JPH01302165A - Vehicle speed detector utilizing electromagnetic force between vehicle and rail - Google Patents

Vehicle speed detector utilizing electromagnetic force between vehicle and rail

Info

Publication number
JPH01302165A
JPH01302165A JP13152688A JP13152688A JPH01302165A JP H01302165 A JPH01302165 A JP H01302165A JP 13152688 A JP13152688 A JP 13152688A JP 13152688 A JP13152688 A JP 13152688A JP H01302165 A JPH01302165 A JP H01302165A
Authority
JP
Japan
Prior art keywords
magnet
orbit
electromagnetic force
vehicle
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13152688A
Other languages
Japanese (ja)
Other versions
JP2653671B2 (en
Inventor
Masatoshi Ikeda
昌俊 池田
Yutaka Hasegawa
豊 長谷川
Hirotane Inage
稲毛 弘苗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP13152688A priority Critical patent/JP2653671B2/en
Publication of JPH01302165A publication Critical patent/JPH01302165A/en
Application granted granted Critical
Publication of JP2653671B2 publication Critical patent/JP2653671B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)

Abstract

PURPOSE:To detect and output an absolute speed of a vehicle continuously, by a method wherein a magnetic field is applied to rails from a moving vehicle and an electromagnetic force parallel with an orbit receiving this magnetic action is measured to determine a speed therefrom. CONSTITUTION:As a vehicle advances, a magnetic flux 7 entering an orbit plane vertically traverses a head conductor of an orbit 8 and current 9 flows through a head surface of the orbit crossing it to be circulated through a part not faced by a magnet 1. This current 9 produces a force for moving the orbit 8 in the ongoing direction 10 of the vehicle and with a reaction thereto, the magnet 1 generates a retracting force 11. Simultaneously, a vertical electromagnetic force works on the magnet 1 as comprising an attraction force generated with the magnetization of the orbit by the magnet and a repulsive force generated from a biased magnetic action by a magnetic flux biased derived from current flowing through the orbit. Any of these forces is a function of a gap (h) between the orbit plane and the magnet and a vehicle speed V and the function is measured to obtain an absolute speed.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は軌道上を走行する車両の速度検知装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a speed detection device for a vehicle running on a track.

[従来の技術] 軌道上を走行する車両の速度検知は、車軸の回転に比例
する回転歯車と誘導コイルで構成される速度発電機によ
り発生ずる起電力の周波数を演算し、またはアナログ信
号に変換することにより求めるものである。この方式に
より検知される車両の走行速度はすべて車軸の回転によ
り得られるものであり、車輪の空転、滑走によって一時
的に事実と異なる速度が検出されるのは避は難いことと
なっていた。しかしながら従来の運転方式では、地上に
定められた一定の閉塞区間から信号を受け、また異なる
速度が検出されるのは短時間であり遅延時間を設けるな
どの対策により問題になっていなかった。
[Prior art] The speed of a vehicle running on a track is detected by calculating the frequency of the electromotive force generated by a speed generator consisting of a rotating gear and an induction coil, which is proportional to the rotation of the axle, or converting it into an analog signal. It is sought by doing. The vehicle running speed detected by this method is entirely obtained from the rotation of the axle, and it is inevitable that a speed that is temporarily different from the actual speed may be detected due to wheels spinning or skidding. However, in conventional driving methods, signals are received from a certain blockage section determined on the ground, and different speeds are detected for a short time, so this problem has not been caused by countermeasures such as providing a delay time.

