.8はそれぞれ発光素子および受光素子であり、前記
渦巻きケース1の外周側でボー/115の周回運動によ
ってボール中心の軌跡で示される周回軌道面上に光軸中
心X−Xが通過するように前記渦巻きケース1を挟設し
ている3
また、前記発光素子9と受光素子8は、ボール5の周回
平面上で渦巻き室2の断面の円φDを二等分する中心線
CP−P)からの距離が双方異なる位置に配している。9.8 is a light emitting element and a light receiving element, respectively, and the optical axis center X-X passes on the orbit plane indicated by the locus of the center of the ball due to the circular movement of Baud/115 on the outer peripheral side of the spiral case 1. The spiral case 1 is sandwiched between the light emitting element 9 and the light receiving element 8, and the center line CP-P bisects the circle φD of the cross section of the spiral chamber 2 on the orbiting plane of the ball 5. They are placed at different distances from each other.
すなわち、中心線(P−P)から受光素子8までの距離
を411発光素子9までの距離をnlとすると、el<
a2としている。That is, if the distance from the center line (P-P) to the light receiving element 8 is 411, and the distance to the light emitting element 9 is nl, then el<
It is set as a2.
例えは、ボール5の外径(φcl/)−8+nm、渦巻
き室2の内径(φD)−16*mとすると実験ではel
−4,5tnm、62=8+nlIが最良である。For example, if the outer diameter of the ball 5 (φcl/)-8+nm and the inner diameter of the swirl chamber 2 (φD)-16*m, in the experiment, el
-4.5 tnm, 62=8+nlI is best.
10は遮光カバーであり、発光素子9、受光素子8およ
び渦巻きケース1を覆うことにより、外乱光を遮断し、
外乱光の影響を防いでいる3寸だ内部での光の反射を防
ぐために黒色としている3発光素子9のリード部3oと
、受光素子8のリード部31は、渦巻きケース1を挟ん
で互に略平行に配設し、それぞれのリード部30.31
の端部は、遮光カバー10に設けた貫通孔32.33を
貫通し、配線パターンを印刷して回路構成した一枚の平
面状基板34に半田付は等によって電気的に接続してい
る。10 is a light-shielding cover, which blocks external light by covering the light-emitting element 9, the light-receiving element 8, and the spiral case 1;
The lead parts 3o of the three light emitting elements 9 and the lead parts 31 of the light receiving element 8 are connected to each other with the spiral case 1 in between. The lead portions 30 and 31 are arranged substantially parallel to each other.
The ends thereof pass through through holes 32 and 33 provided in the light-shielding cover 10, and are electrically connected by soldering or the like to a single planar substrate 34 on which a circuit is configured by printing a wiring pattern.
35は前記基板34を前記遮光カバー10を介して渦巻
きケース1に取付けているねじである。35 is a screw that attaches the board 34 to the spiral case 1 via the light-shielding cover 10.
25.26.27はそれぞれ抵抗、28はNPNトラン
ジスタで、ボール5の回転数を、受光素子8で検出した
信号を更に整形し、マイコン30へ出力するだめの波形
整形回路部品である。25, 26, and 27 are resistors, respectively, and 28 is an NPN transistor, which are waveform shaping circuit components that further shape the rotational speed of the ball 5 and the signal detected by the light receiving element 8 and output it to the microcomputer 30.
第3図に示すような電気回路で印刷した基板34に半田
付けをしている。A board 34 printed with an electric circuit as shown in FIG. 3 is soldered.
36は波形整形したパルスを、マイコン30に出力する
ためのリード線である。36 is a lead wire for outputting the waveform-shaped pulse to the microcomputer 30.
37.38は渦巻きケース1と一体成形した、素子規制
壁であり発光素子から受光素子18に至る光軸と、ボー
/I15の周回軌道面とを合致さぜるために設けている
。Reference numerals 37 and 38 are element regulating walls integrally formed with the spiral case 1, and are provided to align the optical axis from the light emitting element to the light receiving element 18 with the orbital surface of the Baud/I 15.
10・・−1
次に上記ト11G成における動作を第1図から第4図に
おいて説明する。10...-1 Next, the operation in the above 11G configuration will be explained with reference to FIGS. 1 to 4.
矢印Vの方向から渦巻き室2に流体が流れると、流体は
渦巻き室2を旋回し、それにともなってボー)v5も渦
巻き室2の内壁に接触しなから略垂直方向に周回軌道す
る。When fluid flows into the swirl chamber 2 from the direction of the arrow V, the fluid swirls around the swirl chamber 2, and accordingly, the bow) v5 also orbits in a substantially vertical direction without contacting the inner wall of the swirl chamber 2.
