JPH01303136A - In-body cavity ultrasonic wave probe - Google Patents

In-body cavity ultrasonic wave probe

Info

Publication number
JPH01303136A
JPH01303136A JP13426088A JP13426088A JPH01303136A JP H01303136 A JPH01303136 A JP H01303136A JP 13426088 A JP13426088 A JP 13426088A JP 13426088 A JP13426088 A JP 13426088A JP H01303136 A JPH01303136 A JP H01303136A
Authority
JP
Japan
Prior art keywords
electrode
internal
scanning image
external
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13426088A
Other languages
Japanese (ja)
Inventor
Keiichiro Ubukata
生方 敬一郎
Yoshikatsu Noda
野田 芳克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Healthcare Japan Corp
Original Assignee
Yokogawa Medical Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Medical Systems Ltd filed Critical Yokogawa Medical Systems Ltd
Priority to JP13426088A priority Critical patent/JPH01303136A/en
Publication of JPH01303136A publication Critical patent/JPH01303136A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

PURPOSE:To obtain a radial scanning image and a linear scanning image in an arbitrary surface by arranging orthogonally a ring-shaped internal electrode and a belt- shaped external electrode, extracting the electrode lead wire of the internal electrode to the inside of a cylinder and extracting the electrode lead wire of the external electrode from the edge of the cylinder. CONSTITUTION:When one of external electrodes 12a-12c... is grounded, others are released and a driving pulse is given in the prescribed sequence to internal electrodes 14a-14c... under the control of an ultrasonic wave diagnosing device main body, a linear scanning image in a scanning surface 17 is obtained. When an external electrode connected to the ground is changed and the driving pulse is given to the internal electrode, a linear scanning image in a new scanning surface is obtained and the linear scanning image in the arbitrary surface of the position to surround an inserting part 2 is obtained. When one of the internal electrodes 14a-14c... is connected to the ground and the driving pulse is given to the external electrodes 12a-12c..., the radial scanning image in a scanning surface 18 is obtained. While the ground connection of the internal electrodes 14a-14c is changed and the driving pulse is given to the external electrodes 12a-12c..., a radial scanning image is obtained with the arbitrary depth of the inserting part 2.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、経直腸用として使用される体腔内超音波プロ
ーブに間するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an intracorporeal ultrasound probe used for transrectal use.

(従来の技術) 第5図は特開昭62−152441号に開示されている
従来の体腔内超音波プローブを示す構成図である。
(Prior Art) FIG. 5 is a configuration diagram showing a conventional intrabody cavity ultrasound probe disclosed in Japanese Patent Application Laid-Open No. 152441/1983.

第5図において、グローブ1は円筒状に形成された挿入
部2と、挿入部2と一体化されているホルダ一部3と、
プローブ1と超音波診断装置本体(図示せず)を電気的
に接続するケーブル4を有する。挿入部2には、第1、
第2及び第3の振動子群2a 、2b及び2cが配置さ
れている。各振動子群2a、2b及び2Cは挿入部2の
周面方向に所定の間隔を有して配列される複数の超音波
振動子で構成される。又、図では明らかにされていない
が、各超音波振動子には、電極が個々に接合され、電極
リード線を介してケーブル4に接続されている。ケーブ
ル4は超音波診断装置本体の送受波部(切り替え回路を
含んで構成される回路)に接続される。
In FIG. 5, the glove 1 includes an insertion part 2 formed in a cylindrical shape, a holder part 3 integrated with the insertion part 2,
It has a cable 4 that electrically connects the probe 1 and the ultrasound diagnostic apparatus main body (not shown). The insertion section 2 includes a first
Second and third vibrator groups 2a, 2b and 2c are arranged. Each of the transducer groups 2a, 2b, and 2C is composed of a plurality of ultrasonic transducers arranged at predetermined intervals in the circumferential direction of the insertion section 2. Although not clearly shown in the figure, electrodes are individually bonded to each ultrasonic transducer and connected to the cable 4 via electrode lead wires. The cable 4 is connected to a wave transmitting/receiving section (a circuit including a switching circuit) of the main body of the ultrasonic diagnostic apparatus.

