WO2016204101A1 - Ld light source device and light source device - Google Patents

Ld light source device and light source device Download PDF

Info

Publication number
WO2016204101A1
WO2016204101A1 PCT/JP2016/067477 JP2016067477W WO2016204101A1 WO 2016204101 A1 WO2016204101 A1 WO 2016204101A1 JP 2016067477 W JP2016067477 W JP 2016067477W WO 2016204101 A1 WO2016204101 A1 WO 2016204101A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
source device
laser
lds
Prior art date
Application number
PCT/JP2016/067477
Other languages
French (fr)
Japanese (ja)
Inventor
蕪木 清幸
Original Assignee
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウシオ電機株式会社 filed Critical ウシオ電機株式会社
Publication of WO2016204101A1 publication Critical patent/WO2016204101A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/04Optical design
    • F21V7/09Optical design with a combination of different curvatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • F21V9/32Elements containing photoluminescent material distinct from or spaced from the light source characterised by the arrangement of the photoluminescent material
    • F21V9/35Elements containing photoluminescent material distinct from or spaced from the light source characterised by the arrangement of the photoluminescent material at focal points, e.g. of refractors, lenses, reflectors or arrays of light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms

Definitions

  • the present invention relates to an LD light source device including a plurality of LDs and a light source device including the LD light source device.
  • LD laser diode
  • a light source unit in which a plurality of LDs are arranged vertically and horizontally, and the distance between the central axes of the beam bundles of laser beams from each LD are set.
  • An apparatus including a compression optical system for compression is known (see Patent Document 1).
  • the compression optical system in this LD light source device is composed of two step-like mirrors each having a plurality of light reflecting surfaces arranged in a step shape.
  • the light from the LD light source device can be easily transmitted by the condensing optical system. Can be condensed.
  • the structure of the step-like mirror that constitutes the compression optical system is complicated, and therefore the work of producing the compression optical system and the work of incorporating the compression optical system into the device are complicated. There is a problem that it is difficult to reduce the size of the apparatus. In addition, it is difficult to use light other than light that travels along the central axis of the light beam among the laser light emitted from the LD.
  • An object of the present invention is to two-dimensionally compress the distance between the central axes of the beam bundles of the laser beams emitted from each of the LDs in the light source unit, and to have a simple structure and reduce the size of the apparatus. It is an object to provide an LD light source device and a light source device including the LD light source device. In addition to the above object, another object of the present invention is to provide an LD light source device having a high utilization rate of light emitted from an LD and a light source device including the LD light source device.
  • the LD light source device of the present invention has three directions orthogonal to each other as an x direction, a y direction, and a z direction.
  • a light source unit configured such that a plurality of LD arrays, each of which is arranged in a state where a plurality of LDs emitting laser beams in the z direction are arranged apart from each other in the x direction, are arranged apart from each other in the y direction;
  • a compression optical system that two-dimensionally compresses the distance between the central axes of the beam bundles of the laser beams emitted from each of the LDs in the light source unit;
  • the compression optical system comprises an integral prism,
  • the prism includes a light incident surface facing each light emitting surface of the LD;
  • a plurality of light reflecting surfaces which are formed corresponding to each of the LD groups composed of the plurality of LDs arranged in the y direction, reflect each of the beam bundles of the laser light incident on the light incident surface in the x direction
  • a primary reflection mechanism A secondary reflection mechanism that compresses the distance between the central axes of the light beams of the laser beam reflected by the primary reflection mechanism in the y direction;
  • Each of the light reflection surfaces in the primary reflection mechanism includes a central axis of a light beam bundle of a laser beam reflected by the light reflection surface and a central axis of a light beam bundle of a laser beam reflected by an adjacent light reflection surface. The distance between them in the z direction is smaller than the distance between the centers of the light emitting surfaces of the LDs adjacent in the x direction.
  • the light reflecting surfaces adjacent to each other in the primary reflecting mechanism are continuous via a plane parallel to the light incident surface.
  • the secondary reflection mechanism includes a first light reflection surface that reflects in the y direction each of the beam bundles of the laser light reflected by the light reflection surface in the primary reflection mechanism, and the second light reflection surface is reflected by the first light reflection surface. It is preferable that the second light reflecting surface that reflects each of the beam bundles of the laser beam thus produced in the x direction is formed.
  • the light source unit includes a frame for fixing each of the LDs.
  • a reference surface extending along one plane is formed on one surface of the frame, and the prism is arranged so that the light incident surface faces the reference surface.
  • a collimating lens portion may be provided on the light incident surface of the prism corresponding to each of the LDs.
  • the light source device of the present invention includes the LD light source device described above, And a condensing optical member for condensing the laser light from the LD light source device.
  • the light source device of the present invention may have a fluorescent member that emits fluorescence when the laser light from the LD light source device is irradiated through the condensing optical member.
  • a light source device preferably has a condensing mirror that condenses the fluorescence from the fluorescent member.
  • the distance between the central axes of the beam bundles of the laser beams emitted from the LDs in the light source unit can be two-dimensionally compressed by the compression optical system.
  • the compression optical system is composed of an integral prism, the apparatus can be downsized with a simple structure.
  • the laser light emitted from the LD is along the central axis of the light beam. Since the light other than the traveling light is reflected by the plane between the adjacent light reflecting surfaces, a high light utilization rate can be obtained.
  • FIG. 1 It is a top view which shows the structure in an example of LD light source device of this invention. It is AA sectional drawing of the LD light source device shown in FIG. It is explanatory drawing which shows the structure in an example of the fiber irradiation type light source device carrying the light source device of this invention. It is explanatory drawing which shows the compression optical system provided with the collimating lens part. It is explanatory drawing which shows the modification of a compression optical system. It is explanatory drawing which shows the other modification of a compression optical system. It is explanatory drawing which shows the structure in the other example of LD light source device of this invention.
  • FIG. 1 is a plan view showing a configuration in an example of an LD light source device of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line AA of the LD light source device shown in FIG. 1 and 2, the x direction, the y direction, and the z direction indicated by arrows are three directions orthogonal to each other.
  • This LD light source device 10 compresses two-dimensionally the distance between the central axes of a light bundle by a light source unit 11 having a plurality of LDs (laser diodes) 12 and laser light emitted from each of the LDs 12 in the light source unit 11.
  • the compression optical system 20 formed of an integral prism and a frame-shaped fixing member 40 that fixes the compression optical system 20 are configured. In FIG. 2, illustration of the fixing member 40 is omitted for convenience.
  • a plurality of (four in the illustrated example) LDs 12 that emit laser light in the z direction are arranged in a state of being spaced apart from each other in the x direction, whereby the x direction An LD array 13 extending in the direction is formed.
  • a plurality (two in the illustrated example) of the LD rows 13 are arranged apart from each other in the y direction.
  • the light source unit 11 is provided with a rectangular plate-like frame 15 that fixes each of the LDs 12. Specifically, a plurality of through holes 16 are formed in the frame 15 according to a pattern corresponding to the arrangement pattern of the LDs 12, and the LD 12 is fixed in each through hole 16.
  • a collimating lens 17 is disposed in each through hole 16 of the frame 15 so as to face the light emitting surface of the LD 12.
  • the collimating lens 17 is held by a holding member 18.
  • a reference surface S extending along one plane is formed on one surface (the upper surface in FIG. 2) of the frame 15 and serves as a reference for arranging the prisms constituting the compression optical system 20.
  • aluminum alloy such as ADC, cast iron such as FC, or the like can be used as a material constituting the frame 15.
  • the prism constituting the compression optical system 20 has a light incident surface 21 on which the laser light from each of the LDs 12 is incident and a light emitting surface 22 on which the laser light is emitted.
  • the light incident surface 21 is formed to face each light emitting surface of the LD 12 along a plane perpendicular to the z direction (a plane extending in the x direction and the y direction).
  • the prism constituting the compression optical system 20 is disposed in a state where the light incident surface 21 faces the reference surface S formed by one surface of the frame 15 in parallel.
  • the surface roughness Ra of the light incident surface 21 is preferably, for example, 50 nm or less.
  • the light emission surface 22 is formed by one end surface of the prism in the x direction, and is a plane perpendicular to the x direction. Further, the light incident surface 21 and the light emitting surface 22 are preferably provided with a non-reflective coating.
  • the prism constituting the compression optical system 20 has a primary reflection mechanism 25 composed of a plurality of light reflection surfaces 26.
  • Each of the light reflection surfaces 26 in the primary reflection mechanism 25 is formed in a state of being separated from each other in the x direction corresponding to each of the LD groups 14 including a plurality of LDs 12 arranged in the y direction.
  • These light reflecting surfaces 26 reflect each of the beam bundles of the laser light incident on the light incident surface 21 from each of the LDs 12 in the LD group 14 in the x direction from the z direction. It is formed in an inclined state at an angle of 45 °.
  • the surface roughness Ra of the light reflecting surface 26 is preferably, for example, 50 nm or less.
