JPH01302157A - Analysis of highly pure silicon or boron chloride - Google Patents

Analysis of highly pure silicon or boron chloride

Info

Publication number
JPH01302157A
JPH01302157A JP63131533A JP13153388A JPH01302157A JP H01302157 A JPH01302157 A JP H01302157A JP 63131533 A JP63131533 A JP 63131533A JP 13153388 A JP13153388 A JP 13153388A JP H01302157 A JPH01302157 A JP H01302157A
Authority
JP
Japan
Prior art keywords
decomposition
silicon
boron
fluoride
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63131533A
Other languages
Japanese (ja)
Other versions
JPH0682119B2 (en
Inventor
Akinori Kashiwatani
柏谷 明則
Tadashi Shoji
小路 正
Youji Kuboi
窪井 洋司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP63131533A priority Critical patent/JPH0682119B2/en
Publication of JPH01302157A publication Critical patent/JPH01302157A/en
Publication of JPH0682119B2 publication Critical patent/JPH0682119B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To achieve a microanalysis on an inorganic element compound in a solution, by a method wherein silicon or boron chloride as main component in a sample is absorbed and decomposed to a fluoride by a specified mixed liquid and moreover, a decomposition liquid cleared of the fluoride is concentrated. CONSTITUTION:A sample is supplied to a vaporizer 1 to vaporize the sample completely in substance. The vaporized matter is brought into contact with a mixed liquid of hydrofluoric acid and water in a container 2 so that a chloride of silicon or boron in the vaporized matter is absorbed by the mixed liquid to form a fluoride. After the decomposition of the vaporized matter, the decomposition liquid is heated feeding a highly pure nitrogen gas thereto until the fluoride as main component is removed in substance from the decomposition liquid by evaporation. The left solution is concentrated and then, a quantitative analysis is performed on impurities contained therein by a proper microanalysis method.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、高純度のケイ素またはホウ素塩化物内に極
めて微量存在する無機元素化合物を、効率的に、高い精
度で分析する方法を提供するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for efficiently and highly accurate analysis of inorganic element compounds present in extremely small amounts in high-purity silicon or boron chloride. It is something.

〔従来技術の説明〕[Description of prior art]

従来、極めて微量の無機元素化合物を含有する高純度の
ケイ素又はホウ素の塩化物は、水中に投入して加水分解
し、その加水分解液を希釈して、原子スペクトル分析な
どで、微量の無機元素化合物の分析を行っていたが、前
記希釈液中には多量のケイ素又はホウ素のために微槽分
析が干渉を受け、微量の無機元素化合物の精密な分析を
行うことが極めて困難であった。
Conventionally, high-purity silicon or boron chlorides containing extremely trace amounts of inorganic element compounds have been hydrolyzed by placing them in water, diluting the hydrolyzed solution, and performing atomic spectrum analysis to determine trace amounts of inorganic elements. Compounds were analyzed, but the large amount of silicon or boron in the diluted solution interfered with the microvat analysis, making it extremely difficult to perform accurate analysis of trace amounts of inorganic element compounds.

〔本発明の解決すべき問題点〕[Problems to be solved by the present invention]

この発明の目的は、従来、高純度のケイ素又はホウ素の
塩化物中の極めて微量の無機元素化合物からなる不純物
を原子スペクトル分析などで精密に分析することは、多
量のケイ素又はホウ素の干渉のために困難であったが、
多量のケイ素又はホウ素の塩化物中のr極めて微量の無
機元素化合物からなる不純物」を容易にしかも正確に分
析することができる方法を提供することである。
The purpose of the present invention is to accurately analyze impurities consisting of extremely small amounts of inorganic element compounds in high-purity silicon or boron chlorides using atomic spectrum analysis, etc., due to the interference of large amounts of silicon or boron. Although it was difficult to
An object of the present invention is to provide a method that can easily and accurately analyze "impurities consisting of very small amounts of inorganic element compounds in large amounts of silicon or boron chlorides."