このボール5は流体の流量に比例して周回する特性をも
っている。したがって流量の計測には流量に比例して周
回するボー)v5の回転数を計測すればよい。This ball 5 has a characteristic of rotating in proportion to the flow rate of the fluid. Therefore, to measure the flow rate, it is sufficient to measure the rotational speed of the baud (v5) that rotates in proportion to the flow rate.
本実施例では、渦巻きケース1を挟んでボール5の周回
軌道面上に、発光素子9と受光素子8の光軸中心がほぼ
通過するように配置することによって、ボール5が周回
した時に発光素子9からの発光をボー/I15力S遮光
する時(第5図において、α角で示す位置にボー/I1
5がある時)と、透過する時(第5図において、β角で
示す位置にボール5がある時)との受光素子8に流れる
電流の違いを、制仰回路によってパルスに変換してこれ
を流量信号としている。In this embodiment, by arranging the light-emitting element 9 and the light-receiving element 8 on the orbital surface of the ball 5 with the spiral case 1 in between so that the optical axis centers of the light-emitting element 9 and the light-receiving element 8 almost pass through, the light-emitting element When blocking the light emitted from the baud/I15 force S (in Fig. 5, the baud/I1
The difference in the current flowing through the light-receiving element 8 between when the ball 5 is present (when the ball 5 is present) and when it is transmitted (when the ball 5 is at the position indicated by the β angle in FIG. 5) is converted into a pulse by a suppression circuit. is used as the flow rate signal.
つまりボール5が第6図β角で示す位置にある時は、受
光素子8には電流が流れ、voE電圧は約0.2 V
トナリNPN)うyラスタ28は0FFL、出力29に
はHI倍信号発する。一方ボール5が第5図α角で示す
位置にある時には、受光素子8には電流が流れず、NP
N )ランジヌタ28のベース電位が高くなシ、ONし
て出力29は、L。In other words, when the ball 5 is at the position shown by the angle β in FIG. 6, current flows through the light receiving element 8, and the voE voltage is approximately 0.2 V.
Tonari NPN) The raster 28 outputs 0FFL, and the output 29 outputs a HI times signal. On the other hand, when the ball 5 is at the position indicated by the α angle in FIG.
N) If the base potential of the range nut 28 is high, it is turned on and the output 29 is L.
色量全発生する。The full amount of color is generated.
したがって第4図に示すように流量が多い時は周期が短
かくなり、流量が少ない時は周期が長くなる。Therefore, as shown in FIG. 4, when the flow rate is high, the cycle becomes short, and when the flow rate is low, the cycle becomes long.
本実施例によれは、前述のように渦巻きケーク1fjr
:挾んでボール6の周回軌道面上に発光素子9と受光素
子8の光軸中心がほぼ通過するように配置しているので
、発光素子9から受光素子8に入る光を遮断する時間を
長くとることができ、その結果、高流量の検出時におい
ても光の遮光と透過が明確にパルス信号として取り出す
ことができ。According to this embodiment, as described above, the spiral cake 1fjr
: Since the centers of the optical axes of the light emitting element 9 and the light receiving element 8 are arranged so that they almost pass on the orbital surface of the ball 6, the time to block the light entering the light receiving element 8 from the light emitting element 9 is increased. As a result, even when detecting a high flow rate, light blocking and transmission can be clearly extracted as a pulse signal.
ノイズ・外乱光等の影響を受けずに安定したパルス信号
をマイコン3oへ入力することにより、信頼性の高い流
量検出をすることができる。By inputting a stable pulse signal to the microcomputer 3o without being affected by noise, ambient light, etc., highly reliable flow rate detection can be performed.
寸た本実施例によれは、発光素子9と受光素子8は、ボ
ールの周回平面上で渦巻き室の断面の円φDを三等分す
る中心線P−Pからの距離を異なる位置に配している。According to this embodiment, the light-emitting element 9 and the light-receiving element 8 are arranged at different distances from the center line PP, which divides the circle φD of the cross section of the spiral chamber into three equal parts, on the orbital plane of the ball. ing.