  • Each of the light reflecting surfaces 26 in the primary reflecting mechanism 25 includes a central axis Lc of the light beam reflected by the laser light reflected by the light reflecting surface 26 and a light beam emitted by the laser light reflected by the adjacent light reflecting surface 26.
  • the distance p2 in the z direction from the center axis Lc of the laser diode is formed to be smaller than the distance p1 between the centers of the light emitting surfaces of the LDs 12 adjacent in the x direction.
  • the ratio (p2 / p1) between the distance p2 between the center axes Lc of the light beams and the center distance p1 between the light emitting surfaces of the LDs 12 is, for example, 0.15 to 0.6.
  • the center-to-center distance p1 between the light emitting surfaces of the LDs 12 adjacent in the x direction is 11 mm, and the divergence angle of the emitted laser light is small (parallel to the junction surface of the stacked crystal of the LD element).
  • the distance p1 between the centers of the light emitting surfaces of the LDs 12 adjacent to each other in the x direction is 11 mm, and the fast axis direction in which the emitted laser light has a large divergence angle (the direction perpendicular to the junction surface of the stacked crystal of the LD element) is the x direction.
  • the former configuration that is, the configuration in which each of the LDs 12 in the light source unit 11 is arranged so that the slow axis direction is the x direction is preferable. .
  • the light reflection surfaces 26 adjacent to each other are continuously formed via a plane 27 parallel to the light incident surface 21.
  • the two side edges 26a and 26b extending in the y direction on the light reflecting surface 26 one side edge 26a spaced from the light incident surface 21 and two side edges on the adjacent light reflecting surface 26 26a and 26b, the other side edge 26b that is close to the light incident surface 21 has the same distance from the light incident surface 21.
  • a plane 27 parallel to the light incident surface 21 is formed between one side edge 26 a of the light reflecting surface 26 and the other side edge 26 b of the adjacent light reflecting surface 26.
  • the prism constituting the compression optical system 20 has a secondary reflection mechanism 30 that compresses the distance between the central axes of the respective light bundles reflected by the respective light reflecting surfaces 26 in the y direction.
  • the secondary reflecting mechanism 30 includes a first light reflecting surface 31 that reflects in the y direction each of the beam bundles of the laser beams traveling in the x direction reflected by the light reflecting surface 26, and the first light reflecting surface 31 reflects the light beams.
  • a second light reflecting surface 35 that reflects each of the beam bundles of the laser beam traveling in the y direction in the x direction.
  • each of the first light reflecting surfaces 31 is symmetrical with respect to a plane perpendicular to the y direction (a plane extending in the x direction and the z direction) including the central position between the two LD rows 13. In such a manner, they are formed apart from each other while being inclined at an angle of 45 ° with respect to a plane perpendicular to the x direction (a plane extending in the y direction and the z direction).
  • Each of the second light reflecting surfaces 35 is formed in a state of facing the first light reflecting surface 31 in parallel.
  • H is a cavity.
  • a part of the outer side of the light bundle by the laser beam traveling in the x direction emitted from the LD 12 of one LD array 13 and the LD 12 of the other LD array 13 are emitted.
  • a part of the outer side of the light beam by the laser beam traveling in the x direction is reflected by each of the first light reflecting surfaces 31 so as to approach each other in the y direction, and is further reflected by each of the second light reflecting surfaces 35 in the x direction. Is reflected.
  • the distance between the central axes of the light beams traveling in the x direction is substantially compressed in the y direction.
  • the light reflecting surface 26 is preferably formed using a sol-gel method.
  • the sol-gel method is a method of obtaining a solid glass from a metal alkoxide solution through a sol state and a gel state. By using this method to form the light reflecting surface 26, the light reflecting surface 26 and the flat surface 27 are formed. The boundary edge (ridge line) between them can be formed sharply.
  • an example of a method for manufacturing a prism using the sol-gel method will be described.
  • silica (SiO 2 ) particles for example, nanometer size
  • ethanol distilled water
  • hydrochloric acid or ammonia water at respective concentrations.
  • a dispersion sol
  • the dispersion is poured into a mold having a predetermined shape, and TEOS is hydrolyzed and polymerized to form a wet gel.
  • the wet gel is gradually heated to form a porous wet gel that can be transported, and this is placed in a furnace and sintered at 1300 ° C. or higher to produce a transparent quartz glass prism. .
  • each of the laser beams is incident on the light incident surface 21 of the prism constituting the compression optical system 20 via the collimating lens 17.
  • each of the light beams by the laser light that is incident on the light incident surface 21 and travels in the z direction is reflected in the x direction by each of the light reflecting surfaces 26 in the primary reflection mechanism 25.
  • the distance between the central axes of the beam bundles of the laser light traveling in the x direction is compressed in the z direction.
  • each of the beam bundles of the laser light traveling in the x direction is reflected in the y direction by each of the first light reflecting surfaces 31 in the secondary reflection mechanism 30.
  • the beam bundle of the laser beam related to the LD 12 in one LD row 13 and the beam bundle of the laser beam related to the LD 12 in the other LD row 13 approach each other in the y direction by each of the first light reflecting surfaces 31. Reflected to do.
  • each of the beam bundles of the laser light traveling in the y direction is reflected in the x direction by each of the second light reflecting surfaces 35.
  • the distance between the central axes of the beam bundles of the laser beam traveling in the x direction is compressed in the y direction. In this way, each of the beam bundles of the laser light traveling in the x direction, in which the distance between the central axes is two-dimensionally compressed, is emitted from the light emitting surface 22.
  • FIG. 3 is an explanatory diagram showing a configuration of an example of a fiber irradiation type light source device equipped with the light source device of the present invention.
  • This light source device has a housing 50, and the LD light source device 10 having the configuration shown in FIG.
  • a light reflecting member 51 that reflects the laser light L1 emitted from the LD light source device 10 in the x direction in the z direction is disposed in front of the emission surface of the compression optical system 20 in the LD light source device 10.
  • a condensing optical member 52 that condenses the laser light L ⁇ b> 1 from the light reflecting member 51 is provided in the housing 50.
  • the condensing optical member 52 is arranged such that its optical axis extends in the z direction.
  • a fluorescent member 53 that emits fluorescence L2 when the laser light L1 from the LD light source device 10 is irradiated through the condensing optical member 52 is disposed at the focal point of the condensing optical member 52.
  • a condensing mirror 55 made of an elliptical reflecting mirror that condenses the fluorescent light L2 from the fluorescent member 53 is disposed so as to be positioned at one focal point.
  • the fluorescent member 53 is held by the heat transfer plate 54.
  • an optical fiber 56 that receives and guides the fluorescent light L2 from the condensing mirror 55 is provided so as to extend from the inside of the housing 50 to the outside through the housing 50. .
  • the optical fiber 56 is disposed so that the incident end face thereof is positioned at the other focal point of the condenser mirror 55, and is fixed by the fixing member 57 in this state.
  • the LD light source device 10 is fixed to a heat sink 58 that radiates heat generated in the light source unit 11.
  • a cooling fan 59 for cooling the heat sink 58 is provided behind the heat sink 58.
  • the laser light L1 emitted from the LD light source device 10 in the x direction is reflected by the light reflecting member 51 in the z direction. Then, the laser light L1 traveling in the z direction is condensed by the condensing optical member 52 and is incident on the fluorescent member 53, whereby the fluorescent member 53 emits the fluorescent light L2.
  • the fluorescence L2 emitted from the fluorescent member 53 is collected by the condenser mirror 55 and is incident on the incident end face of the optical fiber 56.
  • the fluorescence L2 incident on the incident end face of the optical fiber 56 is guided by the optical fiber 56 and emitted from the exit end face.
  • the compression optical system 20 can two-dimensionally compress the distance between the central axes of the light beams by the laser light emitted from each of the LDs 12 in the light source unit 11. Moreover, since the compression optical system 20 is composed of an integral prism, the apparatus can be downsized with a simple structure.
  • the light reflecting surfaces 26 adjacent to each other in the primary reflecting mechanism 25 are continuous via a plane 27 parallel to the light incident surface 21, so that the central axis of the light beam out of the laser light emitted from the LD 12. Since light other than the light traveling along is reflected by the plane 27 between the adjacent light reflecting surfaces 26, a high light utilization rate is obtained.
  • the LD light source device of the present invention is not limited to the above embodiment, and various modifications can be made as follows.
  • the light incident surface 21 of the prism constituting the compression optical system 20 is provided with a collimating lens portion 23 protruding from the light incident surface 21 corresponding to each LD 12. May be.
  • the protruding height of the collimating lens part 23 from the light incident surface 21 is, for example, 2 mm.
  • the specific configuration of the secondary reflection mechanism 30 is not limited to that shown in FIG. 1 as long as the distance between the central axes of the beam bundles of the laser beam traveling in the x direction is compressed in the y direction. .
  • two first light reflecting surfaces 31 that are formed corresponding to each of the LD rows 13 and reflect each of the beam bundles of the laser beams traveling in the x direction in the same y direction. Even if the secondary reflection mechanism 30 is formed by the single second light reflecting surface 35 that reflects each of the beam bundles of the laser beams traveling in the y direction from the first light reflecting surfaces 31 in the x direction. Good.
  • a first light reflecting surface 31 that reflects only the light beam by the laser beam related to the LD 12 of one LD array 13 from the x direction to the y direction, and the first light reflecting surface 31 to the y direction.
  • the secondary reflecting mechanism 30 may be formed by the single second light reflecting surface 35 that reflects each of the light beams by the laser light traveling to the x direction in the x direction.
  • the two LD rows 13 are provided.
  • the number of LD rows 13 is not limited to two.
  • LD row 13 may be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Semiconductor Lasers (AREA)