〔問題点を解決するための手段〕[Means for solving problems]

すなわち、この発明は、微量の無機元素化合物が不純物
として含有されているケイ素又はホウ素の塩化物の試料
を気化し、フッ酸と水との混合液に導いて分解し、この
分解液に高純度窒素ガスを送りながら加熱し、主成分で
あるケイ素またはホウ素のフッ化物として除去し、次い
で、前記分解液中に残存する前記不純物を濃縮して、こ
の前記不純物の分析を行うことを特徴とする高純度のケ
イ素又はホウ素塩化物の分析法に関する。
That is, this invention vaporizes a sample of silicon or boron chloride containing trace amounts of inorganic element compounds as impurities, decomposes it by introducing it into a mixed solution of hydrofluoric acid and water, and adds high purity to this decomposed solution. It is characterized by heating while supplying nitrogen gas to remove silicon or boron as a main component as fluoride, and then concentrating the impurities remaining in the decomposition liquid and analyzing the impurities. This invention relates to a method for analyzing high-purity silicon or boron chloride.

以下、この発明の分析法について、図面も参考にしてさ
らに詳しく説明する。
The analysis method of the present invention will be explained in more detail below with reference to the drawings.

第1図は、この発明の分析法で使用する気化器および吸
収・分解2gの一例を概略示す断面図であり、第2図は
、この発明の分析法で使用する濃縮器の一例を概略示す
断面図である。
FIG. 1 is a sectional view schematically showing an example of a vaporizer and absorption/decomposition 2g used in the analytical method of the present invention, and FIG. 2 is a schematic cross-sectional view of an example of a concentrator used in the analytical method of the present invention. FIG.

この発明の分析法において使用される試料は、微量の無
機元素化合物が不純物として含有しており、そして、ケ
イ素又はホウ素の塩化物を99.9%以上含有する高純
度の試料である。
The sample used in the analysis method of this invention is a highly pure sample that contains trace amounts of inorganic element compounds as impurities and contains 99.9% or more of silicon or boron chloride.

前記の微量の無機元素化合物は、例えば、Ca、Mg、
  Na、  K、  Ni、  八1、 Pb、  
Mn、、 Zn、  Cu、  Cd、  八g8Cr
、 Mo、 Co、 Sn、旧、Ll、Sb、、Fe、
八s、 Se、、Geなどの無機元素のイオンまたは化
合物であり、また、試料中の無機元素化合物の含有量は
、約0.01ppb〜11000pp程度であればよい
The trace amounts of inorganic element compounds include, for example, Ca, Mg,
Na, K, Ni, 81, Pb,
Mn, Zn, Cu, Cd, 8g8Cr
, Mo, Co, Sn, Old, Ll, Sb, , Fe,
It is an ion or compound of an inorganic element such as 8S, Se, Ge, etc., and the content of the inorganic element compound in the sample may be about 0.01 ppb to 11000 pp.

この発明では、まず、 (a)  前述の試料を気化し、 山)その気化物(ガス)をフッ酸と水との混合液(吸収
液)に導いてバブリングなどで接触させて、含有成分を
吸収させ、そして、分解して、(C)  この分解液に
高純度窒素ガスを送りながら加熱し、主成分であるケイ
素またはホウ素のフッ化物を分解液から実質的に除去す
るのである。
In this invention, first, (a) the above-mentioned sample is vaporized, and the vaporized substance (gas) is introduced into a mixed liquid (absorbing liquid) of hydrofluoric acid and water and brought into contact with it by bubbling etc. to remove the contained components. (C) This decomposed liquid is heated while sending high-purity nitrogen gas to substantially remove silicon or boron fluoride, which is the main component, from the decomposed liquid.