以上の構成において、第1、第2及び第3の振動子群2
a、2b及び2Cの各超音波振動子を挿入部2の周面に
沿って順次切り替え駆動することにより、挿入部の長手
方向に垂直な面、即ち、横断面の超音波像(ラジアルス
キャン像)を複数個得ることができる。又、振動子群の
数を増やし、各振動子群の中から挿入部2の軸に平行で
、かつ、挿入部2の長手方向を示す直線上に配列される
超音波振動子を選択し、所定の順序で切り替え駆動する
ことにより、縦断面の超音波(!A Cリニアスキャン
像)を得ることができる。
In the above configuration, the first, second and third vibrator groups 2
By sequentially switching and driving the ultrasonic transducers a, 2b, and 2C along the circumferential surface of the insertion section 2, an ultrasonic image (radial scan image) of a plane perpendicular to the longitudinal direction of the insertion section, that is, a cross section is obtained. ) can be obtained. In addition, the number of transducer groups is increased, and ultrasonic transducers are selected from each transducer group that are parallel to the axis of the insertion section 2 and arranged on a straight line indicating the longitudinal direction of the insertion section 2, By switching and driving in a predetermined order, it is possible to obtain longitudinal section ultrasound (!AC linear scan image).

ところで、上記の体腔内超音波プローブにおいて、ラジ
アルスキャン像及びリニアスキャン1!Aを任意の方向
で多数得るには、超音波振動子の数を挿入部2の周面に
きめ細かく配置する必要かある。
By the way, in the above-mentioned intracorporeal ultrasound probe, the radial scan image and linear scan 1! In order to obtain a large number of A in any direction, it is necessary to carefully arrange the number of ultrasonic transducers on the circumferential surface of the insertion section 2.

そうすると、必然的に!極す−ド線の数も増えてくるの
で、その処置が必要となる。
Then, inevitably! Since the number of extremely low wires will also increase, it will be necessary to take measures to deal with it.

(発明が解決しようとする課題) しかし、従来の体腔内超音波プローブにあっては、超音
波振動子を挿入部の周面に多数配列した場合の電極リー
ド線の処置を解決していないなめ(示されていないため
)、任意にスキャン面を選んでラジアルスキャン像やリ
ニアスキャン像を得ることができないと言う問題かある
(Problem to be Solved by the Invention) However, in conventional intrabody cavity ultrasound probes, the issue of electrode lead wires when a large number of ultrasound transducers are arranged around the insertion part has not been solved. (Since it is not shown), there is a problem in that it is not possible to arbitrarily select a scan plane and obtain a radial scan image or a linear scan image.

本発明は、かかる点に鑑みてなされたものであり、その
目的は電極リード線の処理を簡単に行うことにより、任
意の面にてラジアルスキャン像やリニアスキャン像を得
ることが可能な体腔内超音波プローブを実現することに
ある。
The present invention has been made in view of the above points, and its purpose is to easily process electrode lead wires to obtain radial scan images and linear scan images in any plane within a body cavity. The goal is to realize an ultrasonic probe.

(課題を解決するための手段) 上記目的を達成する本発明は、絶縁性部材からなる円筒
状ベースの周面に沿い、がっ、円筒軸の方向に間隔をあ
けて形成される複数のリンク状導電材であって、一端を
ベースの内側に配置して構成される各電極リード線を介
して送受波部に接続される内部電極と、該内部電極を覆
ってベースに固着される膜状の高分子圧電材と、該高分
子圧電材の表面に円筒軸に平行な配列で、かつ、間隔を
あけて形成される複数の帯状導電材であって、ベースの
端にて各帯状導電材と個々に接続される電極リード線を
介して送受波部に接続される外部電極とを備えている。
(Means for Solving the Problems) The present invention that achieves the above object has a plurality of links formed at intervals in the direction of the cylindrical axis along the circumferential surface of a cylindrical base made of an insulating member. A conductive material in the form of an internal electrode that is connected to the wave transmitting/receiving section through each electrode lead wire with one end placed inside the base, and a film-like material that covers the internal electrode and is fixed to the base. a polymeric piezoelectric material, and a plurality of strip-shaped conductive materials formed on the surface of the polymer piezoelectric material in an array parallel to the cylindrical axis and at intervals, each strip-shaped conductive material being formed at an end of the base. and external electrodes connected to the wave transmitting/receiving section via individually connected electrode lead wires.