Abstract

Provided are: an LD light source device having a simple structure and which can be reduced in size wherein the distances between the central axes of bundles of rays from laser light emitted from an LD, are compressed two-dimensionally; and a light source device equipped with the LD light source device. This LD light source device includes: a light source portion comprising a plurality of LDs, each emitting laser light in a z direction, disposed so as to be spaced in an x direction to constitute a plurality of LD columns which are disposed so as to be spaced in a y direction; and a compression optical system for compressing two-dimensionally the distances between the central axes of the bundles of rays, each resulting from the laser light emitted from each of the LDs. The compression optical system comprises a single-body prism having: a light entrance surface facing the LDs; a primary reflection mechanism comprising a plurality of light reflection surfaces allowing a bundle of rays from laser light corresponding to an LD group containing the plurality of LDs arranged in the y direction to be reflected in the x direction; and a secondary reflection mechanism allowing the distances between the central axes of the bundles of rays from the primary reflection mechanism to be compressed in the y direction. The distances in the z direction between the central axes of the neighboring bundles of rays from the laser lights and reflected by the light reflection surface is smaller than the distances between the centers of the light emitting surfaces of LDs that are adjacent in the x direction.

Description

LD光源装置および光源装置LD light source device and light source device
 本発明は、複数のLDを備えたLD光源装置およびこのLD光源装置を備えた光源装置に関する。 The present invention relates to an LD light source device including a plurality of LDs and a light source device including the LD light source device.
 近年、光源装置においては、省エネルギー化および小型化の要請により、光源としてLD(レーザダイオード)等が利用されている。このようなLDを有するLD光源装置としては、高出力化を図るために、複数のLDが縦横に並ぶよう配置された光源部と、各LDからのレーザ光による光線束の中心軸間距離を圧縮する圧縮光学系とを備えてなるものが知られている(特許文献1参照。)。このLD光源装置における圧縮光学系は、それぞれ複数の光反射面が階段状に配置された、2つの階段状ミラーによって構成されている。
 このようなLD光源装置によれば、圧縮光学系によって、各LDからのレーザ光による光線束の中心軸間距離が圧縮されるため、当該LD光源装置からの光を、集光光学系によって容易に集光することができる。
In recent years, in light source devices, LD (laser diode) or the like is used as a light source in response to demands for energy saving and downsizing. As an LD light source device having such an LD, in order to increase output, a light source unit in which a plurality of LDs are arranged vertically and horizontally, and the distance between the central axes of the beam bundles of laser beams from each LD are set. An apparatus including a compression optical system for compression is known (see Patent Document 1). The compression optical system in this LD light source device is composed of two step-like mirrors each having a plurality of light reflecting surfaces arranged in a step shape.
According to such an LD light source device, since the distance between the central axes of the beam bundles of the laser beams from the respective LDs is compressed by the compression optical system, the light from the LD light source device can be easily transmitted by the condensing optical system. Can be condensed.
特許第5157961号Patent No. 5,157,961
 しかしながら、上記のLD光源装置においては、圧縮光学系を構成する階段状ミラーの構造が複雑であるため、圧縮光学系を作製する作業や、圧縮光学系を装置に組み込む作業が煩雑であり、しかも、装置の小型化を図ることが困難である、という問題がある。
 また、LDから出射されたレーザ光のうち、光線束の中心軸に沿って進む光以外の光を利用することが困難である。
However, in the LD light source device described above, the structure of the step-like mirror that constitutes the compression optical system is complicated, and therefore the work of producing the compression optical system and the work of incorporating the compression optical system into the device are complicated. There is a problem that it is difficult to reduce the size of the apparatus.
In addition, it is difficult to use light other than light that travels along the central axis of the light beam among the laser light emitted from the LD.
 本発明の目的は、光源部におけるLDの各々から出射されたレーザ光による光線束の中心軸間距離を二次元的に圧縮することができ、しかも、構造が簡単で、装置の小型化を図ることができるLD光源装置およびこれを備えた光源装置を提供することにある。
 本発明の他の目的は、上記の目的に加えて、LDから出射された光の利用率が高いLD光源装置およびこれを備えた光源装置を提供することにある。
An object of the present invention is to two-dimensionally compress the distance between the central axes of the beam bundles of the laser beams emitted from each of the LDs in the light source unit, and to have a simple structure and reduce the size of the apparatus. It is an object to provide an LD light source device and a light source device including the LD light source device.
In addition to the above object, another object of the present invention is to provide an LD light source device having a high utilization rate of light emitted from an LD and a light source device including the LD light source device.
 本発明のLD光源装置は、互いに直交する3つの方向をx方向、y方向およびz方向としたとき、
 それぞれz方向にレーザ光を出射する複数のLDがx方向に互いに離間して並んだ状態で配置されてなるLD列の複数が、y方向に離間して配置されて構成された光源部と、
 前記光源部における前記LDの各々から出射されたレーザ光による光線束の中心軸間距離を二次元的に圧縮する圧縮光学系と
を備えてなり、
 前記圧縮光学系は、一体のプリズムよりなり、
 前記プリズムは、前記LDの各々の発光面に対向する光入射面と、
 y方向に並ぶ複数の前記LDからなるLD群の各々に対応して形成された、前記光入射面に入射されたレーザ光による光線束の各々をx方向に反射する複数の光反射面からなる一次反射機構と、
 前記一次反射機構によって反射されたレーザ光による光線束の各々の中心軸間距離をy方向において圧縮する二次反射機構とを有し、
 前記一次反射機構における前記光反射面の各々は、当該光反射面によって反射されたレーザ光による光線束の中心軸と、隣接する光反射面によって反射されたレーザ光による光線束の中心軸との間のz方向の距離が、x方向に隣接する前記LDの各々の発光面の中心間距離よりも小さくなるよう形成されていることを特徴とする。
The LD light source device of the present invention has three directions orthogonal to each other as an x direction, a y direction, and a z direction.
A light source unit configured such that a plurality of LD arrays, each of which is arranged in a state where a plurality of LDs emitting laser beams in the z direction are arranged apart from each other in the x direction, are arranged apart from each other in the y direction;
A compression optical system that two-dimensionally compresses the distance between the central axes of the beam bundles of the laser beams emitted from each of the LDs in the light source unit;
The compression optical system comprises an integral prism,
The prism includes a light incident surface facing each light emitting surface of the LD;
A plurality of light reflecting surfaces, which are formed corresponding to each of the LD groups composed of the plurality of LDs arranged in the y direction, reflect each of the beam bundles of the laser light incident on the light incident surface in the x direction. A primary reflection mechanism;
A secondary reflection mechanism that compresses the distance between the central axes of the light beams of the laser beam reflected by the primary reflection mechanism in the y direction;
Each of the light reflection surfaces in the primary reflection mechanism includes a central axis of a light beam bundle of a laser beam reflected by the light reflection surface and a central axis of a light beam bundle of a laser beam reflected by an adjacent light reflection surface. The distance between them in the z direction is smaller than the distance between the centers of the light emitting surfaces of the LDs adjacent in the x direction.
 本発明のLD光源装置においては、前記一次反射機構における互いに隣接する前記光反射面は、前記光入射面と平行な平面を介して連続していることが好ましい。
 また、前記二次反射機構は、前記一次反射機構における前記光反射面によって反射されたレーザ光による光線束の各々をy方向に反射する第1光反射面と、当該第1光反射面によって反射されたレーザ光による光線束の各々をx方向に反射する第2光反射面とにより構成されていることが好ましい。
 また、前記光源部は、前記LDの各々を固定するフレームを有してなり、
 当該フレームの一面には、一平面に沿って延びる基準面が形成され、当該基準面に対して前記光入射面が対向するよう、前記プリズムが配置されていることが好ましい。
 また、前記プリズムの光入射面には、前記LDの各々に対応してコリメートレンズ部が設けられていてもよい。
In the LD light source device of the present invention, it is preferable that the light reflecting surfaces adjacent to each other in the primary reflecting mechanism are continuous via a plane parallel to the light incident surface.
Further, the secondary reflection mechanism includes a first light reflection surface that reflects in the y direction each of the beam bundles of the laser light reflected by the light reflection surface in the primary reflection mechanism, and the second light reflection surface is reflected by the first light reflection surface. It is preferable that the second light reflecting surface that reflects each of the beam bundles of the laser beam thus produced in the x direction is formed.
The light source unit includes a frame for fixing each of the LDs.
It is preferable that a reference surface extending along one plane is formed on one surface of the frame, and the prism is arranged so that the light incident surface faces the reference surface.
In addition, a collimating lens portion may be provided on the light incident surface of the prism corresponding to each of the LDs.
 本発明の光源装置は、上記のLD光源装置と、
 このLD光源装置からのレーザ光を集光する集光光学部材と
を備えてなることを特徴とする。
The light source device of the present invention includes the LD light source device described above,
And a condensing optical member for condensing the laser light from the LD light source device.
 本発明の光源装置においては、前記LD光源装置からのレーザ光が前記集光光学部材を介して照射されることによって、蛍光を発する蛍光部材を有するものであってもよい。
 このような光源装置においては、前記蛍光部材からの蛍光を集光する集光ミラーを有することが好ましい。