[発明が解決しようとする課題] ところが近来の新しい運転制御方式の中には保証された
走行区間を従来の固定された閉塞区間によらず地上から
可変の距離情報として車両に与えるものや、車両の位置
を車両自身に検出させ無線により地上で受けて列車群の
制御を行うものなどが考えられている。この場合車両位
置や走行距離は前記の速度発電機から得られる回転する
歯車に対応したパルス状の電圧波形をカウントすること
により求める方式を基本とするが、前記車輪の空転や滑
走は短時間ではあってもそのまま距離や位置の娯差とな
り安全や制御上の重大な問題になる。
[Problems to be Solved by the Invention] However, some of the recent new driving control methods provide the vehicle with variable distance information from the ground, rather than relying on the conventional fixed closed sections, and One idea is to control a group of trains by having the vehicle itself detect the position of the train and receiving the information wirelessly on the ground. In this case, the vehicle position and travel distance are basically determined by counting the pulse-like voltage waveforms corresponding to the rotating gears obtained from the speed generator, but the wheels may spin or slide in a short period of time. Even if there is a difference in distance or position, this will cause a serious problem in terms of safety and control.

81題を解決するための手段及び作用]本発明は上記の
課題を解決するため車両の絶対速度を連続的に検知して
出力するものである。この出力される絶対速度と前記速
度発電機から得られる車輪の回転速度とをコンピュータ
を内蔵した比較回路により比較して空転、滑走を検出し
、その間の速度を補完し走行距離を補正する。
Means and operation for solving problem 81] In order to solve the above problems, the present invention continuously detects and outputs the absolute speed of a vehicle. This output absolute speed and the rotational speed of the wheels obtained from the speed generator are compared by a comparison circuit with a built-in computer to detect slipping or skidding, and the speeds in between are complemented to correct the travel distance.

[実施例] 以下本発明の一実施例を図面を参照して説明する。第1
図は本発明の最も大きな特徴である、軌道直上を磁石が
移動したときの進行方向の電磁力の測定機構(エレメン
トと称する)とその発生原理を示したものである。
[Example] An example of the present invention will be described below with reference to the drawings. 1st
The figure shows a mechanism (referred to as an element) for measuring electromagnetic force in the direction of movement when a magnet moves directly above the orbit, which is the most important feature of the present invention, and the principle of its generation.

1は軌道に磁界を加える永久磁石で2はこれを回転支持
するアームである。3はおもりで2本のアームの2箇所
の回転支持部を境界として上下の回転モーメントが等し
くなるようになっている。このため台車に直結された外
箱につながる支持板4から加えられる加減速による外力
は回転指示部5で相殺され、軌道との電磁力が直接加わ
るlの永久磁石に外力による回転トルクは加わらない。
1 is a permanent magnet that applies a magnetic field to the orbit, and 2 is an arm that rotationally supports this. Reference numeral 3 denotes a weight so that the upper and lower rotational moments are equal between the two rotational support parts of the two arms as boundaries. Therefore, the external force due to acceleration and deceleration applied from the support plate 4 connected to the outer box directly connected to the trolley is canceled out by the rotation instruction unit 5, and no rotational torque due to external force is applied to the permanent magnet l, which is directly applied with the electromagnetic force with the track. .

6は歪ゲージを張り付けた両端支持の板バネになってお
り、この歪量から1の永久磁石に加わる電磁力を計測す
る。
6 is a leaf spring supported at both ends to which strain gauges are attached, and the electromagnetic force applied to the permanent magnet 1 is measured from the amount of strain.

第1図および第2図により電磁力の発生原理を簡単に述
べる。車両が進行すると軌道面に垂直に進入した磁束7
を軌道8の頭部導体が横切ることになりフレミングの右
手の法則により軌道の頭部表面にこれを横切る電流9が
流れ磁石1の相対していない部分で循環する。この電流
9がフレミングの左手の法則によって軌道8を車両の進
行方向10に移動させる力を生み、その反作用で磁石1
は後方に引かれる力11を発生する。この原理はアラブ
の円盤としても知られている。また磁石1には同時に磁
石が軌道を磁化して生じる吸引力と、軌道に電流が流れ
ることによって派生する、磁束が一方に偏る偏磁作用か
ら生じる反発力から成る垂直方向の電磁力が働く。これ
らの力はいずれも軌道面と磁石の間隙りと車両速度Vの
関数であり、進行方向の力をFx、  垂直方向の力を
Fzとすると次のように表わされる。
The principle of generation of electromagnetic force will be briefly described with reference to FIGS. 1 and 2. As the vehicle progresses, magnetic flux 7 enters perpendicularly to the track surface.
The head conductor of the track 8 crosses this, and according to Fleming's right-hand rule, a current 9 flows across the head surface of the track and circulates in the non-opposite parts of the magnet 1. This current 9 generates a force that moves the track 8 in the vehicle's traveling direction 10 according to Fleming's left-hand rule, and as a reaction, the magnet 1
generates a backward pulling force 11. This principle is also known as the Arab disc. At the same time, a vertical electromagnetic force acts on the magnet 1, consisting of an attractive force generated by the magnet magnetizing the orbit, and a repulsive force generated by the biased magnetic effect that causes the magnetic flux to be biased to one side, which is derived from the flow of current in the orbit. These forces are all functions of the gap between the raceway surface and the magnet and the vehicle speed V, and are expressed as follows, where Fx is the force in the traveling direction and Fz is the force in the vertical direction.

