JPH01303140A - Nuclear magnetic resonance diagnosing device - Google Patents

Nuclear magnetic resonance diagnosing device

Info

Publication number
JPH01303140A
JPH01303140A JP63135214A JP13521488A JPH01303140A JP H01303140 A JPH01303140 A JP H01303140A JP 63135214 A JP63135214 A JP 63135214A JP 13521488 A JP13521488 A JP 13521488A JP H01303140 A JPH01303140 A JP H01303140A
Authority
JP
Japan
Prior art keywords
magnetic field
coil
gradient magnetic
magnetic resonance
buffer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63135214A
Other languages
Japanese (ja)
Inventor
Takeshi Shudo
主藤 剛
Mitsuyoshi Kimura
光良 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63135214A priority Critical patent/JPH01303140A/en
Publication of JPH01303140A publication Critical patent/JPH01303140A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/385Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using gradient magnetic field coils
    • G01R33/3854Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using gradient magnetic field coils means for active and/or passive vibration damping or acoustical noise suppression in gradient magnet coil systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/385Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using gradient magnetic field coils

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To reduce a noise due to an inclination magnetic field coil by adhering a buffer to the whole outside surface of a structure with adhesives by a supporting body and fitting the inclination magnetic field coil group to the outer surface of the buffer so that the inside can be equally contacted. CONSTITUTION:On the outer circumference of a supporting body 1, four coil groups of saddle-shaped coils 2a-2d to generate an inclination magnetic field in a Y axis direction are arranged, and the supporting body 1 is composed of a buffer layer 1a, a shell and an inside damping layer 1c to lie between coils. Coil groups 3a-3d arranged in an X axis direction to form 90 deg. in the Y axis direction are overlapped and fitted and an interlayer material 4 is provided at the clearance of respective coils. Though the interlayer material 4 absorbs the oscillation in the same way as the shell 1b, selection is performed from the material having the characteristic of that the intensity in which the deformation due to the electromagnetic force of the coil does not damage the stability of a magnetic field. Coil groups 2a-2d and 3a-3d are tightened and fixed with a tightening belt 5 from these outer-most circumferential part. Thus, the oscillation generated at the coil group of the inclination magnetic field coil is equally transferred to the supporting body, absorbed by the buffer, and thus, attenuation can be executed and the noise at the time of measuring a person to be tested is suppressed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は核磁気共鳴診断装置の傾斜磁場コイルに係り、
傾斜磁場コイルの発生する打撃音の低減に好適な、減音
化構造に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a gradient magnetic field coil for a nuclear magnetic resonance diagnostic apparatus,
The present invention relates to a sound reduction structure suitable for reducing impact noise generated by gradient magnetic field coils.

〔従来の技術〕[Conventional technology]