The light source device of the present invention may have a fluorescent member that emits fluorescence when the laser light from the LD light source device is irradiated through the condensing optical member.
Such a light source device preferably has a condensing mirror that condenses the fluorescence from the fluorescent member.
 本発明によれば、圧縮光学系によって、光源部におけるLDの各々から出射されたレーザ光による光線束の中心軸間距離を二次元的に圧縮することができる。しかも、圧縮光学系は一体のプリズムよりなるため、簡単な構造で、装置の小型化を図ることができる。
 また、一次反射機構における互いに隣接する光反射面が、光入射面と平行な平面を介して連続している構成によれば、LDから出射されたレーザ光のうち、光線束の中心軸に沿って進む光以外の光が、隣接する光反射面の間の平面によって反射されるため、高い光の利用率が得られる。
According to the present invention, the distance between the central axes of the beam bundles of the laser beams emitted from the LDs in the light source unit can be two-dimensionally compressed by the compression optical system. Moreover, since the compression optical system is composed of an integral prism, the apparatus can be downsized with a simple structure.
Further, according to the configuration in which the light reflecting surfaces adjacent to each other in the primary reflecting mechanism are continuous via a plane parallel to the light incident surface, the laser light emitted from the LD is along the central axis of the light beam. Since the light other than the traveling light is reflected by the plane between the adjacent light reflecting surfaces, a high light utilization rate can be obtained.
本発明のLD光源装置の一例における構成を示す平面図である。It is a top view which shows the structure in an example of LD light source device of this invention. 図1に示すLD光源装置のA-A断面図である。It is AA sectional drawing of the LD light source device shown in FIG. 本発明の光源装置を搭載したファイバ照射型の光源装置の一例における構成を示す説明図である。It is explanatory drawing which shows the structure in an example of the fiber irradiation type light source device carrying the light source device of this invention. コリメートレンズ部が設けられた圧縮光学系を示す説明図である。It is explanatory drawing which shows the compression optical system provided with the collimating lens part. 圧縮光学系の変形例を示す説明図である。It is explanatory drawing which shows the modification of a compression optical system. 圧縮光学系の他の変形例を示す説明図である。It is explanatory drawing which shows the other modification of a compression optical system. 本発明のLD光源装置の他の例における構成を示す説明図である。It is explanatory drawing which shows the structure in the other example of LD light source device of this invention.
 以下、本発明の実施の形態について説明する。
 図1は、本発明のLD光源装置の一例における構成を示す平面図である。図2は、図1に示すLD光源装置のA-A断面図である。図1および図2において、それぞれ矢印で示すx方向、y方向およびz方向は、互いに直交する3つの方向である。
 このLD光源装置10は、複数のLD(レーザダイオード)12を有する光源部11と、この光源部11におけるLD12の各々から出射されたレーザ光による光線束の中心軸間距離を二次元的に圧縮する、一体のプリズムよりなる圧縮光学系20と、この圧縮光学系20を固定する枠状の固定部材40とにより構成されている。図2においては、便宜上、固定部材40の図示が省略されている。
Embodiments of the present invention will be described below.
FIG. 1 is a plan view showing a configuration in an example of an LD light source device of the present invention. FIG. 2 is a cross-sectional view taken along the line AA of the LD light source device shown in FIG. 1 and 2, the x direction, the y direction, and the z direction indicated by arrows are three directions orthogonal to each other.
This LD light source device 10 compresses two-dimensionally the distance between the central axes of a light bundle by a light source unit 11 having a plurality of LDs (laser diodes) 12 and laser light emitted from each of the LDs 12 in the light source unit 11. The compression optical system 20 formed of an integral prism and a frame-shaped fixing member 40 that fixes the compression optical system 20 are configured. In FIG. 2, illustration of the fixing member 40 is omitted for convenience.
 光源部11においては、それぞれz方向にレーザ光を出射する複数(図示の例では4つ)のCANパッケージ型のLD12がx方向に互いに離間して並んだ状態で配置されることによって、x方向に伸びるLD列13が形成されている。このLD列13の複数(図示の例では2列)が、y方向に離間して配置されている。
 光源部11には、LD12の各々を固定する矩形の板状のフレーム15が設けられている。具体的に説明すると、フレーム15には、LD12の配置パターンに対応するパターンに従って複数の貫通孔16が形成されており、各貫通孔16内にLD12が固定されている。
 また、フレーム15の各貫通孔16内には、コリメートレンズ17がLD12の発光面に対向するよう配置されている。このコリメートレンズ17は、保持部材18によって保持されている。
 また、フレーム15の一面(図2において上面)には、圧縮光学系20を構成するプリズムを配置するための基準となる、一平面に沿って延びる基準面Sが形成されている。
 フレーム15を構成する材料としては、ADC等のアルミニウム合金、FC等の鋳鉄などを用いることができる。
In the light source unit 11, a plurality of (four in the illustrated example) LDs 12 that emit laser light in the z direction are arranged in a state of being spaced apart from each other in the x direction, whereby the x direction An LD array 13 extending in the direction is formed. A plurality (two in the illustrated example) of the LD rows 13 are arranged apart from each other in the y direction.
The light source unit 11 is provided with a rectangular plate-like frame 15 that fixes each of the LDs 12. Specifically, a plurality of through holes 16 are formed in the frame 15 according to a pattern corresponding to the arrangement pattern of the LDs 12, and the LD 12 is fixed in each through hole 16.
A collimating lens 17 is disposed in each through hole 16 of the frame 15 so as to face the light emitting surface of the LD 12. The collimating lens 17 is held by a holding member 18.
Also, a reference surface S extending along one plane is formed on one surface (the upper surface in FIG. 2) of the frame 15 and serves as a reference for arranging the prisms constituting the compression optical system 20.
As a material constituting the frame 15, aluminum alloy such as ADC, cast iron such as FC, or the like can be used.
 圧縮光学系20を構成するプリズムは、LD12の各々からのレーザ光が入射される光入射面21およびレーザ光が出射される光出射面22を有する。
 光入射面21は、z方向に垂直な平面(x方向およびy方向に延びる平面)に沿って、LD12の各々の発光面に対向するよう形成されている。具体的には、圧縮光学系20を構成するプリズムは、その光入射面21がフレーム15の一面によって形成された基準面Sに平行に対向した状態で配置されている。光入射面21の表面粗さRaは、例えば50nm以下であることが好ましい。
 光出射面22は、プリズムにおけるx方向の一端面によって形成され、x方向に垂直な平面とされている。
 また、光入射面21および光出射面22には、無反射コートが施されていることが好ましい。
The prism constituting the compression optical system 20 has a light incident surface 21 on which the laser light from each of the LDs 12 is incident and a light emitting surface 22 on which the laser light is emitted.
The light incident surface 21 is formed to face each light emitting surface of the LD 12 along a plane perpendicular to the z direction (a plane extending in the x direction and the y direction). Specifically, the prism constituting the compression optical system 20 is disposed in a state where the light incident surface 21 faces the reference surface S formed by one surface of the frame 15 in parallel. The surface roughness Ra of the light incident surface 21 is preferably, for example, 50 nm or less.
The light emission surface 22 is formed by one end surface of the prism in the x direction, and is a plane perpendicular to the x direction.
Further, the light incident surface 21 and the light emitting surface 22 are preferably provided with a non-reflective coating.
 また、圧縮光学系20を構成するプリズムは、複数の光反射面26よりなる一次反射機構25を有する。一次反射機構25における光反射面26の各々は、y方向に並ぶ複数のLD12からなるLD群14の各々に対応して、x方向に互いに離間した状態で形成されている。これらの光反射面26は、LD群14におけるLD12の各々から光入射面21に入射されたレーザ光による光線束の各々を、z方向からx方向に反射するものであり、光入射面21に対して45°の角度で傾斜した状態で形成されている。光反射面26の表面粗さRaは、例えば50nm以下であることが好ましい。 The prism constituting the compression optical system 20 has a primary reflection mechanism 25 composed of a plurality of light reflection surfaces 26. Each of the light reflection surfaces 26 in the primary reflection mechanism 25 is formed in a state of being separated from each other in the x direction corresponding to each of the LD groups 14 including a plurality of LDs 12 arranged in the y direction. These light reflecting surfaces 26 reflect each of the beam bundles of the laser light incident on the light incident surface 21 from each of the LDs 12 in the LD group 14 in the x direction from the z direction. It is formed in an inclined state at an angle of 45 °. The surface roughness Ra of the light reflecting surface 26 is preferably, for example, 50 nm or less.
 そして、一次反射機構25における光反射面26の各々は、当該光反射面26によって反射されたレーザ光による光線束の中心軸Lcと、隣接する光反射面26によって反射されたレーザ光による光線束の中心軸Lcとの間のz方向の距離p2が、x方向に隣接するLD12の各々の発光面の中心間距離p1よりも小さくなるよう形成されている。このような構成とすることにより、各LD12からz方向に出射されたレーザ光による光線束の各々が各光反射面26によってx方向に反射されたときに、x方向に進む光線束の各々の中心軸間距離がz方向において圧縮される。 Each of the light reflecting surfaces 26 in the primary reflecting mechanism 25 includes a central axis Lc of the light beam reflected by the laser light reflected by the light reflecting surface 26 and a light beam emitted by the laser light reflected by the adjacent light reflecting surface 26. The distance p2 in the z direction from the center axis Lc of the laser diode is formed to be smaller than the distance p1 between the centers of the light emitting surfaces of the LDs 12 adjacent in the x direction. With such a configuration, when each of the light bundles of the laser light emitted from each LD 12 in the z direction is reflected in the x direction by each light reflecting surface 26, each of the light bundles traveling in the x direction. The distance between the central axes is compressed in the z direction.
 上記の各光線束の中心軸Lcの間の距離p2と各LD12の発光面の中心間距離p1との比(p2/p1)は、例えば0.15~0.6である。
 具体的な一例を示すと、x方向に隣接するLD12の発光面の中心間距離p1が11mmで、出射されるレーザ光の発散角度が小さいスロー軸方向(LD素子の積層結晶の接合面に平行な方向)がx方向となるよう、各LD12が配置され、コリメートレンズ17の焦点距離が4.7mmである場合には、隣接する光反射面26によって反射されたレーザ光による光線束の中心軸Lcとの間のz方向の距離p2が2mm(p2/p1=0.182)である。