Fx=f (h、  v)         [+]F
z=g  (h、   v)            
      [2コ第3図は電磁力検出部を進行方向に
切断した断ル119j 面図である。13はB=1に示す進行方向の電磁力を検
出するエレメントであり、14は垂直方向の電磁力を検
出するエレメントでその構造は13を90度回転させた
ものとほとんど同じであり、上下方向の振動による外力
の防止および電磁力の測定原理は13と同じである。す
なわち15は垂直電磁力を計測するための歪ゲージであ
り、16はバランス用のおもりである。l、1.7.1
8.19.20は同極の永久磁石であり18.19は磁
界の端効果を低減させ、20は1と17の間の相互作用
を防止する。いずれも計測用の磁石1.17の磁束を垂
直方向に紋り高さの変化による電磁力の変化を少なくす
る効果を兼ねる。また1、17.18.19.20は電
磁石またはコイルを用いることも十分可能である。
Fx=f (h, v) [+]F
z=g (h, v)
[Figure 2] Figure 3 is a cross-sectional view of the electromagnetic force detection section taken along the cutting edge 119j in the direction of movement. 13 is an element that detects the electromagnetic force in the traveling direction shown in B=1, and 14 is an element that detects the electromagnetic force in the vertical direction.The structure is almost the same as 13 rotated 90 degrees, and it is detected in the vertical direction. The principle of preventing external force due to vibration and measuring electromagnetic force is the same as in 13. That is, 15 is a strain gauge for measuring vertical electromagnetic force, and 16 is a weight for balance. l, 1.7.1
8.19.20 are permanent magnets of the same polarity, 18.19 reduces the end effects of the magnetic field, and 20 prevents the interaction between 1 and 17. Both have the effect of vertically distorting the magnetic flux of the measurement magnet 1.17 and reducing changes in electromagnetic force due to changes in height. 1, 17, 18, 19, 20, it is also possible to use an electromagnet or a coil.

第4図は電磁力検出部の平面図であり、一部にエレメン
ト13、]4を進行方向に向けて横に複数個並べたとこ
ろを示している0両端の22.23は端効果を低減させ
るもので歪ゲージは接続されていない。複数個並べであ
るのは、これを取り付ける台車が左右に変動しても常に
軌道の直上に近い1立直にあるエレメントを進別してそ
の電磁力を測定するためである。これはまた自然発生的
に磁化された軌道上を走行するとき誘起される進行方向
に垂直な向きの電流を遮断することにより電磁力の計測
誤差を少なくすることができる。なおこの効果は積層板
で構成した磁6を使用することによりさらに高めること
ができる。第3図は第4図をAA’で切断した断面図で
もある。
Fig. 4 is a plan view of the electromagnetic force detection unit, and a part shows a plurality of elements 13 and 4 arranged horizontally in the direction of movement. 22 and 23 at both ends reduce the end effect. The strain gauge is not connected. The reason for arranging multiple elements is to always measure the electromagnetic force of an element that is located directly above the track, even if the trolley to which it is attached moves from side to side. This can also reduce measurement errors in electromagnetic force by blocking the current that is induced in the direction perpendicular to the traveling direction when traveling on a naturally magnetized track. Note that this effect can be further enhanced by using the magnet 6 made of a laminated plate. FIG. 3 is also a sectional view taken along AA' of FIG. 4.