(実施例) 以下、本発明について図面を参照して詳細に説明する。(Example) Hereinafter, the present invention will be explained in detail with reference to the drawings.

第1図は本発明の一実施例を示す概念図である。第1図
において、プローブの挿入部2は、円筒状の高分子圧電
材11の外側に円筒の軸と同一方向に帯状の外部型;t
ili!12a、12b−12c・・・を有する。各外
部電極は各電極の端(円筒の端)に接続される電極リー
ド線13a、13b、13C・・・を介して送受波部の
切り替え回路(図示せず)に接続される。一方、高分子
圧電材11の内側には、円筒の軸方向に間隔をあけて配
置されるリング状の内部型tIi14a 、14b 、
14c・・・が構成される。各内部電極は、一端を円筒
の内部に配置して構成される各電極リード線15a、1
5b、15C・・・を介して送受波部の切り替え回路(
図示せず)に接続される。
FIG. 1 is a conceptual diagram showing an embodiment of the present invention. In FIG. 1, the insertion part 2 of the probe is an external type having a band shape on the outside of the cylindrical polymer piezoelectric material 11 in the same direction as the axis of the cylinder;
ili! 12a, 12b-12c... Each external electrode is connected to a switching circuit (not shown) of the wave transmitting/receiving section via electrode lead wires 13a, 13b, 13C, . . . connected to the end of each electrode (end of the cylinder). On the other hand, inside the polymer piezoelectric material 11, ring-shaped internal molds tIi14a, 14b, which are arranged at intervals in the axial direction of the cylinder,
14c... are configured. Each internal electrode has one end disposed inside a cylinder, and each electrode lead wire 15a, 1
5b, 15C..., the switching circuit of the wave transmitting/receiving section (
(not shown).

第2図は本発明の一実施例における挿入部2の製造方法
の説明図である。内部電極14a、14b、14c・・
・は絶縁性部材からなる円筒形のベース16の周面に沿
い、かつ、円筒軸の方向に間隔をあけて組み込まれて構
成される。このとき内部電極の各電極リード線(図示せ
ず)は一端をベース16の内側にして設けられ、ベース
16内部空間部に配線されるケーブル(図示せず)に接
続される(ケーブルは送受波部の切り替え回路とつなが
ッテイル)。内部電極14a 、14b 、14c・・
・及び電極リード15a 、15b 、15c・・・の
構成は第3図でより詳しく理解できる。ここでは内部電
極14a 、14b 、14c・・・の厚みは十分厚く
構成され、バッキング材の機能をも兼ね備えている。一
方、外部電極12a 、12b 、12c・・・は片面
に所定の間隔をあけて帯状のアルミニュウム12a、1
2b 、12c・・・を蒸着した膜状の高分子圧電材1
1を、ベース16に巻き付は固着して構成される。即ち
、高分子圧電材11のアルミニュウム非蒸着面をベース
側にし、アルミニュウム12a 、12b 、12c・
・・の長手方向をベース16の軸方向に一致させて固着
される。これにより、外部型[12a 、12b 、1
2C・・4.を高分子圧電材11を間にして内部ffi
&14a 、14b、14C・・・と直交する(内部電
極は高分子圧電材で覆われることになる)。外部電極の
各電極リード線(図示せず)はベース(円筒)の下端か
ら引き出され、ケーブルに接続される0図示されていな
いが高分子圧電材11の表面は外部電極保護用のカバー
フィルムで覆われている。
FIG. 2 is an explanatory diagram of a method of manufacturing the insertion portion 2 in one embodiment of the present invention. Internal electrodes 14a, 14b, 14c...
* are installed along the circumferential surface of a cylindrical base 16 made of an insulating member and at intervals in the direction of the cylindrical axis. At this time, each electrode lead wire (not shown) of the internal electrode is provided with one end inside the base 16, and is connected to a cable (not shown) wired in the internal space of the base 16 (the cable is used for transmitting and receiving waves). connection with the switching circuit of the section). Internal electrodes 14a, 14b, 14c...
The structure of the electrode leads 15a, 15b, 15c, etc. can be understood in more detail in FIG. Here, the internal electrodes 14a, 14b, 14c, . . . are configured to be sufficiently thick and also function as a backing material. On the other hand, the external electrodes 12a, 12b, 12c, .
Film-like polymer piezoelectric material 1 on which 2b, 12c... are vapor-deposited
1 is wound around and fixed to the base 16. That is, the non-aluminum-deposited surface of the polymeric piezoelectric material 11 is placed on the base side, and the aluminum 12a, 12b, 12c.
... is fixed with the longitudinal direction aligned with the axial direction of the base 16. This allows the external type [12a, 12b, 1
2C...4. internal ffi with the polymer piezoelectric material 11 in between.
&14a, 14b, 14C... (the internal electrodes will be covered with a polymeric piezoelectric material). Each electrode lead wire (not shown) of the external electrode is pulled out from the bottom end of the base (cylindrical) and connected to the cable.Although not shown, the surface of the polymer piezoelectric material 11 is covered with a cover film for protecting the external electrode. covered.