 一方、x方向に隣接するLD12の発光面の中心間距離p1が11mmで、出射されるレーザ光の発散角度が大きいファスト軸方向(LD素子の積層結晶の接合面に垂直な方向)がx方向となるよう、各LD12が配置された場合には、隣接する光反射面26によって反射されたレーザ光による光線束の中心軸Lcとの間のz方向の距離p2が5mm(p2/p1=0.454)である。
 圧縮光学系20を構成するプリズムのz方向の厚さを小さくするためには、前者の構成、すなわち光源部11におけるLD12の各々が、スロー軸方向がx方向となるよう配置された構成が好ましい。
The ratio (p2 / p1) between the distance p2 between the center axes Lc of the light beams and the center distance p1 between the light emitting surfaces of the LDs 12 is, for example, 0.15 to 0.6.
As a specific example, the center-to-center distance p1 between the light emitting surfaces of the LDs 12 adjacent in the x direction is 11 mm, and the divergence angle of the emitted laser light is small (parallel to the junction surface of the stacked crystal of the LD element). When the respective LDs 12 are arranged so that the x direction becomes the x direction and the focal length of the collimating lens 17 is 4.7 mm, the central axis of the light beam by the laser light reflected by the adjacent light reflecting surface 26 The distance p2 in the z direction from Lc is 2 mm (p2 / p1 = 0.182).
On the other hand, the distance p1 between the centers of the light emitting surfaces of the LDs 12 adjacent to each other in the x direction is 11 mm, and the fast axis direction in which the emitted laser light has a large divergence angle (the direction perpendicular to the junction surface of the stacked crystal of the LD element) is the x direction. When the LDs 12 are arranged such that the distance p2 in the z direction between the laser beam reflected by the adjacent light reflecting surfaces 26 and the central axis Lc of the light beam is 5 mm (p2 / p1 = 0) 454).
In order to reduce the thickness in the z direction of the prism constituting the compression optical system 20, the former configuration, that is, the configuration in which each of the LDs 12 in the light source unit 11 is arranged so that the slow axis direction is the x direction is preferable. .
 また、一次反射機構25においては、互いに隣接する光反射面26は、光入射面21と平行な平面27を介して連続して形成されている。具体的に説明すると、光反射面26におけるy方向に伸びる2つの側縁26a,26bのうち、光入射面21から離間した一方の側縁26aと、隣接する光反射面26における2つの側縁26a,26bのうち、光入射面21に接近した他方の側縁26bとは、光入射面21からの離間距離が同一とされている。そして、光反射面26における一方の側縁26aと、隣接する光反射面26における他方の側縁26bとの間に、光入射面21と平行な平面27が形成されている。 Further, in the primary reflection mechanism 25, the light reflection surfaces 26 adjacent to each other are continuously formed via a plane 27 parallel to the light incident surface 21. Specifically, of the two side edges 26a and 26b extending in the y direction on the light reflecting surface 26, one side edge 26a spaced from the light incident surface 21 and two side edges on the adjacent light reflecting surface 26 26a and 26b, the other side edge 26b that is close to the light incident surface 21 has the same distance from the light incident surface 21. A plane 27 parallel to the light incident surface 21 is formed between one side edge 26 a of the light reflecting surface 26 and the other side edge 26 b of the adjacent light reflecting surface 26.
 また、圧縮光学系20を構成するプリズムは、各光反射面26によって反射された各光線束の中心軸間距離をy方向において圧縮する二次反射機構30を有する。この二次反射機構30は、光反射面26によって反射されたx方向に進むレーザ光による光線束の各々をy方向に反射する第1光反射面31と、この第1光反射面31によって反射されたy方向に進むレーザ光による光線束の各々をx方向に反射する第2光反射面35とにより構成されている。 Further, the prism constituting the compression optical system 20 has a secondary reflection mechanism 30 that compresses the distance between the central axes of the respective light bundles reflected by the respective light reflecting surfaces 26 in the y direction. The secondary reflecting mechanism 30 includes a first light reflecting surface 31 that reflects in the y direction each of the beam bundles of the laser beams traveling in the x direction reflected by the light reflecting surface 26, and the first light reflecting surface 31 reflects the light beams. And a second light reflecting surface 35 that reflects each of the beam bundles of the laser beam traveling in the y direction in the x direction.
 この例の二次反射機構30においては、2つのLD列13に対応して、2つの第1光反射面31および第2光反射面35が形成されている。具体的に説明すると、第1光反射面31の各々は、2つのLD列13の間の中央位置を含む、y方向に垂直な平面(x方向およびz方向に延びる平面)に対して互いに対称となるよう、x方向に垂直な平面(y方向およびz方向に延びる平面)に対して45°の角度に傾斜した状態で、互いに離間して形成されている。また、第2光反射面35の各々は、第1光反射面31に平行に対向する状態で形成されている。図1において、Hは空洞である。このような構成とすることにより、一方のLD列13のLD12から出射された、x方向に進むレーザ光による光線束のうち外側の一部と、他方のLD列13におけるLD12から出射された、x方向に進むレーザ光による光線束のうち外側の一部とが、第1光反射面31の各々によってy方向に互いに接近するよう反射され、更に、第2光反射面35の各々によってx方向に反射される。これにより、x方向に進む光線束の各々の中心軸間距離が実質的にy方向において圧縮される。 In the secondary reflection mechanism 30 of this example, two first light reflection surfaces 31 and second light reflection surfaces 35 are formed corresponding to the two LD rows 13. More specifically, each of the first light reflecting surfaces 31 is symmetrical with respect to a plane perpendicular to the y direction (a plane extending in the x direction and the z direction) including the central position between the two LD rows 13. In such a manner, they are formed apart from each other while being inclined at an angle of 45 ° with respect to a plane perpendicular to the x direction (a plane extending in the y direction and the z direction). Each of the second light reflecting surfaces 35 is formed in a state of facing the first light reflecting surface 31 in parallel. In FIG. 1, H is a cavity. By adopting such a configuration, a part of the outer side of the light bundle by the laser beam traveling in the x direction emitted from the LD 12 of one LD array 13 and the LD 12 of the other LD array 13 are emitted. A part of the outer side of the light beam by the laser beam traveling in the x direction is reflected by each of the first light reflecting surfaces 31 so as to approach each other in the y direction, and is further reflected by each of the second light reflecting surfaces 35 in the x direction. Is reflected. As a result, the distance between the central axes of the light beams traveling in the x direction is substantially compressed in the y direction.
 圧縮光学系20を構成するプリズムにおいて、光反射面26は、ゾルゲル法を利用して形成されていることが好ましい。ゾルゲル法は、金属アルコキシドの溶液からゾル状態、ゲル状態を経て固体のガラスを得る方法であり、この方法を利用して光反射面26を形成することによって、光反射面26と平面27との間の境界縁(稜線)をシャープに形成することができる。
 以下、ゾルゲル法を利用したプリズムの作製方法の一例を示す。
 シリカ(SiO)粒子(例えばナノメートルサイズのもの)、TEOS(Si(OC:テトラエトキシシラン)、エタノール、蒸留水、および塩酸若しくはアンモニア水を、各々の濃度で混合することによって、分散液(ゾル)を調製する。この分散液を、所定形状のモールドに注入し、TEOSの加水分解、重合を行うことにより、湿潤ゲルを形成する。次いで、湿潤ゲルを徐々に加温し、運搬が可能な多孔質湿潤ゲルを形成し、これを炉に入れ、1300℃以上で焼結させることによって、透明な石英ガラスのプリズムを作ることができる。
In the prism constituting the compression optical system 20, the light reflecting surface 26 is preferably formed using a sol-gel method. The sol-gel method is a method of obtaining a solid glass from a metal alkoxide solution through a sol state and a gel state. By using this method to form the light reflecting surface 26, the light reflecting surface 26 and the flat surface 27 are formed. The boundary edge (ridge line) between them can be formed sharply.
Hereinafter, an example of a method for manufacturing a prism using the sol-gel method will be described.
Mix silica (SiO 2 ) particles (for example, nanometer size), TEOS (Si (OC 2 H 5 ) 4 : tetraethoxysilane), ethanol, distilled water, and hydrochloric acid or ammonia water at respective concentrations. To prepare a dispersion (sol). The dispersion is poured into a mold having a predetermined shape, and TEOS is hydrolyzed and polymerized to form a wet gel. Then, the wet gel is gradually heated to form a porous wet gel that can be transported, and this is placed in a furnace and sintered at 1300 ° C. or higher to produce a transparent quartz glass prism. .
 上記のLD光源装置10においては、光源部11における各LD12からレーザ光がz方向に出射される。このレーザ光の各々は、コリメートレンズ17を介して、圧縮光学系20を構成するプリズムの光入射面21に入射される。
 圧縮光学系20を構成するプリズムにおいては、光入射面21に入射されてz方向に進むレーザ光による光線束の各々は、一次反射機構25における光反射面26の各々によってx方向に反射される。このとき、x方向に進むレーザ光による光線束の各々の中心軸間距離がz方向において圧縮される。
 次いで、x方向に進むレーザ光による光線束の各々は、二次反射機構30における第1光反射面31の各々によってy方向に反射される。このとき、一方のLD列13におけるLD12に係るレーザ光による光線束と、他方のLD列13におけるLD12に係るレーザ光による光線束とは、第1光反射面31の各々によってy方向に互いに接近するよう反射される。その後、y方向に進むレーザ光による光線束の各々は、第2光反射面35の各々によってx方向に反射される。これにより、x方向に進むレーザ光による光線束の各々の中心軸間距離がy方向において圧縮される。
 このようにして、中心軸間距離が二次元的に圧縮された、x方向に進むレーザ光による光線束の各々は、光出射面22から出射される。
In the LD light source device 10 described above, laser light is emitted in the z direction from each LD 12 in the light source unit 11. Each of the laser beams is incident on the light incident surface 21 of the prism constituting the compression optical system 20 via the collimating lens 17.
In the prism constituting the compression optical system 20, each of the light beams by the laser light that is incident on the light incident surface 21 and travels in the z direction is reflected in the x direction by each of the light reflecting surfaces 26 in the primary reflection mechanism 25. . At this time, the distance between the central axes of the beam bundles of the laser light traveling in the x direction is compressed in the z direction.