軌道の継目におけるパルス上の速度誤差が門静になると
きは左右の軌道に前後に位置をずらして電磁力検出部を
取り付けることにより救済できる。
If the speed error on the pulse at the joint of the track becomes static, it can be corrected by installing electromagnetic force detection units on the left and right tracks by shifting their positions back and forth.

第5図の25は第3図および第4図に示した電磁力検出
部で、速度処理部26はコンピュータを内蔵し、進行方
向及び垂直方向の複数の電磁力検出エレメントを常時走
査してその定常的最大値またはこれから隣接エレメント
に移動するピーク値を読むことで軌道直上に近いものを
選別する。また定められた処理を行なって検知した速度
と速度発電機からの速度とを常に比較して、不一致を生
じた場合に前後の関係から車輪27の空転や滑走が生じ
たと判断されたとき、速度発電機の速度の異常値の続く
間を速度処理部で検知した速度に置き換え距#itを補
正する。
Reference numeral 25 in FIG. 5 is the electromagnetic force detection section shown in FIGS. 3 and 4, and the speed processing section 26 has a built-in computer and constantly scans a plurality of electromagnetic force detection elements in the traveling direction and the vertical direction. By reading the stationary maximum value or the peak value that will move to an adjacent element, those close to the orbit are selected. In addition, the speed detected by performing prescribed processing is constantly compared with the speed from the speed generator, and if a discrepancy occurs, it is determined that the wheel 27 is spinning or skidding from the front-back relationship, and the speed is determined. The period during which the abnormal value of the speed of the generator continues is replaced with the speed detected by the speed processing section and the distance #it is corrected.

速度処理は次の方法により行なう。式[1]および式[
2]から車両速度Vは次のような式で表わされる。
Speed processing is performed by the following method. Formula [1] and formula [
2], the vehicle speed V is expressed by the following formula.

v  =  R(F  XI   F  z  )  
              [3コこの変換を数値演
算で行なうのは困難なので実験的方法または間開を定め
た試験走行を行い、そのデータから式[3]の関数値を
求めコンピュータの内部メモリに設けた第6図に示すテ
ーブルに書き込む。式[l]、[2]がり、■いずれの
方向にも単調増加であっても、場合によっては式[3]
は2つの値を持つことがあり得るがこのときは第3図の
18.19.20の永久磁石の強さを変えて1.17の
磁束分布を高さ方向に密度の変化が少なくなるように調
整を行なう。第6図のテーブルは、通常の走行において
定常的に別のメモリー領域で統計処理を行なった十分信
頼できる値で補正されることにより、永久磁石の劣化な
どによる誤差を補正することができる。
v = R(F XI F z )
[3] Since it is difficult to perform this conversion by numerical calculation, we performed an experimental method or a test run with a specified distance, and from the data, we calculated the function value of formula [3] and stored it in the computer's internal memory. Write to the table shown in . Formula [l], [2] increases, ■Even if it increases monotonically in either direction, depending on the case, formula [3]
can have two values, but in this case, change the strength of the permanent magnets at 18, 19, and 20 in Figure 3 so that the magnetic flux distribution at 1.17 has less variation in density in the height direction. Make adjustments. The table of FIG. 6 can be corrected with sufficiently reliable values that are regularly subjected to statistical processing in a separate memory area during normal driving, thereby making it possible to correct errors caused by deterioration of the permanent magnets.

[発明の効果] 本発明は列車自身が位置を検出し、無線によりこれを地
上で受けて列車群の管理を行ないこの結果から安全に走
行できる距離を各列車に伝送して列車運行の安全や効率
化をはかるといった新しい運転制御方式に適用すること
を目的としている。
[Effects of the Invention] The present invention detects the position of the train itself, receives this information via radio on the ground, manages the train group, and transmits the distance that can be safely traveled to each train based on this result, thereby improving the safety of train operation. The aim is to apply it to new operation control methods to improve efficiency.