従来の傾斜磁場コイルは、強度の高い材料、例えば“F
RPなどを支持体に使用し、その外周上にコイルを配置
し、支持体とコイルの間にのみ、緩衝材を介在させて、
コイルは複数点集中的に同定金具で同定された構造にな
っていた。この結果コイルの振動が、緩衝材を挿入して
も支持体に伝達され、支持体が振動し、騒音を発生させ
ていた。
Conventional gradient coils are made of high-strength materials, such as “F
Using RP etc. as a support, placing a coil on its outer periphery, and interposing a cushioning material only between the support and the coil,
The coil had a structure that was identified using identification metal fittings at multiple points. As a result, the vibration of the coil is transmitted to the support body even if a cushioning material is inserted, causing the support body to vibrate and generate noise.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前記従来技術は、コイルに流れるパルス電流による電磁
力で生じるコイルから支持体に加えられるパルス荷重の
伝達を効果的に減衰させる配慮が不十分であり、そのた
め支持体が振動し、大きな打撃音を発生させていた。ま
た支持体の振動を急速に減衰させる構成と、支持体が円
筒の場合振動の胴体による共鳴現象を防止する手段も採
用されず、被検者の計測中に生ずる連続的な打撃音によ
る騒音が大きく、60〜8C)dB(Aスケール)にも
達していた。この騒音は結局被検者空間での音に対する
環境を悪化させ、ひいては計測中に被検者の動きを誘発
させる原因となるなどの問題があった・ 本発明の目的は傾斜磁場コイルによる前記騒音をより低
減させ、被検者に対する快適な検査環境を提供すること
にある。
The above-mentioned conventional technology does not give sufficient consideration to effectively damping the transmission of the pulse load applied from the coil to the support body due to the electromagnetic force caused by the pulse current flowing through the coil, and as a result, the support body vibrates and produces a loud impact sound. It was occurring. In addition, a structure that rapidly attenuates the vibrations of the support body and a means to prevent the resonance phenomenon caused by the vibration body when the support body is cylindrical are not adopted, and the noise caused by the continuous impact sound that occurs during measurement of the subject is not adopted. It was large, reaching 60-8C) dB (A scale). This noise eventually deteriorates the sound environment in the test subject's space, and may even cause the test subject to move during measurement. The aim is to further reduce the amount of stress and provide a comfortable testing environment for the test subject.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題は、静磁場を発生させる磁石と、該静磁場内に
設けられ、互いに直行する三軸方向に独立な傾斜磁場を
発生させる傾斜磁場コイル群と、該傾斜磁場コイル群を
支持する支持体とを備えた核磁気共鳴診断装置において
、前記支持体は構造体の外側表面全面に緩衝材をその構
成材料の引張強さと同等以上の接着強度を有する接着材
で接着し、該緩衝材の外表面に前記傾斜磁場コイル群を
その内側が均等に接するよう取付だ核磁気共鳴診断装置
によって解決される。
The above-mentioned problems include a magnet that generates a static magnetic field, a group of gradient magnetic field coils that are installed in the static magnetic field and that generate independent gradient magnetic fields in three axial directions perpendicular to each other, and a support that supports the group of gradient magnetic field coils. In the nuclear magnetic resonance diagnostic apparatus, the support has a buffer material bonded to the entire outer surface of the structure with an adhesive having an adhesive strength equal to or higher than the tensile strength of the constituent materials, and This problem is solved by a nuclear magnetic resonance diagnostic apparatus in which the gradient magnetic field coil group is attached to the surface so that the inner sides thereof are evenly in contact with each other.

また、前記構造体の内側表面に振動減衰体を外振動減衰
体の構成材料の引張強さと同等以上の接着強度を有する
接着材で接着してもよく、また、前記支持体が円筒形で
あり、前記傾斜磁場コイル群の外周側を帯状の締付は材
で同定していもよい。
Further, the vibration damping body may be bonded to the inner surface of the structure with an adhesive having an adhesive strength equal to or higher than the tensile strength of the constituent material of the outer vibration damping body, and the support body may be cylindrical. The outer peripheral side of the gradient magnetic field coil group may be identified by a band-shaped tightening material.

〔作用〕[Effect]

コイルは支持体に必らず同定されるが、同定箇所を集中
させると、その点から支持体に容易に振動が伝達される
。これを第6図に示すような、支持体1に対して、コイ
ルの電磁力が等分布荷重Fとして作用し、均等に受ける
ようにし、分散化することで振動を低減できる。一方支
持体は構造体を中心として構造体の外面に緩衝材が、内
面に振動減衰体がそれぞれの材料の引張強さと同等以上
の強さで接着され、緩衝材と構造体と振動減衰体が一体
となって作動する構造としているが、傾斜磁場コイルと
構造体の間に設ける緩衝材の部分は、傾斜磁場コイルの
振動を熱に変換しエネルギーを吸収し、構造体への伝達
を低減させる。また構造体へ伝達された振動エネルギー
は内層に接着ライニングされた振動減衰体でさらに、熱
に変換され構造体の振動を急速に減衰させる働きをする
。さらに内層の振動減衰体は、空気への振動を抑制する
吸音性も併せ持たせる材料とすることにより減音化を達
成できる。
The coil is necessarily identified on the support, but if the identified points are concentrated, vibrations are easily transmitted from that point to the support. As shown in FIG. 6, the electromagnetic force of the coil acts as a uniformly distributed load F on the support 1, so that the electromagnetic force is applied evenly and dispersed, thereby reducing vibration. On the other hand, the support is centered around the structure, with a cushioning material attached to the outer surface of the structure and a vibration damping material bonded to the inner surface with a strength equal to or higher than the tensile strength of each material. Although the structure is designed to work as one, the buffer material provided between the gradient magnetic field coil and the structure converts the vibrations of the gradient magnetic field coil into heat, absorbs energy, and reduces transmission to the structure. . In addition, the vibration energy transmitted to the structure is further converted into heat by a vibration damper lined with adhesive on the inner layer, which serves to rapidly damp the vibrations of the structure. Furthermore, sound reduction can be achieved by using a material for the inner layer vibration damping body that also has sound absorbing properties that suppress vibrations into the air.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図から第8図により説明
する。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 8.