以上の構成において、超音波診断装置本体の制御の下で
、外部電極12a、12b、12c・・・の一つをグラ
ンドにし、他を開放した状態で、内部電極14a、14
b + 14c・・・に所定の順序で駆動パルスを与え
ると、グランドに接続された外部電極の長平方向をスキ
ャン方向とするリニアスキャンを行うことができる。即
ち、第4図に示すスキャン面17におけるリニアスキャ
ン像を得ることができる。次に、グランドに接続する外
部電極を変え、上記同様の駆動パルスを内部@極に与え
ると、新しいスキャン面におけるリニアスキャン像が得
られる。上記の動作を繰り返すことにより、挿入部2を
とりまく部位の任意の面におけるリニアスキャン像を得
ることができる。一方、内部電極14a 、14b 、
14c・・・の一つをグランドに接続し、外部型jtf
l12a、12b、12c・・・に所定の順序で駆動パ
ルスを与えると、グランドに接続された内部電極の深さ
、例えば第4図に示すスキャン面18におけるラジアル
スキャン像が得られる。そして内部電極14a 、14
b 、14c・・・のグランド接続を変えながら、外部
型[12a、12b、12C・・・に上記同様な駆動パ
ルスを与えて行くと、挿入部2の任意の深さにてラジア
ルスキャン像を得ることができる。又、内部電極及び外
部電極を同時に複数個選択駆動することにより、3次元
空間から超音波情報を得ることができる。
In the above configuration, under the control of the ultrasound diagnostic apparatus main body, one of the external electrodes 12a, 12b, 12c, etc. is grounded and the other is left open, and the internal electrodes 14a, 14
When driving pulses are applied to b + 14c in a predetermined order, a linear scan can be performed in which the scan direction is the longitudinal direction of the external electrode connected to the ground. That is, a linear scan image on the scan plane 17 shown in FIG. 4 can be obtained. Next, by changing the external electrode connected to the ground and applying the same driving pulse as described above to the internal @ pole, a linear scan image in a new scan plane can be obtained. By repeating the above operations, it is possible to obtain a linear scan image on any plane of the region surrounding the insertion section 2. On the other hand, internal electrodes 14a, 14b,
Connect one of 14c... to the ground and connect the external type jtf.
When driving pulses are applied to 112a, 12b, 12c, . . . in a predetermined order, a radial scan image is obtained at the depth of the internal electrode connected to the ground, for example, at the scan plane 18 shown in FIG. and internal electrodes 14a, 14
By applying the same drive pulses as above to the external molds [12a, 12b, 12C... while changing the ground connections of b, 14c..., a radial scan image can be obtained at any depth of the insertion section 2. Obtainable. Further, by simultaneously selectively driving a plurality of internal electrodes and external electrodes, ultrasound information can be obtained from a three-dimensional space.

尚、本発明は上記実施例に限定するものではない、外部
電極用電極リード線は実施例とは反対側から引き出すよ
うにしてもよい。
Incidentally, the present invention is not limited to the above-mentioned embodiment, and the electrode lead wire for the external electrode may be drawn out from the side opposite to the embodiment.