したがって車上には複雑な処理を行なうコンピュータが
既に積み込まれており、速度検知処理はその機能の一部
を使用することができ、この場合第5図26の速度処理
部を別に設けなくてもよい。
Therefore, a computer that performs complex processing is already installed on the vehicle, and part of its functions can be used for speed detection processing, and in this case, there is no need to separately provide the speed processing section shown in Fig. 5-26. good.

またこの新しい運転制御方式では車両の正確な位置を知
ることがシステム構成の最も重要な基本要素となる。従
来の速度発電機による位置検知のみでは車輪の空転や滑
走を完全に防ぐ手だてがなく、これを検出できるのは急
激な速度変化を伴う場合に限られる。この場合でも位置
誤差の検出または修正は不可能なため、安全上その都度
ブレーキをかけ低速で走行するなとの対策を取らなけれ
ばならない。このようなことから列車の自動連結のよう
にきわめて正確な位置を必要とする場合などには別の位
置検知手段が必要とされていた。
Furthermore, in this new driving control method, knowing the exact position of the vehicle is the most important basic element of the system configuration. There is no way to completely prevent wheels from spinning or skidding using only position detection using conventional speed generators, and this can only be detected when sudden changes in speed are involved. Even in this case, it is impossible to detect or correct the position error, so for safety reasons, it is necessary to take measures to apply the brakes each time and avoid driving at low speeds. For this reason, other position detection means have been required in cases where extremely accurate positioning is required, such as when automatically connecting trains.

本発明の車両速度検知装置を速度弁′ri機による位置
検知の補完の装置として用いることにより空転、滑走を
確実に検出し、車両位置を正しく補正することができ、
これにより前記のような対策や自動連結時の別の位置検
知手段が不要となり、信頼性の高い効率的なシステムの
構築が可能となる。
By using the vehicle speed detection device of the present invention as a device to supplement the position detection by the speed valve 'ri machine, slipping and skidding can be reliably detected and the vehicle position can be corrected correctly.
This eliminates the need for the above-mentioned measures and a separate position detection means during automatic connection, making it possible to construct a highly reliable and efficient system.