本装置の被検者測定部分である磁界発生部は、第8図に
示す如く、静磁界を作る磁石6と、その内側に傾斜磁場
コイル12が置かれ、さらに傾斜磁場コイル12の内側
に、高周波の磁場を被検者9に照射し、また核磁気共鳴
信号を検出するプロ゛−ブ7が設けられている。被検者
9及びプローブ7は寝台8上に装着される。傾斜磁場コ
イル12は、傾斜磁場電源10により計測シーケンスに
応じて暉動される。プローブ7はRF送受信器11によ
り、高周波磁場RFの照射及び信号の受信増幅を行う。
As shown in FIG. 8, the magnetic field generating section, which is the subject measurement part of this device, includes a magnet 6 that generates a static magnetic field, a gradient magnetic field coil 12 placed inside the magnet 6, and further inside the gradient magnetic field coil 12, A probe 7 is provided for irradiating a high frequency magnetic field onto a subject 9 and for detecting nuclear magnetic resonance signals. The subject 9 and the probe 7 are mounted on a bed 8. The gradient magnetic field coil 12 is moved by the gradient magnetic field power supply 10 according to a measurement sequence. The probe 7 uses an RF transmitter/receiver 11 to irradiate a high frequency magnetic field RF and receive and amplify the signal.

傾斜磁場コイル12は、三軸の直交方向の傾斜磁界を発
生するコイルが巻回装着され、その−軸周のコイル2a
〜2dが概略的に示されている。
The gradient magnetic field coil 12 is equipped with a coil that generates a gradient magnetic field in a direction orthogonal to three axes, and a coil 2a around the -axis.
~2d is shown schematically.

第7図は、該磁気共鳴信号を計測する代表的シーケンス
例を示している。これはスピンエコーシーケンスでN枚
の断面を同時に撮影するパルストレーンである。時間軸
Tに対して、高周波磁場RFが、90” 、180°パ
ルスとして照射される。
FIG. 7 shows an example of a typical sequence for measuring the magnetic resonance signals. This is a pulse train that simultaneously images N cross sections in a spin echo sequence. A high frequency magnetic field RF is applied as a 90'', 180° pulse with respect to the time axis T.

その時間タイミングに応じて、スライス傾斜磁場GS、
位相エンコード傾斜磁場Gp、核磁気共鳴信号読み出し
傾斜磁場Grが、それぞれ印加され、マルチスライス数
Nに応じて、1〜Nの区間が連続的に繰り返される。こ
の場合の各傾斜磁場の印加時間は、撮影条件により異な
るがおおよそ、数mSから10数msの範囲であって、
磁場の立ち上がり、立ち下がりのスルーは1 m S前
後以下の速さである。
Depending on the time timing, the slice gradient magnetic field GS,
A phase encoding gradient magnetic field Gp and a nuclear magnetic resonance signal readout gradient magnetic field Gr are respectively applied, and sections 1 to N are continuously repeated according to the number N of multislices. The application time of each gradient magnetic field in this case varies depending on the imaging conditions, but is approximately in the range of several milliseconds to several tens of milliseconds,
The throughput of the rise and fall of the magnetic field is around 1 mS or less.