前記の気化は、第1図に示すように、試料を、(必要で
あれば、窒素、アルゴン、ヘリウJ、などのキャリヤー
ガスと共に)テフロン、またはポリエチレンなどの熱可
塑性樹脂で製作されている気化器1へ供給し、加圧下、
又は減圧下、−20〜120°Cの温度に加熱して行え
ば、試料を実質的に全部気化させることができ、また、
気化物を次の吸収・分解工程へ供給できるので好ましい
The vaporization is carried out using a vaporizer made of a thermoplastic resin such as Teflon or polyethylene (with a carrier gas such as nitrogen, argon, Heliu J, etc., if necessary), as shown in Figure 1. Supplied to vessel 1, under pressure,
Alternatively, by heating to a temperature of -20 to 120°C under reduced pressure, substantially all of the sample can be vaporized, and
This is preferable because the vaporized material can be supplied to the next absorption/decomposition step.

次いで、前記の気化物は、第1図に示すように、容器2
内のフッ酸と水との混合液と接触させることにより、気
化物内のケイ素又はホウ素の塩化物などが前記混合液に
吸収をさせ、そして、加水分解し、フッ酸と反応させる
ことにより、ケイ素又はホウ素のフッ化物とするのであ
る。
Next, the vaporized substance is transferred to a container 2 as shown in FIG.
By contacting with a mixed solution of hydrofluoric acid and water, silicon or boron chloride in the vapor is absorbed by the mixed solution, and then hydrolyzed and reacted with the hydrofluoric acid. It is a fluoride of silicon or boron.

前記の気化物の吸収・分解工程(第1図に示すような)
において、 1)使用するフッ酸と水の混合液(吸収液)は、フッ酸
の濃度が10〜70重量%程度であることが好ましく、 ii )また、気化物の分解時の反応温度は、30〜1
50°C程度であることが好ましく、iii )さらに
、気化物の供給速度は、前記混合液11当たり100〜
101000C/分程度であることが、好ましい。
Absorption and decomposition process of the vapors (as shown in Figure 1)
1) It is preferable that the hydrofluoric acid and water mixture (absorbing liquid) used has a hydrofluoric acid concentration of about 10 to 70% by weight, and ii) The reaction temperature during decomposition of the vapor is: 30-1
The temperature is preferably about 50°C, and iii) Furthermore, the supply rate of the vapor is 100 to
Preferably, it is about 101,000 C/min.

この発明の分析法では、前記の吸収・分解工程において
、必要であれば、過塩素酸などの酸化剤を少量添加して
、低原子価化合物を、より揮発性の少ない高原子価化合
物に転化させることもできる。
In the analytical method of this invention, in the absorption/decomposition step, if necessary, a small amount of an oxidizing agent such as perchloric acid is added to convert low valence compounds into less volatile high valence compounds. You can also do it.

また、この発明の分析法では、気化工程において最初に
試料を入れた気化器などの容器lは、気化工程と吸収・
分解工程を行った後に、その気化器lに残存している成
分(残香成分)の洗浄を、前述の分解液の一部によって
行い、その洗浄液は、次のフッ化物の蒸発除去のための
濃縮工程に使用されるr分解液」に加えることが好まし
い。
In addition, in the analysis method of this invention, the container l, such as a vaporizer, in which the sample is first placed in the vaporization process and the absorption process are
After performing the decomposition process, the components remaining in the vaporizer l (residual fragrance components) are washed with a portion of the decomposition solution mentioned above, and the cleaning solution is then concentrated for the next evaporative removal of fluoride. It is preferable to add it to the "r-decomposed solution" used in the process.

前記の工程において、気化物の分解を行った後、前述の
分解液に、好ましくは0.1〜100d/分程度のガス
速度で高純度窒素ガスを送りながら、好ましくは90〜
120°Cの温度に加熱し、主成分であるケイ素又はホ
ウ素のフッ化物を分解液から実質的に蒸発し除去する。
In the above step, after decomposing the vapor, high purity nitrogen gas is fed to the decomposition liquid at a gas velocity of preferably about 0.1 to 100 d/min, preferably at a gas velocity of about 90 to 100 d/min.
It is heated to a temperature of 120° C. to substantially evaporate and remove silicon or boron fluoride, which is the main component, from the decomposition liquid.