つまり第1図に示す、I;11. e2は、4.5+n
+aオよび8龍としている。これは渦巻き室内径φD−
16およびボール外径φd=8としだ時において央験的
に求めた最も出力が得られる値である。−tなわち、ボ
ールが周回する円の外周方向から周回軌道面上に発光素
子、受光素子等を設けた透過形光検出方式においては、
前述の如く、ボールが周回する円φDを三等分する中心
線p−pから、受光素子および発光素子までの用層″を
、双方異なるようにした方が、光の屈折具合等の関係で
最も良い配置となる。That is, as shown in FIG. 1, I;11. e2 is 4.5+n
+ao and 8 dragons. This is the spiral chamber diameter φD-
16 and the outer diameter of the ball φd=8, this is the value that yields the most output, which was determined empirically. -t In other words, in a transmission type light detection method in which a light emitting element, a light receiving element, etc. are provided on the orbital surface from the outer circumferential direction of the circle around which the ball revolves,
As mentioned above, it is better to make the layers from the center line p-p that divides the circle φD around which the ball goes around into three equal parts to the light-receiving element and the light-emitting element from each other in terms of the degree of refraction of light, etc. This is the best arrangement.
まだ本実施例によれは、発光素子9および受光素子8の
リード部30.31先端と、NPN l−ランジスタ2
8、抵抗25.26.27等からなる波形整形回路部品
とは、−枚の基板34に直接配置3 \−7
線しているので外来ノイズからも影響されにくい。However, according to this embodiment, the ends of the lead parts 30 and 31 of the light emitting element 9 and the light receiving element 8, and the NPN l-transistor 2
8. The waveform shaping circuit components including the resistors 25, 26, 27, etc. are arranged directly on the second board 34, so they are not easily affected by external noise.
発明の効果
上記実施例の説明より明らかなように、本発明の流量検
出装置は、発光素子から受光素子に至る光軸は、ボール
の周回軌道上をほぼ通過するように設け、かつ前記発光
素子および受光素子のIJ−ド部は渦巻きケースを挟ん
で互いに略平行に配設し、それぞれのリード部の先端は
一枚の基板に配線する構成としているだめ、部品点数も
少なく、電気的接続も同一平面で一度に接続できるので
、生産性が上がり低コストな流量検出装置が提供できる
。Effects of the Invention As is clear from the description of the above embodiments, the flow rate detection device of the present invention is provided such that the optical axis from the light emitting element to the light receiving element passes approximately on the orbit of the ball, and the light emitting element The IJ leads of the photodetector are arranged approximately parallel to each other with the spiral case in between, and the tips of the respective leads are wired to a single board, so the number of parts is small and electrical connections are easy. Since they can be connected all at once on the same plane, productivity can be increased and a low-cost flow rate detection device can be provided.
しかも、性能信頼性面においても、発光素子から受光素
子に至る光軸はボールの周回軌道面上に設けているので
、ボールが渦巻き室を周回する際、発光素子から受光素
子までにわたり光を遮断することができるので被測定流
体が高流量になりボールの周回回転が高速になっても、
安定したパルス信号として取りだすことができ、ノイズ
、外乱光等の影響も受けることなく(信頼性の高い流量
検出が提供できる。Furthermore, in terms of performance and reliability, the optical axis from the light-emitting element to the light-receiving element is located on the orbital surface of the ball, so when the ball orbits the spiral chamber, light is blocked from the light-emitting element to the light-receiving element. Even if the measured fluid has a high flow rate and the ball rotates at high speed,
It can be extracted as a stable pulse signal, and is not affected by noise, ambient light, etc. (highly reliable flow rate detection can be provided).
また発光素子、受光素子それぞれのリード部取出し方向
が略平行となるように構成しているので比軸的にコンパ
クトなサイズとなり、最近の小型機器化の要望にも答え
ることができる。In addition, since the lead portions of the light emitting element and the light receiving element are configured so that their lead portions are taken out in substantially parallel directions, the size is relatively compact, and it can meet the recent demands for miniaturization of equipment.
第1図は本発明の一実施例を示す流量検出装置の水平断
面図、第2図は同流量検出装置の縦断面ける光の遮光お
よび透過状態を示す図、第6図および第7図は従来の流
量検出装置の流路水平断面図および切欠垂直断面図であ
る。
1・・・・・渦巻きケース、2・・・・・・渦巻き室、
3・・・・・・流入口、4・・・・・流出口、5・・・
・・・ボール、8・・・・・・受光素子、9・・・・・
・発光素子、25.26.27・・・・・抵抗、2a・
・・・NPN )ランジスタ、30・・・・・・発光素
子のリード部、31・・・・・受光素子のリード部、3
4・・・・・基板。
代凋1人の氏名 弁理士 中 尾 敏 男 ほか1名区
−−
5−〇
へ皺噸
城
第5図
肩ヒL
第6図
第7図FIG. 1 is a horizontal cross-sectional view of a flow rate detection device showing an embodiment of the present invention, FIG. 2 is a view showing the state of light shielding and transmission through a vertical cross-section of the flow rate detection device, and FIGS. 6 and 7 are FIG. 2 is a horizontal cross-sectional view and a cutaway vertical cross-sectional view of a flow path of a conventional flow rate detection device. 1... Spiral case, 2... Spiral chamber,
3... Inlet, 4... Outlet, 5...