また車両の進行方向の検出も重要な要素であり、従来は
運転ハンドルと速度発電機の複数の巻線の位相関係から
別の論理機構により判断していたが本発明によれば直接
進行方向を検出できる。さらに永久磁石の劣化特性が明
らかになればこれから車輪の摩耗を検出できる。
Detection of the direction of travel of the vehicle is also an important element. Conventionally, this was determined using a separate logic mechanism based on the phase relationship between the steering wheel and the multiple windings of the speed generator, but according to the present invention, the direction of travel can be directly detected. Can be detected. Furthermore, if the deterioration characteristics of permanent magnets are clarified, it will be possible to detect wheel wear.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は電磁力の発生原理とその計測方法を示すもので
、第2図は軌道上を磁石が移動したときの軌道面上に発
生する誘導電流の仮想図である。 第3図は軌道と磁石の間に作用する電磁力を検出する電
磁力検出部の断面図であり、第4図は電磁力検出部の平
面図で、一部にその内部構造が分かるようになっている
。第5図は本発明の構成と、電磁力検出部と速度処理部
の車両上の取り付は概要を示したものである。第6図は
速度処理部のコンピュータのメモリー上に鷹かれる、進
行方向の7fi磁力と垂直方向の電磁力とから速度を求
める変換テーブルである。 第1図 1・・・・・・・・・・・・電磁力検出及び磁界発生用
磁石2・・・・・・・・・・・・ff磁力検出用磁石支
持アーム3・・・・・・・・・・・・バランス用おもり
4・・・・・・・・・・・・外箱と一体のエレメント支
持板6・・・・・・・・・・・・回転支持部6・・・・
・・・・・・・・進行方向電磁力検出用の板バネ及び歪
ゲージ 7・・・・・・・・・・・・軌道面に加えられる磁束8
・・・・・・・・・・・・軌道頭部 9・・・・・・・・・・・・軌道面に流れる誘導電流1
0・・・・・・・・・進行方向と、軌道に加わる力の方
向11・・・・・・・・・磁石に加わる力の方向第2図 1・・・・・・・・・・・・電磁力検出及び磁界発生用
磁石7・・・・・・・・・・・・軌道面に加えられる磁
束8・・・・・・・・・・・・軌道頭部 9・・・・・・・・・・・・軌道面に流れる誘導電流!
0・・・・・・・・・車両の進行方向11・・・・・・
・・・磁石に働く電磁力12・・・・・・・・・軌道を
流れる電流の磁石に力を与える部分 第3図 1・・・・・・・・・・・・電磁力検出及び磁界発生用
磁石2・・・・・・・・・・・・電磁力検出用磁石支持
アーム3・・・・・・・・・・・・バランス用おもり4
・・・・・・・・・・・・外箱と一体のエレメント支持
板5・・・・・・・・・・・・回転支持部6・・・・・
・・・・・・・電磁力検出用の板バネ及び歪ゲージ8・
・・・・・・・・・・・軌道頭部 13・・・・・・・・・進行方向電磁力検出エレメント
14・・・・・・・・・垂直方向電磁力検出エレメント
15・・・・・・・・・垂直方向電磁力検出用の板バネ
及び歪ゲージ 16・・・・・・・・・バランス用おもり17・・・・
・・・・・垂直方向電磁力検出用磁石18.19端効果
低減用磁石 20・・・・・・・・・垂直、進行方向磁石相互作用防
止用21・・・・・・・・・非磁性、非導電体で作られ
た外箱第4図 13・・・・・・・・・進行方向電磁力検出エレメント
14・・・・・・・・・垂直方向電磁力検出エレメント
21・・・・・・・・・非磁性、非導電体で作られた外
箱22.23端効果低減用磁石 24・・・・・・・・・軌道頭部の幅 第5図 8・・・・・・・・・・・・軌道頭部 25・・・・・・・・・電磁力検出部 26・・・・・・・・・速度処理部 27・・・・・・・・・車輪 28・・・・・・・・・N磁力検出部防護用障排器29
・・・・・・・・・電磁力検出部支持金具30・・・・
・・・・・歪ゲージR1ケーブル31・・・・・・・・
・台車 第6図 32・・・・・・・・・進行方向電磁力を示す33・・
・・・・・・・垂直方向?t’Ef?!、力を示す34
・・・・・・・・・対照用進行方向電磁力の一区分35
・・・・・・・・・対照用垂直方向電磁力の一区分36
・・・・・・・・・検知速度の一例シ1.τ・1冒11
願人 財団法人t1、道聡合技術研究所ヲ 第1図 第3図
Fig. 1 shows the principle of generation of electromagnetic force and its measurement method, and Fig. 2 is a virtual diagram of induced current generated on the orbital surface when a magnet moves on the orbit. Figure 3 is a cross-sectional view of the electromagnetic force detection unit that detects the electromagnetic force acting between the orbit and the magnet, and Figure 4 is a plan view of the electromagnetic force detection unit, with a portion showing the internal structure. It has become. FIG. 5 schematically shows the configuration of the present invention and the installation of the electromagnetic force detection section and the speed processing section on the vehicle. FIG. 6 is a conversion table for calculating speed from the 7fi magnetic force in the traveling direction and the electromagnetic force in the vertical direction, which is stored in the memory of the computer of the speed processing section. Fig. 1 1... Magnet 2 for detecting electromagnetic force and generating magnetic field ff Magnet support arm 3 for detecting magnetic force...・・・・・・・・・Balance weight 4・・・・・・・・・Element support plate 6 integrated with outer box ・・・・・・・・・Rotation support part 6・・・
......Plate spring and strain gauge 7 for detecting electromagnetic force in the advancing direction ...... Magnetic flux 8 applied to the raceway surface
...... Raceway head 9 ...... Induced current flowing in the raceway surface 1
0...... Direction of travel and direction of force applied to the orbit 11... Direction of force applied to the magnet Fig. 2 1... ...Magnet for detecting electromagnetic force and generating magnetic field 7 ...... Magnetic flux applied to the raceway surface 8 ...... ... Track head 9 ... ......Induced current flowing on the raceway surface!
0... Vehicle traveling direction 11...
...Electromagnetic force acting on the magnet 12......The part of the current flowing in the orbit that applies force to the magnet Figure 3 1......Electromagnetic force detection and magnetic field Generation magnet 2... Magnet support arm for electromagnetic force detection 3... Balance weight 4
・・・・・・・・・Element support plate 5 integrated with outer box ・Rotating support part 6 ・・・・・
・・・・・・Plate spring and strain gauge for electromagnetic force detection 8・
...... Track head 13 ...... Advance direction electromagnetic force detection element 14 ... Vertical direction electromagnetic force detection element 15 ... ...Plate spring and strain gauge 16 for detecting vertical electromagnetic force ...Balance weight 17 ...
・・・・・・Magnet for detecting vertical electromagnetic force 18.19 Magnet for reducing end effect 20・・・・・・Vertical, forwarding direction Magnet for preventing interaction 21・・・・・・Non Outer box made of magnetic, non-conductive material Fig. 4 13...Advanced direction electromagnetic force detection element 14...Vertical direction electromagnetic force detection element 21... ......Outer box made of non-magnetic, non-conductive material 22.23 Magnet for reducing end effect 24... Width of track head Fig. 5 8... ......Track head 25......Electromagnetic force detection section 26...Speed processing section 27...Wheel 28.・・・・・・N magnetic force detection unit protection obstacle remover 29
...... Electromagnetic force detection part support fitting 30...
...Strain gauge R1 cable 31...
・Bogie Figure 6 32...33 showing the electromagnetic force in the direction of travel
·······Vertical direction? t'Ef? ! , 34 indicating power
・・・・・・・・・One division of electromagnetic force in the direction of movement for comparison 35
......One section of vertical electromagnetic force for comparison 36
......Example of detection speed 1. τ-1-11
Applicant T1 Foundation, Dosogo Technology Research Institute Figure 1 Figure 3