傾斜磁場コイル12の一軸のコイル群を装着した本発明
の一実施例を第1図及び第2図で説明する。支持体1の
外周上にY軸方向に傾斜磁場を発生させる鞍形のコイル
2a、2b、2c、2dの4個のコイル群が配置され、
支持体1は、前記コイルとの間に介在する緩衝J?!2
1 aと、管体1b及び、内側の制振層1cから構成さ
れる。第1図を軸方向から投影した図が、第3図である
が、Y軸方向と90°をなすX軸方向に配置したコイル
群3a、3b、3c、3dが重ねて取り付けられ、各コ
イルの隙間には層間材4が設けられる。この層間材4も
、管体1bと同様に、振動を吸収するがコイルの電磁力
による変形が、磁場の安定度を損なわない強度を有する
特性のものから選択される。
An embodiment of the present invention in which a uniaxial coil group of gradient magnetic field coils 12 is installed will be described with reference to FIGS. 1 and 2. Four saddle-shaped coil groups 2a, 2b, 2c, and 2d are arranged on the outer periphery of the support 1 to generate a gradient magnetic field in the Y-axis direction.
The support body 1 is provided with a buffer J? interposed between the support body 1 and the coil. ! 2
1a, a tube body 1b, and an inner damping layer 1c. FIG. 3 is a projection of FIG. 1 from the axial direction. Coil groups 3a, 3b, 3c, and 3d arranged in the X-axis direction, which forms 90 degrees with the Y-axis direction, are attached one on top of the other, and each coil An interlayer material 4 is provided in the gap. Similar to the tubular body 1b, the interlayer material 4 is also selected from materials having a strength that absorbs vibrations but does not impair the stability of the magnetic field when deformed by the electromagnetic force of the coil.

そしてこれらの最外周部から締付は帯5で、コイル群2
a〜2d、及び3a〜3dを締付は同定する。この同定
法によれば、コイル群を分散的に締付けているので、コ
イルの振動も分散平均的にしか支持体1に伝達されず、
振動周波数の次数を低下させる効果を持つ。第3図は前
記第1図及び第2図のコイルを立体的に観たものである
。■はコイル間の電流方向相関を示した。これにより第
4図のごとく支持体1に対して、 コイル周線分2a工
、2&2・・・・・・2’I T 2 d2により各々
Fなる電磁力を受け、その電磁力は第7図のパルスシー
ケンス図に示すごとくパルス状である。その振動は第5
図(a)に示すn=2の振動モードに主成分を有し、振
動周波数は(1)式で示される。
The belt 5 tightens the coils from the outermost periphery of the coil group 2.
Tightening identifies a to 2d and 3a to 3d. According to this identification method, since the coil group is tightened in a dispersive manner, the vibrations of the coils are only transmitted to the support body 1 in a dispersion-average manner.
It has the effect of lowering the order of vibration frequency. FIG. 3 is a three-dimensional view of the coils shown in FIGS. 1 and 2. ■ indicates the current direction correlation between coils. As a result, as shown in Fig. 4, the electromagnetic force of F is applied to the support 1 by the coil circumferential line segments 2a, 2 &2...2'I T 2 d2, and the electromagnetic force is as shown in Fig. 7. It is pulse-like as shown in the pulse sequence diagram. That vibration is the fifth
It has a main component in the n=2 vibration mode shown in Figure (a), and the vibration frequency is expressed by equation (1).

但し、 E:ヤング率 工:断面二次モーメント ρ:密度 A:断面積 a:半径 n=2となる理由は、第6図の電磁力の印加状態から判
断できる。
However, E: Young's modulus: moment of inertia of area ρ: density A: cross-sectional area a: radius n=2 The reason why n=2 can be determined from the state of application of electromagnetic force in FIG.

〔発明の効果〕〔Effect of the invention〕

以上のごとく本発明によれば、傾斜磁場コイルのコイル
群で生じる振動を支持体に均等に伝達し。
As described above, according to the present invention, vibrations generated in the coil group of the gradient magnetic field coils are evenly transmitted to the support body.