...ball, 8...light receiving element, 9...
・Light emitting element, 25.26.27...Resistance, 2a.
...NPN) transistor, 30...Lead part of light emitting element, 31...Lead part of light receiving element, 3
4... Board. Name of 1 representative Patent attorney Toshio Nakao and 1 other person --- 5-〇 へ 5- 〇 へ 5 - Shoulder elbow L 6 Figure 7
Claims (1)
向に設けられ流体が流入する流入口と、液体が流出する
流出口を有する透光性の渦巻きケースと、この渦巻きケ
ース内に周回可能に設けたボールと、このボールの回転
数を検出する発光素子と受光素子からなる検出手段と、
前記発光素子と受光素子により検出した信号波形を整形
する波形整形回路と、前記波形整形回路から出力するパ
ルス信号により流体の流量を演算する演算手段とを備え
、前記発光素子から受光素子に至る光軸は、前記ボール
の周回軌道上をほぼ通過するように設け、かつ前記発光
素子および受光素子のリード部は渦巻きケースを挟んで
互いに略平行に配設し、前記発光素子および受光素子の
リード部の先端は一枚の基板に配線してなる流量検出装
置。A translucent spiral case having a spiral chamber having a circular cross section, an inlet provided in the tangential direction of the outer circumference of the spiral chamber through which fluid flows in, and an outlet through which the liquid flows out; a ball provided in the ball, and a detection means comprising a light emitting element and a light receiving element for detecting the rotation speed of the ball;
A waveform shaping circuit that shapes the signal waveform detected by the light emitting element and the light receiving element, and a calculation means that calculates the flow rate of the fluid based on the pulse signal output from the waveform shaping circuit, the light emitting element reaching the light receiving element. The shaft is provided so as to pass approximately on the orbit of the ball, and the lead portions of the light emitting element and the light receiving element are arranged approximately parallel to each other with a spiral case in between, and the lead portions of the light emitting element and the light receiving element are arranged substantially parallel to each other with a spiral case in between. The tip of the is a flow rate detection device that is wired onto a single board.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13499388A JPH01304319A (en) | 1988-06-01 | 1988-06-01 | Flow rate detector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13499388A JPH01304319A (en) | 1988-06-01 | 1988-06-01 | Flow rate detector |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01304319A true JPH01304319A (en) | 1989-12-07 |
Family
ID=15141430
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13499388A Pending JPH01304319A (en) | 1988-06-01 | 1988-06-01 | Flow rate detector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01304319A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4859863A (en) * | 1971-11-10 | 1973-08-22 |
-
1988
- 1988-06-01 JP JP13499388A patent/JPH01304319A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4859863A (en) * | 1971-11-10 | 1973-08-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6023728Y2 (en) | Digital pulse generation system | |
JPH01304319A (en) | Flow rate detector | |
JPS5922492Y2 (en) | flow rate detector | |
US4047433A (en) | Modular vortex flowmeter | |
JP2705796B2 (en) | Flow detector | |
JP2574401B2 (en) | Flow detector | |
JPH01189519A (en) | Flow rate detector | |
JPH0384422A (en) | Flow rate sensor | |
JPS6326845B2 (en) | ||
JPH0468568B2 (en) | ||
JPH0360047B2 (en) | ||
JPS63186111A (en) | Flow rate detector | |
JPS63117218A (en) | Flow rate detector | |
JPH0464010B2 (en) | ||
JPH0139529B2 (en) | ||
JPS608716A (en) | Detector for flow rate | |
JPH0140298B2 (en) | ||
JPH0749386Y2 (en) | Flowmeter | |
JPH0472175B2 (en) | ||
JPS59109814A (en) | Flow rate detector | |
KR0127196Y1 (en) | Motor speed detecting apparatus of a washing machine | |
JPH085407A (en) | Rotary encoder | |
JPH0210408Y2 (en) | ||
JPH01265121A (en) | Flow rate detector | |
JPS58113715A (en) | Flowmeter for anesthetic gas |