(発明の効果) 以上説明の通り、本発明の体腔内超音波プローブによれ
ば、絶縁性部材からなる円筒状ベースに膜状の高分子圧
電材を間にしてリング状内部電極と帯状外部電極を直交
させて配置すると共に、内部電極の電極リード線を円筒
の内側に引き出し、又、外部電極の電極リード線を円筒
の端から引き出しているため、各電極リード線の処理を
簡単に行うことができる。又、各電極のグランド接続や
駆動パルスの印加を自由に選択できるので、挿入部近傍
の任意の面におけるラジアルスキャン像やリニアスキャ
ン像を得ることができる。
(Effects of the Invention) As explained above, according to the intracorporeal ultrasound probe of the present invention, a ring-shaped internal electrode and a band-shaped external electrode are formed by using a cylindrical base made of an insulating member with a membrane-shaped polymeric piezoelectric material between them. are arranged perpendicular to each other, and the electrode lead wires of the internal electrodes are drawn out inside the cylinder, and the electrode lead wires of the external electrodes are drawn out from the end of the cylinder, making it easy to handle each electrode lead wire. I can do it. Furthermore, since the ground connection of each electrode and the application of drive pulses can be freely selected, a radial scan image or a linear scan image can be obtained on any surface near the insertion portion.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す概念図、第2図は一実
施例における挿入部の製造方法の説明図、第3図は本発
明の一実施例における内部電極を示す構成図、第4図は
本発明の一実施例におけるプローブのスキャン面の説明
図、第5図は従来例を示す構成図である。 1・・・体腔内超音波プローブ、2・・・挿入部、3・
・・ホルダ一部、4・・・ケーブル、11・・・高分子
圧電材、12a、12b、12c・・・外部電極、13
a、13b 、13C・・・外部電極リード線、14a
、14b、14C=−・内部電極リード線、15a、1
5b、15C・・・内部電極リード線、16・・・円筒
状の絶縁性部材からなるベース、17・・・リニアスキ
ャン面、18・・・ラジアルスキャン面。
FIG. 1 is a conceptual diagram showing an embodiment of the present invention, FIG. 2 is an explanatory diagram of a method of manufacturing an insertion portion in an embodiment, and FIG. 3 is a configuration diagram showing an internal electrode in an embodiment of the present invention. FIG. 4 is an explanatory diagram of a scanning surface of a probe in an embodiment of the present invention, and FIG. 5 is a configuration diagram showing a conventional example. 1... Intrabody cavity ultrasound probe, 2... Insertion part, 3...
...Part of holder, 4...Cable, 11...Polymer piezoelectric material, 12a, 12b, 12c...External electrode, 13
a, 13b, 13C...external electrode lead wire, 14a
, 14b, 14C=--internal electrode lead wire, 15a, 1
5b, 15C: Internal electrode lead wire, 16: Base made of a cylindrical insulating member, 17: Linear scan surface, 18: Radial scan surface.

Claims (1)

【特許請求の範囲】 体腔内に挿入する挿入部が円筒形に構成される体腔内超
音波プローブにおいて、 絶縁性部材からなる円筒状ベースの周面に沿い、かつ、
円筒軸の方向に間隔をあけて形成される複数のリング状
導電材であって、一端をベースの内側に配置して構成さ
れる各電極リード線を介して送受波部に接続される内部
電極と、該内部電極を覆つてベースに固着される膜状の
高分子圧電材と、該高分子圧電材の表面に円筒軸に平行
な配列で、かつ、間隔をあけて形成される複数の帯状導
電材であって、ベースの端にて各帯状導電材と個々に接
続される電極リード線を介して送受波部に接続される外
部電極とを備えることを特徴とする体腔内超音波プロー
ブ。
[Scope of Claims] An intrabody cavity ultrasound probe in which an insertion section to be inserted into a body cavity has a cylindrical shape, which includes:
Internal electrodes are a plurality of ring-shaped conductive materials formed at intervals in the direction of the cylindrical axis, and are connected to the wave transmitting/receiving section via each electrode lead wire, which is configured with one end placed inside the base. , a film-like polymeric piezoelectric material fixed to the base covering the internal electrode, and a plurality of strips formed on the surface of the polymeric piezoelectric material in an array parallel to the cylindrical axis and spaced apart from each other. An intracorporeal ultrasound probe comprising an external electrode made of a conductive material and connected to a wave transmitting/receiving section via electrode lead wires that are individually connected to each band-shaped conductive material at the end of the base.
JP13426088A 1988-05-31 1988-05-31 In-body cavity ultrasonic wave probe Pending JPH01303136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13426088A JPH01303136A (en) 1988-05-31 1988-05-31 In-body cavity ultrasonic wave probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13426088A JPH01303136A (en) 1988-05-31 1988-05-31 In-body cavity ultrasonic wave probe

