JPH01303403A - United type beam shaping optical system - Google Patents

United type beam shaping optical system

Info

Publication number
JPH01303403A
JPH01303403A JP63132717A JP13271788A JPH01303403A JP H01303403 A JPH01303403 A JP H01303403A JP 63132717 A JP63132717 A JP 63132717A JP 13271788 A JP13271788 A JP 13271788A JP H01303403 A JPH01303403 A JP H01303403A
Authority
JP
Japan
Prior art keywords
optical system
luminous flux
prism
air layer
enters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63132717A
Other languages
Japanese (ja)
Inventor
Kimio Tateno
立野 公男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63132717A priority Critical patent/JPH01303403A/en
Publication of JPH01303403A publication Critical patent/JPH01303403A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Optical Head (AREA)

Abstract

PURPOSE:To facilitate the alignment between a light source and a beam converting prism optical system, to decrease the number of components, and to improve the assembly accuracy by enabling an air layer to serves as a prism and uniting plural prism operations as to an anamorphic type beam shaping optical system. CONSTITUTION:For example, luminous flux 1 is mode incident on a glass block 2 and enters a hollowed air layer 3. Then the luminous flux enters the glass block again slantingly and is refracted and narrowed down to pass a glass raw material. Then the luminous flux enters a 2nd hollowed air layer 4 again and is made incident slantingly on an opposite surface and refracted, and further the beam luminous flux is narrowed down and projected from the glass block 2 as narrowed-down beam luminous flux 5. Thus, individual prisms which are used for beam conversion are united. Consequently, the alignment between the light source and beam converting prism optical system is facilitated, the number of components is decreased, the assembly accuracy is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、レーザ光等の指向性の良いビームの強度分布
のタテ/ヨコ比を自由に変形できるビーム整形光学系に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a beam shaping optical system that can freely change the vertical/horizontal ratio of the intensity distribution of a highly directional beam such as a laser beam.

(従来の技術〕 従来、レーザビームの断面強度分布は、ガスレーザの場
合には等方、半導体レーザの場合は異方であるが、それ
ぞれ、等方を異方に、異方を等方に、あるいは、異方を
タテ/ヨコ比の異なる異方にそれぞれ変換するための整
形光学系として、プリズム、あるいはプリズムの組が使
用されるのが普通であった。
(Prior Art) Conventionally, the cross-sectional intensity distribution of a laser beam is isotropic in the case of a gas laser and anisotropic in the case of a semiconductor laser. Alternatively, a prism or a set of prisms was commonly used as a shaping optical system for converting anisotropy into anisotropy with different vertical/horizontal ratios.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上記従来技術は、−個あるいは複数個のプリズ
ムを別々に配置していたため、これを実装する際、アラ
イメント個所が多く、工程管理個所が増え、組上がった
光学系のコスト高、あるいは機械的、熱的振動による経
時的な配置精度の狂いなど、多くの問題点があった。
However, in the above-mentioned conventional technology, one or more prisms are arranged separately, so when implementing them, there are many alignment points, the number of process control points increases, the cost of the assembled optical system is high, and the mechanical There were many problems, including loss of placement accuracy over time due to thermal vibration.

本発明の目的は、上述の欠点を解消し、レーザビーム光
源と、ビーム変換プリズム光学系とのアライメントを格
段に容易化し、部品点数を減らし、組立精度の向上を実
現するビーム変換光学系を実現することである。
The purpose of the present invention is to eliminate the above-mentioned drawbacks, to realize a beam conversion optical system that greatly facilitates alignment between a laser beam light source and a beam conversion prism optical system, reduces the number of parts, and improves assembly accuracy. It is to be.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、ビーム変換に使用する個々バラバラのプリ
ズムを一体化することで達成される。すなわち、これま
でのプリズムはガラス素子を、断面が三角形をなすよう
に磨いたものであるが、本発明では逆に、ガラス素材を
断面が三角形あるいは台形などをなすべく、くりぬくこ
とによってプリズムを形成する。
The above object is achieved by integrating the separate prisms used for beam conversion. In other words, conventional prisms are made by polishing a glass element so that the cross section is triangular, but in the present invention, on the contrary, the prism is formed by hollowing out the glass material so that the cross section is triangular or trapezoidal. do.

つまり、一つのガラスブロックに、単一、あるいは複数
個の三角柱形状の空腔を形成することにより、負のプリ
ズムを作成し、これをビームが通過する毎にアナモフィ
ックなビーム光束径の拡大、あるいは縮少機能を持たせ
るものである。
In other words, by forming a single or multiple triangular prism-shaped cavities in one glass block, a negative prism is created, and each time the beam passes through this, the beam diameter is anamorphically expanded, or It has a reduction function.