Claims (4)

【特許請求の範囲】[Claims] (1)移動する車両に設けた磁石と軌道との間に作用す
る電磁力を利用して車両の絶対速度を連続的に検知する
装置において、移動する車両から軌道に対し磁界を加え
る手段と、これを発生する磁石と、磁石に作用する軌道
と平行な電磁力を計測する手段と、これによって速度を
求める手段とを備えることを特徴とした軌道との間の電
磁力を利用した車両速度検知装置。
(1) In a device that continuously detects the absolute speed of a vehicle using electromagnetic force acting between a magnet provided on a moving vehicle and a track, a means for applying a magnetic field from the moving vehicle to the track; Vehicle speed detection using electromagnetic force between a magnet that generates this, a means for measuring an electromagnetic force parallel to the orbit acting on the magnet, and a means for determining the speed by this. Device.
(2)軌道と前記磁石との間に作用する軌道に垂直な電
磁力を計測することにより、軌道と磁石との距離の変化
による前記の電磁力の変化を補正する手段を備えた特許
請求の範囲第(1)項記載の車両速度検知装置。
(2) A patent claim comprising means for correcting a change in the electromagnetic force due to a change in the distance between the orbit and the magnet by measuring the electromagnetic force perpendicular to the orbit acting between the orbit and the magnet. Vehicle speed detection device according to scope (1).
(3)前記磁石を支持するアームは微小角度で回転でき
る構造とし、その回転支持部から逆の方向に伸びたアー
ムと回転モーメントが等しくなる構造とした特許請求の
範囲第(1)項記載の車両速度検知装置。
(3) The arm supporting the magnet has a structure that can rotate at a minute angle, and has a structure in which the rotational moment is equal to that of the arm extending in the opposite direction from the rotation support part. Vehicle speed detection device.
(4)前記磁石を進行方向に向かって横に細分割し常に
軌道の直上に近い位置にある細分割された磁石を選別し
てその電磁力を計測する手段を備えた特許請求の範囲第
(1)項記載の車両速度検知装置。
(4) The magnet is subdivided horizontally in the traveling direction, and the subdivided magnet always located close to the orbit is selected and its electromagnetic force is measured. The vehicle speed detection device described in item 1).
JP13152688A 1988-05-31 1988-05-31 Vehicle speed detection device Expired - Lifetime JP2653671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13152688A JP2653671B2 (en) 1988-05-31 1988-05-31 Vehicle speed detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13152688A JP2653671B2 (en) 1988-05-31 1988-05-31 Vehicle speed detection device