Next, each of the beam bundles of the laser light traveling in the x direction is reflected in the y direction by each of the first light reflecting surfaces 31 in the secondary reflection mechanism 30. At this time, the beam bundle of the laser beam related to the LD 12 in one LD row 13 and the beam bundle of the laser beam related to the LD 12 in the other LD row 13 approach each other in the y direction by each of the first light reflecting surfaces 31. Reflected to do. Thereafter, each of the beam bundles of the laser light traveling in the y direction is reflected in the x direction by each of the second light reflecting surfaces 35. As a result, the distance between the central axes of the beam bundles of the laser beam traveling in the x direction is compressed in the y direction.
In this way, each of the beam bundles of the laser light traveling in the x direction, in which the distance between the central axes is two-dimensionally compressed, is emitted from the light emitting surface 22.
 図3は、本発明の光源装置を搭載したファイバ照射型の光源装置の一例における構成を示す説明図である。この光源装置は、筐体50を有し、この筐体50内には、図1に示す構成のLD光源装置10が配置されている。LD光源装置10における圧縮光学系20の出射面の前方には、LD光源装置10からx方向に出射されたレーザ光L1をz方向に反射する光反射部材51が配置されている。
 また、筐体50内には、光反射部材51からのレーザ光L1を集光する集光光学部材52が設けられている。この集光光学部材52は、その光軸がz方向に伸びるよう配置されている。集光光学部材52の焦点には、LD光源装置10からのレーザ光L1が集光光学部材52を介して照射されることによって、蛍光L2を発する蛍光部材53が配置され、この蛍光部材53が一方の焦点に位置するよう、蛍光部材53からの蛍光L2を集光する、楕円反射鏡よりなる集光ミラー55が配置されている。蛍光部材53は、伝熱板54に保持されている。
 また、この光源装置には、集光ミラー55からの蛍光L2を受光して導光する光ファイバ56が、筐体50の内部から当該筐体50を貫通して外部に伸びるよう設けられている。この光ファイバ56は、その入射端面が集光ミラー55の他方の焦点に位置するよう配置され、この状態で、固定部材57によって固定されている。
 また、LD光源装置10は、光源部11に生ずる熱を放熱するヒートシンク58に固定されている。このヒートシンク58の背後には、ヒートシンク58を冷却する冷却ファン59が設けられている。
FIG. 3 is an explanatory diagram showing a configuration of an example of a fiber irradiation type light source device equipped with the light source device of the present invention. This light source device has a housing 50, and the LD light source device 10 having the configuration shown in FIG. A light reflecting member 51 that reflects the laser light L1 emitted from the LD light source device 10 in the x direction in the z direction is disposed in front of the emission surface of the compression optical system 20 in the LD light source device 10.
A condensing optical member 52 that condenses the laser light L <b> 1 from the light reflecting member 51 is provided in the housing 50. The condensing optical member 52 is arranged such that its optical axis extends in the z direction. A fluorescent member 53 that emits fluorescence L2 when the laser light L1 from the LD light source device 10 is irradiated through the condensing optical member 52 is disposed at the focal point of the condensing optical member 52. A condensing mirror 55 made of an elliptical reflecting mirror that condenses the fluorescent light L2 from the fluorescent member 53 is disposed so as to be positioned at one focal point. The fluorescent member 53 is held by the heat transfer plate 54.
Further, in this light source device, an optical fiber 56 that receives and guides the fluorescent light L2 from the condensing mirror 55 is provided so as to extend from the inside of the housing 50 to the outside through the housing 50. . The optical fiber 56 is disposed so that the incident end face thereof is positioned at the other focal point of the condenser mirror 55, and is fixed by the fixing member 57 in this state.
The LD light source device 10 is fixed to a heat sink 58 that radiates heat generated in the light source unit 11. A cooling fan 59 for cooling the heat sink 58 is provided behind the heat sink 58.
 この光源装置においては、LD光源装置10からx方向に出射されたレーザ光L1は、光反射部材51によってz方向に反射される。そして、z方向に進むレーザ光L1は、集光光学部材52によって集光されて蛍光部材53に入射され、これにより、蛍光部材53から蛍光L2が放射される。蛍光部材53から放射された蛍光L2は、集光ミラー55によって集光されて光ファイバ56の入射端面に入射される。そして、光ファイバ56の入射端面に入射された蛍光L2は、当該光ファイバ56によって導光されて出射端面から出射される。 In this light source device, the laser light L1 emitted from the LD light source device 10 in the x direction is reflected by the light reflecting member 51 in the z direction. Then, the laser light L1 traveling in the z direction is condensed by the condensing optical member 52 and is incident on the fluorescent member 53, whereby the fluorescent member 53 emits the fluorescent light L2. The fluorescence L2 emitted from the fluorescent member 53 is collected by the condenser mirror 55 and is incident on the incident end face of the optical fiber 56. The fluorescence L2 incident on the incident end face of the optical fiber 56 is guided by the optical fiber 56 and emitted from the exit end face.
 本発明のLD光源装置10によれば、圧縮光学系20によって、光源部11におけるLD12の各々から出射されたレーザ光による光線束の中心軸間距離を二次元的に圧縮することができる。しかも、圧縮光学系20は一体のプリズムよりなるため、簡単な構造で、装置の小型化を図ることができる。
 また、一次反射機構25における互いに隣接する光反射面26が、光入射面21と平行な平面27を介して連続していることにより、LD12から出射されたレーザ光のうち、光線束の中心軸に沿って進む光以外の光が、隣接する光反射面26の間の平面27によって反射されるため、高い光の利用率が得られる。
According to the LD light source device 10 of the present invention, the compression optical system 20 can two-dimensionally compress the distance between the central axes of the light beams by the laser light emitted from each of the LDs 12 in the light source unit 11. Moreover, since the compression optical system 20 is composed of an integral prism, the apparatus can be downsized with a simple structure.
In addition, the light reflecting surfaces 26 adjacent to each other in the primary reflecting mechanism 25 are continuous via a plane 27 parallel to the light incident surface 21, so that the central axis of the light beam out of the laser light emitted from the LD 12. Since light other than the light traveling along is reflected by the plane 27 between the adjacent light reflecting surfaces 26, a high light utilization rate is obtained.
 本発明のLD光源装置は、上記の実施の形態に限定されず、以下のように、種々の変更を加えることが可能である。 The LD light source device of the present invention is not limited to the above embodiment, and various modifications can be made as follows.
(1)図4に示すように、圧縮光学系20を構成するプリズムの光入射面21には、LD12の各々に対応して、当該光入射面21から突出するコリメートレンズ部23が設けられていてもよい。コリメートレンズ部23の光入射面21からの突出高さは、例えば2mmである。 (1) As shown in FIG. 4, the light incident surface 21 of the prism constituting the compression optical system 20 is provided with a collimating lens portion 23 protruding from the light incident surface 21 corresponding to each LD 12. May be. The protruding height of the collimating lens part 23 from the light incident surface 21 is, for example, 2 mm.
(2)二次反射機構30の具体的な構成は、x方向に進むレーザ光による光線束の各々の中心軸間距離をy方向において圧縮するものであれば、図1に示すものに限定されない。
 例えば、図5に示すように、LD列13の各々に対応して形成された、それぞれx方向に進むレーザ光による光線束の各々を同一のy方向に反射する2つの第1光反射面31と、各第1光反射面31からy方向に進むレーザ光による光線束の各々をx方向に反射する単一の第2光反射面35とによって、二次反射機構30が形成されていてもよい。
(2) The specific configuration of the secondary reflection mechanism 30 is not limited to that shown in FIG. 1 as long as the distance between the central axes of the beam bundles of the laser beam traveling in the x direction is compressed in the y direction. .
For example, as shown in FIG. 5, two first light reflecting surfaces 31 that are formed corresponding to each of the LD rows 13 and reflect each of the beam bundles of the laser beams traveling in the x direction in the same y direction. Even if the secondary reflection mechanism 30 is formed by the single second light reflecting surface 35 that reflects each of the beam bundles of the laser beams traveling in the y direction from the first light reflecting surfaces 31 in the x direction. Good.
 また、図6に示すように、一方のLD列13のLD12に係るレーザ光による光線束のみをx方向からy方向に反射する第1光反射面31と、第1光反射面31からy方向に進むレーザ光による光線束の各々をx方向に反射する単一の第2光反射面35とによって、二次反射機構30が形成されていてもよい。 In addition, as shown in FIG. 6, a first light reflecting surface 31 that reflects only the light beam by the laser beam related to the LD 12 of one LD array 13 from the x direction to the y direction, and the first light reflecting surface 31 to the y direction. The secondary reflecting mechanism 30 may be formed by the single second light reflecting surface 35 that reflects each of the light beams by the laser light traveling to the x direction in the x direction.
(3)図1に示すLD光源装置10においては、2列のLD列13が設けられているが、LD列13の数は2列に限定されず、例えば図7に示すように、4列のLD列13が設けられていてもよい。 (3) In the LD light source device 10 shown in FIG. 1, the two LD rows 13 are provided. However, the number of LD rows 13 is not limited to two. For example, as shown in FIG. LD row 13 may be provided.
10 LD光源装置
11 光源部
12 LD
13 LD列
14 LD群
15 フレーム
16 貫通孔
17 コリメートレンズ
18 保持部材
20 圧縮光学系
21 光入射面
22 光出射面
23 コリメートレンズ部
25 一次反射機構
26 光反射面
26a,26b 側縁
27 平面
30 二次反射機構
31 第1光反射面
35 第2光反射面
40 固定部材
50 筐体
51 光反射部材
52 集光光学部材
53 蛍光部材
54 伝熱板
55 集光ミラー
56 光ファイバ
57 固定部材
58 ヒートシンク
59 冷却ファン
H  空洞
Lc 光線束の中心軸
L1 レーザ光
L2 蛍光
S  基準面
10 LD light source device 11 Light source unit 12 LD
13 LD array 14 LD group 15 Frame 16 Through-hole 17 Collimating lens 18 Holding member 20 Compression optical system 21 Light incident surface 22 Light emitting surface 23 Collimating lens unit 25 Primary reflection mechanism 26 Light reflecting surfaces 26a and 26b Side edge 27 Plane 30 Second Next reflecting mechanism 31 First light reflecting surface 35 Second light reflecting surface 40 Fixing member 50 Housing 51 Light reflecting member 52 Condensing optical member 53 Fluorescent member 54 Heat transfer plate 55 Condensing mirror 56 Optical fiber 57 Fixing member 58 Heat sink 59 Cooling fan H Cavity Lc Center axis L1 of light beam Laser light L2 Fluorescence S Reference plane