〔作用〕[Effect]

すなわち、第1図(a)において光束1がガラスブロッ
ク2に入射し、くりぬかれた空気層3に入る。しかる後
、再びガラスブロックに斜めに入射し、屈折を受けて、
ビーム光束が狭められ、ガラス素材中を通過する。そし
て再び第2のくりぬかれた空気層4に入り、対面に斜め
に入射して屈折を受け、さらにビーム光束が狭められて
ガラスブロック外に狭められたビーム光束5として射出
される。
That is, in FIG. 1(a), a light beam 1 enters a glass block 2 and enters a hollowed-out air layer 3. After that, it enters the glass block again at an angle and is refracted,
The beam bundle is narrowed and passes through the glass material. Then, it enters the second hollowed-out air layer 4 again, enters the opposing surface obliquely, undergoes refraction, and is further narrowed to be emitted as a narrow beam 5 outside the glass block.

以上の経過はビーム径を縮少する状況の説明であり、平
面図(b)にも示すように、等方強度分布のビームを偏
平なビーム5にビーム整形するものである。
The above process is an explanation of the situation in which the beam diameter is reduced, and as shown in the plan view (b), a beam with an isotropic intensity distribution is beam-shaped into a flat beam 5.

このビームの過程を射出側から逆にたどれば、偏平ビー
ム5を、等方ビーム1にビーム整形できることは云うま
でもない。
It goes without saying that the flat beam 5 can be beam-shaped into the isotropic beam 1 by retracing this beam process from the exit side.

さらに第1図(a)の断面に対し、第1図(b)よりも
狭いビーム径を持つ場合(第1図(C))には、左方か
ら入射したタテ長のビーム1′を、等方のビーム5′に
変形することも可能であり、右方からの入射を考えれば
、等方ビームをタテ長のビーム1′に変換する機能を持
つと考えてよい。
Furthermore, when the beam diameter is narrower than that in FIG. 1(b) with respect to the cross section in FIG. 1(a) (FIG. 1(C)), the vertically long beam 1' incident from the left is It is also possible to transform it into an isotropic beam 5', and considering the incidence from the right side, it can be considered that it has the function of converting an isotropic beam into a vertically long beam 1'.

〔実施例〕〔Example〕

以下本発明の実施例を第2図に示す。すなわち。 An embodiment of the present invention is shown in FIG. 2 below. Namely.

この実施例では入射ビーム6と射出ビーム12とは同一
の光軸7上にあるため、ビーム整形に伴うビームの平行
移動シフトが生じない利点がある。
In this embodiment, since the incident beam 6 and the exit beam 12 are on the same optical axis 7, there is an advantage that no translational shift of the beam occurs due to beam shaping.

これは、空気層8で屈折されたビームが、ガラスブロッ
ク9の底面10で全反射され、ビームが折り返しを受け
て空気層11に入射し、再び屈折されて射出ビーム12
となるためである。
This is because the beam refracted by the air layer 8 is totally reflected by the bottom surface 10 of the glass block 9, the beam is reflected back and enters the air layer 11, and is refracted again to emit a beam 12.
This is because.

第3図は本発明の第2の実施例である。すなわち、ビー
ムの拡大率又は縮少率を稼ぎたい場合には、第1図、あ
るいは第2図で示したプリズムを増加し、より大きな又
は小さな径のビームを得んとするものである。この例で
は入射ビーム13と射出ビーム14とはビームの平行移
動なく整形することが可能である。
FIG. 3 shows a second embodiment of the invention. That is, when it is desired to increase the beam expansion or reduction ratio, the number of prisms shown in FIG. 1 or 2 is increased to obtain a beam with a larger or smaller diameter. In this example, the incident beam 13 and the exit beam 14 can be shaped without parallel movement of the beams.

又、本発明によれば例えば、第4図に示すように強度分
布の異方性を有する半導体レーザ15からのビームをコ
リメータ16よりコリメートし、これを前記実施例の如
きビーム整形器17に導入し、フォーカスレンズ18に
より被走査面(光ディスクあるいは回転ドラムなど)1
9上に任意の形状のスポットを照射することが可能とな
る。
Further, according to the present invention, for example, as shown in FIG. 4, a beam from a semiconductor laser 15 having an anisotropic intensity distribution is collimated by a collimator 16, and then introduced into a beam shaper 17 as in the above embodiment. The surface to be scanned (optical disk, rotating drum, etc.) 1 is then scanned by the focus lens 18.
It becomes possible to irradiate a spot of an arbitrary shape onto 9.