この発明では、前述の分解液中のケイ素又はホウ素の含
有率を、1重量%以下、特に0.1重量%以下とするこ
とが、分析の精度の上で好ましい。
In the present invention, it is preferable for the content of silicon or boron in the decomposition liquid to be 1% by weight or less, particularly 0.1% by weight or less, from the viewpoint of analytical accuracy.

さらに、この発明の分析法では、前述のようにして得ら
れた[ケイ素又はホウ素成分の除去された分解液」を得
た後、 (a)  その分解液中に残存する前記不純物を(第2
図に示す濃縮器3などを用いて)濃縮して、(b)  
濃縮された分解液中の前記不純物の分析を、ICP法、
黒鉛炉原子吸光法、原子吸光法、イオンクロマトグラフ
法、ポルタンメトリー法などの適当な微量分析法で定量
分析を行うのである。
Furthermore, in the analysis method of the present invention, after obtaining the [decomposition liquid from which silicon or boron components have been removed] obtained as described above, (a) removing the impurities remaining in the decomposition liquid (second
(b)
Analysis of the impurities in the concentrated decomposition solution is carried out using the ICP method,
Quantitative analysis is performed using an appropriate microanalytical method such as graphite furnace atomic absorption spectrometry, atomic absorption spectrometry, ion chromatography, and portammetry.

前記の濃縮工程において、分解液の濃縮は、前記不純物
の濃度が0.1 p p m程度となるまで、水分など
の揮発分を蒸発させて除去することによって行うことが
好ましい。
In the concentration step, the decomposition liquid is preferably concentrated by evaporating and removing volatile components such as water until the concentration of the impurities becomes about 0.1 ppm.

また、この発明の分析法において、前記分析工程は、公
知の各種の方法、分析条件で行うことができ、特に限定
されるものではない。
In addition, in the analysis method of the present invention, the analysis step can be performed using various known methods and analysis conditions, and is not particularly limited.

この発明において、前述の試料の気化工程、気化物の分
解工程、および、ケイ素又はホウ素のフン化物の除去工
程、並びに、分解液の濃縮工程および微量分析工程は、
すべて、コンタミネーションを防止できる密封された容
器内で行うことが好ましく、例えば、第1図および第2
図に示すように、テフロン樹脂製の気化器1、テフロン
製の吸収・分解容器2、テフロン製の濃縮器3などを使
用して、本発明の分析法を実施することが好適である。
In this invention, the above-mentioned sample vaporization step, vapor decomposition step, silicon or boron fluoride removal step, decomposition liquid concentration step and trace analysis step are as follows:
Preferably, everything is done in a sealed container to prevent contamination, for example, Figures 1 and 2.
As shown in the figure, it is preferable to carry out the analytical method of the present invention using a vaporizer 1 made of Teflon resin, an absorption/decomposition container 2 made of Teflon, a concentrator 3 made of Teflon, and the like.

〔実施例〕〔Example〕

なお、実施例において、試料中の各無機元素の濃度であ
る試料濃度(C)は、次の式で算出した値である。
In the examples, the sample concentration (C), which is the concentration of each inorganic element in the sample, is a value calculated using the following formula.

”   ”  W=    (B)−(A)     
x25()/”  ’M≦小←hL(&と一前記の(八
)は、空試験値であり、そして、(B)は、濃縮液試験
値である。
"" W= (B) - (A)
x25()/'''M≦small←hL(& and 1) The above (8) is a blank test value, and (B) is a concentrate test value.

また、実施例において、定量限界は、以下の式で算出し
た。
In addition, in the examples, the limit of quantification was calculated using the following formula.

育   =32X′Jaラ  直の f−(、、b)さ
らに、実施例において、検出限界は、黒鉛炉原子吸光分
析法における1741幅」の2倍に相当する試料中濃度
(p、p、b)で示す。
In addition, in the examples, the detection limit is the concentration in the sample (p, p, b ).