緩衝材で吸収することにより減衰することができ、さら
に振動減衰体で低減できるので、被検者の計測時の騒音
を抑止し、被検者空間に対する騒音環境を従来の騒音レ
ベルに比し、1/2〜1/4に改善できる効果を有する
It can be attenuated by absorbing it with a cushioning material, and further reduced with a vibration damper, so it suppresses the noise during measurement of the examinee, and the noise environment in the examinee space is compared to the conventional noise level. It has the effect of being improved by 1/2 to 1/4.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す傾斜磁場コイルの軸断
面図、第2図は第1図の右側面図、第3図は第1図の立
体略図、第4図はコイルによる電磁力作用図、第5図は
変形次数と振動数の関係を示す図、第6図は管体に作用
する荷重の状態を示す図、第7図は装置の動作シーケン
ス事例図、第8図は測定部を中心とした核磁気共鳴診断
装置の構成図である。 1・・・支持体、2a〜2d・・・コイルa ” d、
1a・・・緩衝層、1b・・・管体、IC・・・制振層
、5・・・締付は帯、12・・・傾斜磁場コイル。
Fig. 1 is an axial sectional view of a gradient magnetic field coil showing an embodiment of the present invention, Fig. 2 is a right side view of Fig. 1, Fig. 3 is a three-dimensional schematic diagram of Fig. 1, and Fig. 4 is an electromagnetic field generated by the coil. Figure 5 is a diagram showing the relationship between deformation order and vibration frequency, Figure 6 is a diagram showing the state of the load acting on the tube, Figure 7 is an example of the operation sequence of the device, and Figure 8 is a force action diagram. FIG. 1 is a configuration diagram of a nuclear magnetic resonance diagnostic apparatus centering on a measurement section. 1... Support body, 2a to 2d... Coil a" d,
1a... Buffer layer, 1b... Tube body, IC... Damping layer, 5... Tightening band, 12... Gradient magnetic field coil.

Claims (1)

【特許請求の範囲】 1、静磁場を発生させる磁石と、該静磁場内に設けられ
、互いに直行する三軸方向に独立な傾斜磁場を発生させ
る傾斜磁場コイル群と、該傾斜磁場コイル群を支持する
支持体とを備えた核磁気共鳴診断装置において、前記支
持体は構造体の外側表面全面に緩衝材をその構成材料の
引張強さと同等以上の接着強度を有する接着材で接着し
、該緩衝材の外表面に前記傾斜磁場コイル群をその内側
が均等に接するよう取付たことを特徴とする核磁気共鳴
診断装置。 2、前記構造体の内側表面に振動減衰体を該振動減衰体
の構成材料の引張強さと同等以上の接着強度を有する接
着材で接着することを特徴とする請求項1記載の核磁気
共鳴診断装置。 3、前記支持体が円筒形であり、前記傾斜磁場コイル群
の外周側を帯状の締付け材で同定したことを特徴とする
請求項1または2記載の核磁気共鳴診断装置。
[Claims] 1. A magnet that generates a static magnetic field, a group of gradient magnetic field coils that are provided within the static magnetic field and that generate independent gradient magnetic fields in three axial directions orthogonal to each other, and a group of gradient magnetic field coils. In the nuclear magnetic resonance diagnostic apparatus, the support has a cushioning material bonded to the entire outer surface of the structure with an adhesive having an adhesive strength equal to or higher than the tensile strength of its constituent materials, and A nuclear magnetic resonance diagnostic apparatus characterized in that the gradient magnetic field coil group is attached to the outer surface of a buffer material so that the inner sides thereof are evenly in contact with each other. 2. The nuclear magnetic resonance diagnosis according to claim 1, characterized in that a vibration damping member is bonded to the inner surface of the structure with an adhesive having an adhesive strength equal to or higher than the tensile strength of the constituent material of the vibration damping member. Device. 3. The nuclear magnetic resonance diagnostic apparatus according to claim 1 or 2, wherein the support body is cylindrical, and the outer peripheral side of the gradient magnetic field coil group is identified by a band-shaped tightening material.
JP63135214A 1988-06-01 1988-06-01 Nuclear magnetic resonance diagnosing device Pending JPH01303140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63135214A JPH01303140A (en) 1988-06-01 1988-06-01 Nuclear magnetic resonance diagnosing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63135214A JPH01303140A (en) 1988-06-01 1988-06-01 Nuclear magnetic resonance diagnosing device

Publications (1)

Publication Number Publication Date
JPH01303140A true JPH01303140A (en) 1989-12-07

Family

ID=15146504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63135214A Pending JPH01303140A (en) 1988-06-01 1988-06-01 Nuclear magnetic resonance diagnosing device

Country Status (1)