Publications (1)

Publication Number Publication Date
JPH01303136A true JPH01303136A (en) 1989-12-07

Family

ID=15124138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13426088A Pending JPH01303136A (en) 1988-05-31 1988-05-31 In-body cavity ultrasonic wave probe

Country Status (1)

Country Link
JP (1) JPH01303136A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4898692A (en) * 1972-02-22 1973-12-14
JPS5621057A (en) * 1979-07-31 1981-02-27 Aloka Co Ltd Electron scanning type supersonic wave probe
JPS57145650A (en) * 1981-03-06 1982-09-08 Tokyo Shibaura Electric Co Production of probe in body cavity
JPS58190756A (en) * 1982-04-30 1983-11-07 Toshiba Corp Ultrasonic transmitter/receiver
JPS6284697A (en) * 1985-10-09 1987-04-18 Hitachi Ltd Ultrasonic probe

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4898692A (en) * 1972-02-22 1973-12-14
JPS5621057A (en) * 1979-07-31 1981-02-27 Aloka Co Ltd Electron scanning type supersonic wave probe
JPS57145650A (en) * 1981-03-06 1982-09-08 Tokyo Shibaura Electric Co Production of probe in body cavity
JPS58190756A (en) * 1982-04-30 1983-11-07 Toshiba Corp Ultrasonic transmitter/receiver
JPS6284697A (en) * 1985-10-09 1987-04-18 Hitachi Ltd Ultrasonic probe

Similar Documents

Publication Publication Date Title
EP0524749B1 (en) Ultrasonic probe for observing two orthogonal cross sections
EP0383270B1 (en) Ultrasonic imaging system
EP1897498B1 (en) Capacitive micromachined ultrasonic transducer and method for manufacturing the same
US6415485B1 (en) Method of manufacturing a two-dimensional transducer array
JP6314777B2 (en) Ultrasonic sensor and probe and electronic equipment
EP2832294B1 (en) Ultrasound probe and connection method for ultrasonic probe and signal line
JP2013208149A5 (en)
US20160033454A1 (en) Ultrasonic device, method for manufacturing the same, probe, and electronic apparatus
TWI632710B (en) Ultrasonic transducer device, ultrasonic probe, electronic instrument, and ultrasonic diagnostic device
US5211168A (en) Moving electrode transducer for real time ultrasound imaging for use in medical applications
EP1698281B1 (en) Ultrasonic probe
JP2738953B2 (en) Ultrasound endoscope
EP0306288B1 (en) Ultrasonic imaging apparatus
JPH01303136A (en) In-body cavity ultrasonic wave probe
JPH05228142A (en) Ultrasonic probe and ultrasonic diagnostic device
JPH03151952A (en) Apparatus for ultrasonic therapy
JPH05277102A (en) Ultrasonic probe
JPS5813844Y2 (en) Probe for ultrasound diagnostic equipment
JPH032536B2 (en)
CN220653918U (en) Ultrasonic transducer
JPS62227327A (en) Ultrasonic probe
JP2964147B2 (en) Ultrasound diagnostic equipment
JPS6234500A (en) Matrix like ultrasonic probe and its manufacture
JPH04256739A (en) Ultrasonic diagnostic device
US20160317125A1 (en) Ultrasonic device unit, probe, electronic apparatus, and ultrasonic diagnostic apparatus