実施例1 不純物を微量含有する三塩化ホウ素50gを第1図に示
すテフロン製の気化器に入れて、その気化器内の三塩化
ホウ素を50°Cに加熱し、気化器に窒素ガスを導入し
て、三塩化ホウ素を気化させ、第1図に示す[超純水1
00g、50%フッ酸90gおよび過塩素酸1gからな
る混合液(吸収液、約170d)が入れである容器」に
、前述の気化物(ガス)を導入し、前記混合液内をバブ
リングして気化物と混合液とを接触させて、気化物を混
合液に吸収させると共に、気化物を分解し、フッ化ホウ
素を生成させた分解液を調製した。
Example 1 50 g of boron trichloride containing trace amounts of impurities was placed in a Teflon vaporizer shown in Figure 1, the boron trichloride in the vaporizer was heated to 50°C, and nitrogen gas was introduced into the vaporizer. The boron trichloride was vaporized using ultrapure water 1 as shown in Figure 1.
00 g, 50% hydrofluoric acid, and 1 g of perchloric acid (absorbing liquid, approximately 170 d) was introduced into the container, and the above-mentioned vaporized substance (gas) was introduced into the container and bubbled inside the mixed liquid. A decomposition liquid was prepared in which the vaporized substance was brought into contact with the mixed liquid, the vaporized substance was absorbed into the mixed liquid, and the vaporized substance was decomposed to generate boron fluoride.

気化物の分解によって吸収液は、温度が上昇するが、約
80°C以上には昇温しなかった。
Although the temperature of the absorption liquid rose due to the decomposition of the vapor, the temperature did not rise above about 80°C.

なお、前記分解液の一部で気化器を洗浄し、その洗浄液
を再び前述の分解液に加えた。
Note that the vaporizer was cleaned with a portion of the decomposition liquid, and the cleaning liquid was added again to the decomposition liquid.

分解液の全量を、第2図のテフロン製の濃縮器に入れ、
150°Cに加熱した熱板上に置き、窒素ガスを流通さ
せながら、主成分であるフッ化ホウ素、過剰のフッ酸お
よび水を蒸発して除去し、しかも、約1mff1まで濃
縮した。
Pour the entire amount of the decomposition solution into the Teflon concentrator shown in Figure 2.
It was placed on a hot plate heated to 150°C, and while nitrogen gas was passed through it, the main component, boron fluoride, excess hydrofluoric acid, and water were evaporated and removed, and moreover, it was concentrated to about 1 mff1.

その濃縮液に、超純水を加えて希釈し、25g定容し、
その溶液をICP分析法(21)、または黒鉛炉原子吸
光法(b)で分析し、微量の無機元素を定量した。
The concentrated solution was diluted by adding ultrapure water to a fixed volume of 25 g,
The solution was analyzed by ICP analysis (21) or graphite furnace atomic absorption spectrometry (b) to quantify trace amounts of inorganic elements.

その結果を、前述の微量分析を5回繰り返して得た分析
値の平均値および標準偏差(p、p、b )として第1
表に示す。
The results are calculated as the average value and standard deviation (p, p, b) of the analytical values obtained by repeating the above-mentioned microanalysis five times.
Shown in the table.

実施例2 不純物を微量含有する四塩化ケイ素の試料を使用し、分
析前の希釈液量をl1gとしたほかは、実施例1と同様
にして、試料中の微量の無機元素の定に分析をおこなっ
た。その結果を第2表に示す。
Example 2 A sample of silicon tetrachloride containing a trace amount of impurities was used, and the amount of diluted liquid before analysis was 11 g. I did it. The results are shown in Table 2.