Country Link
JP (1) JPH01303140A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994028430A1 (en) * 1993-06-02 1994-12-08 British Technology Group Limited An acoustic screen
GB2406382A (en) * 2003-08-18 2005-03-30 Ge Med Sys Global Tech Co Llc Acoustically Damped Gradient Coil
WO2005089644A1 (en) * 2004-03-24 2005-09-29 Kabushiki Kaisha Toshiba Magnetic resonance imaging device and method for judging presence/absence of resonance in the magnetic resonance imaging device
US7715898B2 (en) 2003-09-24 2010-05-11 General Electric Company System and method for employing multiple coil architectures simultaneously in one electromagnetic tracking system
CN104765010A (en) * 2015-03-24 2015-07-08 南方医科大学 Nuclear magnetic resonance noise reduction protection device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994028430A1 (en) * 1993-06-02 1994-12-08 British Technology Group Limited An acoustic screen
US5764059A (en) * 1993-06-02 1998-06-09 British Technology Group Limited Acoustic screen
GB2406382A (en) * 2003-08-18 2005-03-30 Ge Med Sys Global Tech Co Llc Acoustically Damped Gradient Coil
GB2406382B (en) * 2003-08-18 2006-05-24 Ge Med Sys Global Tech Co Llc Acoustically damped gradient coil
US7068033B2 (en) 2003-08-18 2006-06-27 Ge Medical Systems Global Technology Company, Llc Acoustically damped gradient coil
US7715898B2 (en) 2003-09-24 2010-05-11 General Electric Company System and method for employing multiple coil architectures simultaneously in one electromagnetic tracking system
US8354837B2 (en) 2003-09-24 2013-01-15 Ge Medical Systems Global Technology Company Llc System and method for electromagnetic tracking operable with multiple coil architectures
WO2005089644A1 (en) * 2004-03-24 2005-09-29 Kabushiki Kaisha Toshiba Magnetic resonance imaging device and method for judging presence/absence of resonance in the magnetic resonance imaging device
US7355408B2 (en) 2004-03-24 2008-04-08 Kabushiki Kaisha Toshiba Magnetic resonance imaging apparatus and method of judging presence or absence of resonance in magnetic resonance imaging apparatus
CN104765010A (en) * 2015-03-24 2015-07-08 南方医科大学 Nuclear magnetic resonance noise reduction protection device

Similar Documents

Publication Publication Date Title
JP3161008B2 (en) Magnetic resonance imaging equipment
US6933722B2 (en) Magnetic resonance imaging device and gradient magnetic field coil used for it
US6954068B1 (en) Magnetic resonance imaging apparatus
US6556012B2 (en) Magnetic resonance imaging apparatus
US5235283A (en) Gradient coil system for a nuclear magnetic resonance tomography apparatus which reduces acoustic noise
JP4298231B2 (en) Magnetic resonance tomography apparatus equipped with a sound deadening laminate for vibration reduction
US20070176602A1 (en) Main magnet perforated eddy current shield for a magnetic resonance imaging device
GB2406382A (en) Acoustically Damped Gradient Coil
JP4822439B2 (en) Magnetic resonance imaging system
JPH0447572B2 (en)
US7053744B2 (en) Encapsulation of a magnetic resonance tomography device for attenuation of low sound frequencies
JPH01303140A (en) Nuclear magnetic resonance diagnosing device
JP3897958B2 (en) Magnetic resonance imaging system
US5189372A (en) Silencer for magnetic field gradient coils in a magnetic resonance imaging apparatus
US6917200B2 (en) Magnetic resonance tomography device having a noise-suppressing function by damping mechanical vibrations
JP3156088B2 (en) Magnetic resonance imaging equipment
JP3394933B2 (en) Magnetic resonance imaging equipment
JPH06205757A (en) Nuclear magnetic resonance inspecting system device
JPH0332643A (en) Nuclear magnetic resonance device
JPH0515508A (en) Magnetic resonance imaging apparatus
JP2886871B2 (en) Nuclear magnetic resonance equipment
JP2001258864A (en) Inclined magnetic field unit and magnetic resonance imaging device
JP2004257860A (en) Nuclear magnetic resonance apparatus
JPH03244434A (en) Nuclear magnetism resonator device
JPH03284244A (en) Gradient magnetic field coil structural body for magnetic resonance imaging apparatus