Publications (2)

Publication Number Publication Date
JPH01302165A true JPH01302165A (en) 1989-12-06
JP2653671B2 JP2653671B2 (en) 1997-09-17

Family

ID=15060127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13152688A Expired - Lifetime JP2653671B2 (en) 1988-05-31 1988-05-31 Vehicle speed detection device

Country Status (1)

Country Link
JP (1) JP2653671B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018179976A (en) * 2017-04-17 2018-11-15 株式会社神戸製鋼所 Moving speed detection device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7046720B2 (en) * 2018-05-29 2022-04-04 ナブテスコ株式会社 Speed detection device and speed detection method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018179976A (en) * 2017-04-17 2018-11-15 株式会社神戸製鋼所 Moving speed detection device

Also Published As

Publication number Publication date
JP2653671B2 (en) 1997-09-17

Similar Documents

Publication Publication Date Title
CN101934806B (en) High-precision speed measurement positioning method and system for medium and low-speed maglev trains
EP2451061B1 (en) Position detection device for movable magnet type linear motor
CN106080658B (en) A kind of medium-and low-speed maglev track irregularity detection method based on four sensors
CN105190259A (en) Transport rail system with weighing means
CN103688227A (en) Moving body system and method for controlling travel of moving body
DE102007004919A1 (en) Method and device for controlling the drive of a magnetic levitation vehicle on a magnetic levitation railway line
CN110395118A (en) Method for identifying slab staggering at seam of magnetic suspension train passing track and suspension control strategy
CN105151927A (en) Magnetic suspension guiding direct-driven transportation system and control method thereof
CN103112362B (en) System and method for designing linear motor of magnetic-levitation train
WO2024000954A1 (en) Rotor position detection apparatus for primary segmented linear electric motor
JPS5997005A (en) Sensor detecting magnetic field strain or measuring parameter which can be drawn out of magnetic field strain
CN100494877C (en) Device for measuring distance between moving object and its railway
JPH01302165A (en) Vehicle speed detector utilizing electromagnetic force between vehicle and rail
JP2015186385A (en) System and method for measuring ground coil position of magnetic levitation type railway
CN101610933A (en) Be used to measure the method and apparatus of azimuth of the magnetic suspension train of magnetic suspended railway
CN203126561U (en) Design system of linear motor of maglev train
KR101329363B1 (en) Estimanted position apparatus of magnetic levitation train for phase control in propelled invertor of the train based by ls-lsm
KR101013588B1 (en) Apparatus for detecting position of linear synchronous motor
JP3598279B2 (en) Position detection system
JPH10125526A (en) Maglev train with torsional oscillation detecting coil for superconducting magnet
KR101712672B1 (en) Testing Apparatus for Linear Motor
JP2001057713A (en) Device for detecting speed and position of linear motor drive carrying vehicle
Luo et al. Permanent magnet guideway irregularity measurement and characterization by single dewar HTS pinning Maglev system
JP3998666B2 (en) Derailment detector
CN1707239B (en) Method and apparatus for detecting locking axle utilizing traction inverter