第  1  表 第  2  表 〔本発明の作用効果〕 従来、高純度のケイ素又はホウ素塩化物中の無機元素化
合物の微量分析がケイ素又はホウ素塩化物の干渉によっ
て極めて困難であったのに対して、この発明の分析法に
よれば、試料中の主成分であるケイ素又はホウ素塩化物
を特定の混合液(吸収液)で吸収・分解してフッ化物と
なし、そのフッ化物を蒸発して分解液から除去し、さら
に分解液を濃縮することによって、ケイ素又はホウ素化
合物を実質的に含まない[かなり高濃度の無機元素化合
物の水、溶液」を調製し、その溶液中の無機元素化合物
を微量分析することによって、精度の高い分析値を容易
に得ることができる。
Table 1 Table 2 [Operations and Effects of the Present Invention] Conventionally, trace analysis of inorganic element compounds in high purity silicon or boron chloride was extremely difficult due to the interference of silicon or boron chloride. According to the analysis method of this invention, silicon or boron chloride, which is the main component in the sample, is absorbed and decomposed into fluoride using a specific mixed solution (absorption solution), and the fluoride is evaporated into a decomposed solution. By removing from the water and further concentrating the decomposition solution, a [quite highly concentrated aqueous solution of inorganic element compounds] that is substantially free of silicon or boron compounds is prepared, and the inorganic element compounds in the solution are analyzed in trace quantities. By doing so, highly accurate analysis values can be easily obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の分析法で使用する気化器および吸
収・分解器の一例を概略示す断面図であり、第2図は、
この発明の分析法で使用する′a縮器の一例を概略示す
断面図である。 l;気化器、2;吸収・分解容器、3;濃縮器特許出願
人  宇部興産株式会社
FIG. 1 is a cross-sectional view schematically showing an example of a vaporizer and an absorption/decomposer used in the analysis method of the present invention, and FIG.
FIG. 2 is a cross-sectional view schematically showing an example of a compressor used in the analysis method of the present invention. L: Vaporizer, 2: Absorption/decomposition container, 3: Concentrator Patent applicant: Ube Industries, Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)微量の無機元素化合物が不純物として含有されて
いるケイ素又はホウ素の塩化物を高純度で含有する試料
を気化し、フッ酸と水との混合液に導いて分解し、この
分解液に高純度窒素ガスを送りながら加熱し、主成分で
あるケイ素またはホウ素のフッ化物として除去し、次い
で、前記分解液中に残存する前記不純物を濃縮して、こ
の前記不純物の分析を行うことを特徴とする高純度のケ
イ素又はホウ素塩化物の分析法。
(1) A sample containing a highly purified silicon or boron chloride containing trace amounts of inorganic element compounds as impurities is vaporized, introduced into a mixed solution of hydrofluoric acid and water, decomposed, and converted into this decomposed solution. It is characterized by heating while sending high-purity nitrogen gas to remove silicon or boron, which is a main component, as fluoride, and then concentrating the impurities remaining in the decomposition liquid, and analyzing the impurities. Analytical method for high purity silicon or boron chloride.
(2)前記の気化、分解、濃縮などの工程をすべてテフ
ロン製密封容器内で行う請求項第1項記載の高純度のケ
イ素又はホウ素塩化物の分析法。
(2) The method for analyzing high-purity silicon or boron chloride according to claim 1, wherein all of the steps of vaporization, decomposition, concentration, etc. are performed in a sealed container made of Teflon.
JP63131533A 1988-05-31 1988-05-31 Method for analyzing high-purity silicon or boron chloride Expired - Lifetime JPH0682119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63131533A JPH0682119B2 (en) 1988-05-31 1988-05-31 Method for analyzing high-purity silicon or boron chloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63131533A JPH0682119B2 (en) 1988-05-31 1988-05-31 Method for analyzing high-purity silicon or boron chloride

Publications (2)

Publication Number Publication Date
JPH01302157A true JPH01302157A (en) 1989-12-06
JPH0682119B2 JPH0682119B2 (en) 1994-10-19

Family

ID=15060295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63131533A Expired - Lifetime JPH0682119B2 (en) 1988-05-31 1988-05-31 Method for analyzing high-purity silicon or boron chloride