〔発明の効果〕〔Effect of the invention〕

以上述べて来たように本発明によれば、複数のプリズム
作用を一体化することが可能となり、例えばたてよこ比
の異なる強度分布を持つ半導体レーザビームの整形、あ
るいは、たてよこ比がさらに大幅に違ってくる、フェー
ズドアレー型半導体レーザビームの整形等にも利用する
ことが可能である。そして、従来、個々のプリズムをそ
れぞれ1個づつ、光学系上に7ライメントしていたもの
が、1個のブロックによって単一化され、アライメント
工程数の低減、あるいはプリズム相互間の機械あるいは
熱的振動からのプロテクトなど、散散の効果を見い出す
ことができる。
As described above, according to the present invention, it is possible to integrate multiple prism functions, and for example, it is possible to shape a semiconductor laser beam having an intensity distribution with a different vertical-to-width ratio, or to Furthermore, it can also be used for shaping a phased array type semiconductor laser beam, which is significantly different. Conventionally, seven alignments of individual prisms were arranged on the optical system, one each, but this has been unified into one block, reducing the number of alignment steps, and reducing mechanical or thermal alignment between prisms. You can discover the effects of scattering, such as protection from vibration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理説明のためのプリズムの側断面図
および正面図、第2図、第3図は本発明の実施例のプリ
ズムの側断面図および平面図、第4図は本発明の実施例
による光スポツト照射光学系の模式図である。 1・・・光束、2・・・ガラスブロック、3,4・・・
プリズムを形成する空腔。 \、−” 第 1  図 (3,15 \                  (33図 第4図
FIG. 1 is a side sectional view and a front view of a prism for explaining the principle of the present invention, FIGS. 2 and 3 are a side sectional view and a plan view of a prism according to an embodiment of the present invention, and FIG. FIG. 2 is a schematic diagram of a light spot irradiation optical system according to an embodiment of the present invention. 1... Luminous flux, 2... Glass block, 3, 4...
A cavity forming a prism. \, -” Fig. 1 (3, 15 \ (Fig. 33 Fig. 4)

Claims (1)

【特許請求の範囲】[Claims] 1、ビームの強度分布を縦横比変換するアナモフイツク
型ビーム整形光学系において、空気層にプリズム作用を
持たせたことを特徴とする一体型ビーム整形光学系。
1. An integrated beam shaping optical system characterized in that an air layer has a prism effect in an anamorphic beam shaping optical system that converts the aspect ratio of the beam intensity distribution.
JP63132717A 1988-06-01 1988-06-01 United type beam shaping optical system Pending JPH01303403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63132717A JPH01303403A (en) 1988-06-01 1988-06-01 United type beam shaping optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63132717A JPH01303403A (en) 1988-06-01 1988-06-01 United type beam shaping optical system

Publications (1)

Publication Number Publication Date
JPH01303403A true JPH01303403A (en) 1989-12-07

Family

ID=15087932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63132717A Pending JPH01303403A (en) 1988-06-01 1988-06-01 United type beam shaping optical system

Country Status (1)

Country Link
JP (1) JPH01303403A (en)

Similar Documents

Publication Publication Date Title
JP2000137139A (en) Optical luminous flux converter
JP2004516684A (en) LED module
JPH10508117A (en) Beam guided shaping mechanism from linear laser diode array
JP2000147216A (en) Optically transparent film
JP2005189814A (en) Illumination structure with multiple light sources and light integration device in projection system
US6301054B1 (en) Optical element for multiple beam separation control
CN212276015U (en) Optical waveguide lens
JP3390113B2 (en) Parallel light source device with two multiplexed mirrors
JPH01303403A (en) United type beam shaping optical system
JPS59200211A (en) Optical multibranching device
JP2915519B2 (en) Laser irradiation equipment
JP2001121281A (en) Laser emitting optical part for laser working
JP3842552B2 (en) Optical component and manufacturing method thereof
JPH0324510A (en) Lens lattice
JPS61149919A (en) Slit light source
JPH03199929A (en) Optical sensor
JP4012686B2 (en) Optical components
JPS6215508A (en) Optical lens system
JP2000162409A (en) Solid immersion lens and its manifacture
JPS5880601A (en) Generator for parallel luminous fluxes
JPS59167863A (en) Optical system for optical disc
JP2531890Y2 (en) Optical sensor
JPS63185085A (en) Semiconductor laser array
JPH02292742A (en) Optical head
JPH0534510A (en) Composite optical lens and beam splitter using same