Claims (8)

  1.  互いに直交する3つの方向をx方向、y方向およびz方向としたとき、
     それぞれz方向にレーザ光を出射する複数のLDがx方向に互いに離間して並んだ状態で配置されてなるLD列の複数が、y方向に離間して配置されて構成された光源部と、
     前記光源部における前記LDの各々から出射されたレーザ光による光線束の中心軸間距離を二次元的に圧縮する圧縮光学系と
    を備えてなり、
     前記圧縮光学系は、一体のプリズムよりなり、
     前記プリズムは、前記LDの各々の発光面に対向する光入射面と、
     y方向に並ぶ複数の前記LDからなるLD群の各々に対応して形成された、前記光入射面に入射されたレーザ光による光線束の各々をx方向に反射する複数の光反射面からなる一次反射機構と、
     前記一次反射機構によって反射されたレーザ光による光線束の各々の中心軸間距離をy方向において圧縮する二次反射機構とを有し、
     前記一次反射機構における前記光反射面の各々は、当該光反射面によって反射されたレーザ光による光線束の中心軸と、隣接する光反射面によって反射されたレーザ光による光線束の中心軸との間のz方向の距離が、x方向に隣接する前記LDの各々の発光面の中心間距離よりも小さくなるよう形成されていることを特徴とするLD光源装置。
    When three directions orthogonal to each other are defined as an x direction, a y direction, and a z direction,
    A light source unit configured such that a plurality of LD arrays, each of which is arranged in a state where a plurality of LDs emitting laser beams in the z direction are arranged apart from each other in the x direction, are arranged apart from each other in the y direction;
    A compression optical system that two-dimensionally compresses the distance between the central axes of the beam bundles of the laser beams emitted from each of the LDs in the light source unit;
    The compression optical system comprises an integral prism,
    The prism includes a light incident surface facing each light emitting surface of the LD;
    A plurality of light reflecting surfaces, which are formed corresponding to each of the LD groups composed of the plurality of LDs arranged in the y direction, reflect each of the beam bundles of the laser light incident on the light incident surface in the x direction. A primary reflection mechanism;
    A secondary reflection mechanism that compresses the distance between the central axes of the light beams of the laser beam reflected by the primary reflection mechanism in the y direction;
    Each of the light reflection surfaces in the primary reflection mechanism includes a central axis of a light beam bundle of a laser beam reflected by the light reflection surface and a central axis of a light beam bundle of a laser beam reflected by an adjacent light reflection surface. An LD light source device, wherein the distance in the z direction is smaller than the distance between the centers of the light emitting surfaces of the LDs adjacent in the x direction.
  2.  前記一次反射機構における互いに隣接する前記光反射面は、前記光入射面と平行な平面を介して連続していることを特徴とする請求項1に記載のLD光源装置。 2. The LD light source device according to claim 1, wherein the light reflecting surfaces adjacent to each other in the primary reflecting mechanism are continuous via a plane parallel to the light incident surface.
  3.  前記二次反射機構は、前記一次反射機構における前記光反射面によって反射されたレーザ光による光線束の各々をy方向に反射する第1光反射面と、当該第1光反射面によって反射されたレーザ光による光線束の各々をx方向に反射する第2光反射面とにより構成されていることを特徴とする請求項1または請求項2に記載のLD光源装置。 The secondary reflection mechanism is reflected by the first light reflection surface, the first light reflection surface reflecting in the y direction each of the light beams by the laser light reflected by the light reflection surface in the primary reflection mechanism, and the second light reflection surface 3. The LD light source device according to claim 1, wherein the LD light source device is configured by a second light reflecting surface that reflects each of the beam bundles of the laser light in the x direction.
  4.  前記光源部は、前記LDの各々を固定するフレームを有してなり、
     当該フレームの一面には、一平面に沿って延びる基準面が形成され、当該基準面に対して前記光入射面が対向するよう、前記プリズムが配置されていることを特徴とする請求項1乃至請求項3のいずれかに記載のLD光源装置。
    The light source unit includes a frame for fixing each of the LDs.
    A reference surface extending along one plane is formed on one surface of the frame, and the prism is arranged so that the light incident surface faces the reference surface. The LD light source device according to claim 3.
  5.  前記プリズムの光入射面には、前記LDの各々に対応してコリメートレンズ部が設けられていることを特徴とする請求項1乃至請求項4のいずれかに記載のLD光源装置。 The LD light source device according to any one of claims 1 to 4, wherein a collimating lens portion is provided on the light incident surface of the prism corresponding to each of the LDs.
  6.  請求項1乃至請求項5のいずれかに記載のLD光源装置と、
     このLD光源装置からのレーザ光を集光する集光光学部材と
    を備えてなることを特徴とする光源装置。
    The LD light source device according to any one of claims 1 to 5,
    A light source device comprising: a condensing optical member that condenses laser light from the LD light source device.
  7.  前記LD光源装置からのレーザ光が前記集光光学部材を介して照射されることによって、蛍光を発する蛍光部材を有することを特徴とする請求項6に記載の光源装置。 The light source device according to claim 6, further comprising a fluorescent member that emits fluorescence when the laser light from the LD light source device is irradiated through the condensing optical member.
  8.  前記蛍光部材からの蛍光を集光する集光ミラーを有することを特徴とする請求項7に記載の光源装置。 The light source device according to claim 7, further comprising a condensing mirror that condenses the fluorescence from the fluorescent member.
PCT/JP2016/067477 2015-06-17 2016-06-13 Ld light source device and light source device WO2016204101A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-121804 2015-06-17
JP2015121804A JP2017010636A (en) 2015-06-17 2015-06-17 LD light source device and light source device