Country Status (1)

Country Link
JP (1) JPH0682119B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009186197A (en) * 2008-02-04 2009-08-20 Denki Kagaku Kogyo Kk Chemical treatment method for chlorosilanes
KR20170110677A (en) * 2015-02-06 2017-10-11 엘리멘탈 사이언티픽, 인코포레이티드 System and method for sampling halosilane
CN114264717A (en) * 2022-03-03 2022-04-01 江苏鑫华半导体材料科技有限公司 System and method for detecting trace impurities in high-purity trichlorosilane

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009186197A (en) * 2008-02-04 2009-08-20 Denki Kagaku Kogyo Kk Chemical treatment method for chlorosilanes
KR20170110677A (en) * 2015-02-06 2017-10-11 엘리멘탈 사이언티픽, 인코포레이티드 System and method for sampling halosilane
JP2018508772A (en) * 2015-02-06 2018-03-29 エレメンタル・サイエンティフィック・インコーポレイテッドElemental Scientific, Inc. Apparatus and method for sampling halosilanes
US10809168B2 (en) 2015-02-06 2020-10-20 Elemental Scientific, Inc. System and method for sampling halosilanes
CN114264717A (en) * 2022-03-03 2022-04-01 江苏鑫华半导体材料科技有限公司 System and method for detecting trace impurities in high-purity trichlorosilane

Also Published As

Publication number Publication date
JPH0682119B2 (en) 1994-10-19

Similar Documents

Publication Publication Date Title
US6077451A (en) Method and apparatus for etching of silicon materials
JP3051023B2 (en) Processing method and apparatus for high-precision analysis of impurities in siliconaceous analysis sample
Foner et al. Ionization potential of the free HO2 radical and the H–O2 bond dissociation energy
JPH02502277A (en) Production method of high purity anhydrous hydrogen fluoride with low arsenic content
US5851303A (en) Method for removing metal surface contaminants from silicon
Örnemark et al. Determination of total selenium in water by atomic-absorption spectrometry after hydride generation and preconcentration in a cold trap system
US20110135555A1 (en) Process for producing fluoride gas
JP2002040009A (en) Micro impurity analytical method in silicon substrate
Arslan et al. Determination of trace elements in marine plankton by inductively coupled plasma mass spectrometry (ICP-MS)
JPH01302157A (en) Analysis of highly pure silicon or boron chloride
US6995834B2 (en) Method for analyzing impurities in a silicon substrate and apparatus for decomposing a silicon substrate through vapor-phase reaction
Yamataka et al. Kinetic isotope effect study of reductions of benzophenone with complex metal hydrides
Zhang et al. Determination of selenium and arsenic in plant and animal tissues by hydride generation inductively coupled plasma mass spectrometry
JP3753805B2 (en) Semiconductor sample decomposition apparatus and sample decomposition method
JP4837687B2 (en) Chemical treatment method of chlorosilanes
US8785209B2 (en) Thin-film photochemical vapour generation
Sakamoto et al. Determination of ultra-trace amounts of total mercury by gold amalgamation-cold vapor AAS in geothermal water samples by using ozone as pretreatment agent
KR20010049557A (en) Separation Process of Boron Compounds in Chlorosilanes and Composition for Evaporating Chlorosilanes
Grotti et al. Electrothermal atomic absorption spectrometric determination of ultratrace amounts of tellurium using a palladium-coated L'vov platform after separation and concentration by hydride generation and liquid anion exchange
JPS60260403A (en) Manufacture of metallic sulfide
JP2793208B2 (en) Distillation purification method
Horn et al. Chemistry of Cr (VI) solvent extraction using tri-n-octylamine
Fujimoto et al. Determination of trace amounts of antimony and boron in high-purity iron and steel by isotope dilution/inductively coupled plasma mass spectrometry
EP0005827A1 (en) Method of removing contaminants from water
JP3529479B2 (en) Method and apparatus for purifying fluorine resin