Publications (1)

Publication Number Publication Date
WO2016204101A1 true WO2016204101A1 (en) 2016-12-22

Family

ID=57545931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067477 WO2016204101A1 (en) 2015-06-17 2016-06-13 Ld light source device and light source device

Country Status (2)

Country Link
JP (1) JP2017010636A (en)
WO (1) WO2016204101A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240142084A1 (en) * 2021-02-25 2024-05-02 Nichia Corporation Light-emitting module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011154995A (en) * 2009-12-28 2011-08-11 Sharp Corp Illumination device
JP2012084234A (en) * 2010-10-06 2012-04-26 Panasonic Corp Light emitting device and projector
JP2012528356A (en) * 2009-05-28 2012-11-12 イーストマン コダック カンパニー Beam alignment system with light source array
JP2015049461A (en) * 2013-09-03 2015-03-16 セイコーエプソン株式会社 Illumination device and projector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012528356A (en) * 2009-05-28 2012-11-12 イーストマン コダック カンパニー Beam alignment system with light source array
JP2011154995A (en) * 2009-12-28 2011-08-11 Sharp Corp Illumination device
JP2012084234A (en) * 2010-10-06 2012-04-26 Panasonic Corp Light emitting device and projector
JP2015049461A (en) * 2013-09-03 2015-03-16 セイコーエプソン株式会社 Illumination device and projector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240142084A1 (en) * 2021-02-25 2024-05-02 Nichia Corporation Light-emitting module
US11982441B1 (en) * 2021-02-25 2024-05-14 Nichia Corporation Light-emitting module

Also Published As

Publication number Publication date
JP2017010636A (en) 2017-01-12

Similar Documents

Publication Publication Date Title
US7668214B2 (en) Light source
US9869453B2 (en) Light source, light source unit, and light source module using same
US9484710B2 (en) Semiconductor laser device
US20180004077A1 (en) Integrated light pipe for optical projection
WO2017121000A1 (en) Semiconductor laser
JP6157194B2 (en) Laser apparatus and light beam wavelength coupling method
JP6582968B2 (en) Light source device
JP6036479B2 (en) Semiconductor laser device
JP2008501144A (en) Optimal matching of the output of a two-dimensional laser array stack to an optical fiber
JPH10510933A (en) Apparatus for focusing and shaping emitted light of multiple diode laser arrays
JP2015011203A (en) Optical device
CN102904161B (en) High-power integrated laser light source
JP2011076092A (en) Device for shaping laser beam
JP6189638B2 (en) Optical system
WO2016204101A1 (en) Ld light source device and light source device
JP2010085819A (en) Projection type display device
JP2007531028A (en) Optical device for forming a beam, for example a laser beam
JP6521098B2 (en) Combined laser light source
JP4347467B2 (en) Concentrator
JP2009047732A (en) Condensing optical system and laser oscillator
JP6517285B2 (en) Optical system
JP2016092319A (en) Surface light-emitting light source and laser device
JP4537796B2 (en) Beam shaping optical system, laser light source, and beam shaping optical system creation method
JP4850591B2 (en) Optical coupling device, solid-state laser device, and fiber laser device
JPH1168197A (en) Solid laser device excited by semiconductor laser

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16811575

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16811575

Country of ref document: EP

Kind code of ref document: A1