JP4837687B2 - Chemical treatment method of chlorosilanes - Google Patents

Chemical treatment method of chlorosilanes Download PDF

Info

Publication number
JP4837687B2
JP4837687B2 JP2008023427A JP2008023427A JP4837687B2 JP 4837687 B2 JP4837687 B2 JP 4837687B2 JP 2008023427 A JP2008023427 A JP 2008023427A JP 2008023427 A JP2008023427 A JP 2008023427A JP 4837687 B2 JP4837687 B2 JP 4837687B2
Authority
JP
Japan
Prior art keywords
chlorosilanes
sample
solidified
hydrofluoric acid
cooled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008023427A
Other languages
Japanese (ja)
Other versions
JP2009186197A (en
Inventor
古川洋一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2008023427A priority Critical patent/JP4837687B2/en
Publication of JP2009186197A publication Critical patent/JP2009186197A/en
Application granted granted Critical
Publication of JP4837687B2 publication Critical patent/JP4837687B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明はクロロシラン類中に微量存在する不純物元素を分析する際の分析試料処理技術に関する。本発明において試料処理の対象とするクロロシラン類としては、テトラクロロシラン、トリクロロシラン、ジクロロシランから選ばれる1種または2種以上のクロロシラン類混合物があげられる。 The present invention relates to an analytical sample processing technique for analyzing impurity elements present in a trace amount in chlorosilanes. Examples of the chlorosilanes to be sample-treated in the present invention include one or a mixture of two or more chlorosilanes selected from tetrachlorosilane, trichlorosilane, and dichlorosilane.

半導体シリコンなどの製造原料として使用されるモノシランの製造原料であるクロロシラン類は、あるいは半導体シリコンなどの製造原料として使用されるジクロロシランの原料であるクロロシラン類は、含まれる不純物量が極微量であっても半導体シリコンなどの電気特性に著しい悪影響を与えるため、超高純度の品質が要求される。このためクロロシラン類中の不純物元素を極低いレベルに維持管理する製造技術や品質管理方法の検証を行う不純物の分析は重要である。 Chlorosilanes, which are monosilane production raw materials used as production raw materials for semiconductor silicon and the like, or chlorosilanes, which are raw materials for dichlorosilane used as production raw materials for semiconductor silicon and the like, contain an extremely small amount of impurities. However, since the electrical characteristics of semiconductor silicon and the like are significantly adversely affected, ultra-high purity quality is required. For this reason, it is important to analyze impurities to verify manufacturing techniques and quality control methods for maintaining and managing impurity elements in chlorosilanes at a very low level.

従来、高純度のクロロシラン類中の不純物元素、特に金属元素などの無機系元素やドーパント元素と言われるホウ素、リン、ヒ素などの分析の場合、例えばクロロシラン類を分析装置に直接導入し分析する方法(特許文献1)、クロロシラン類と水とを反応させ加水分解する方法(非特許文献1、2)、気化させたクロロシラン類をフッ化水素酸水溶液中に導いて分解後、副生する塩酸やケイフッ化物を除去する方法(特許文献2)などが知られている。   Conventionally, in the case of analysis of impurity elements in high-purity chlorosilanes, especially inorganic elements such as metal elements and boron, phosphorus, arsenic, etc., which are said to be dopant elements, for example, a method of directly introducing chlorosilanes into an analyzer for analysis (Patent Document 1), a method of reacting and hydrolyzing chlorosilanes with water (Non-Patent Documents 1 and 2), introducing vaporized chlorosilanes into an aqueous hydrofluoric acid solution and decomposing it, and by-product hydrochloric acid or A method for removing silicofluoride (Patent Document 2) is known.

しかしながらクロロシラン類を直接分析装置へ導入する場合、大量の試料を取り扱うことが難しく、超微量の不純物分析においては、検出感度を高めることができないという問題があった。一方、クロロシラン類の分析試料の加水分解反応は塩化水素ガスの発生や発熱を伴う激しい反応であり、短時間で効率的に、しかも作業の安全性を確保しながら分解するためには、大掛かりな冷却装置を付属させた専用の反応容器の作成およびその装置によるクロロシラン類の慎重な扱いや長時間に及ぶ分解反応操作が必要であった。 However, when chlorosilanes are directly introduced into an analyzer, it is difficult to handle a large amount of sample, and there has been a problem that detection sensitivity cannot be increased in the analysis of an extremely small amount of impurities. On the other hand, the hydrolysis reaction of analytical samples of chlorosilanes is a vigorous reaction accompanied by generation of hydrogen chloride gas and heat generation, and it is a large-scale in order to decompose efficiently in a short time while ensuring the safety of work. It was necessary to create a dedicated reaction vessel with a cooling device and to carefully handle chlorosilanes and to carry out a long-time decomposition reaction operation.

また試料を気化させて取り扱う場合、気体の濃度が爆発範囲に入り、発火、爆発等の恐れがあり、取り扱いに危険を伴う上に、微量不純物を検出するためには大量の試料を扱う必要があり、そのために分解に多くの時間を要するという問題があった
特開平2−110350号公報 特開平1−302157号公報 Journal of The Chinese Instituteof Chemical Engineers,5,99-105(1974) Analyst,115,29-34(1990)
Also, when the sample is vaporized, the gas concentration may enter the explosion range and there is a risk of ignition, explosion, etc., and it is dangerous to handle and it is necessary to handle a large amount of sample to detect trace impurities. There was a problem that it took a lot of time to decompose for that
Japanese Patent Laid-Open No. 2-110350 JP-A-1-302157 Journal of The Chinese Institute of Chemical Engineers, 5,99-105 (1974) Analyst, 115, 29-34 (1990)

本発明は、クロロシラン類中の不純物分析に先行する試料処理の際、上記の問題点を回避する目的でなされたもので、大量のクロロシラン類を安全で穏やかに短時間で分解する化学処理方法を提供するものである。   The present invention has been made for the purpose of avoiding the above-described problems during sample processing prior to analysis of impurities in chlorosilanes, and provides a chemical processing method for safely and gently decomposing a large amount of chlorosilanes in a short time. It is to provide.

本発明の方法は、高純度のクロロシラン類を冷却固化させ、同様に冷却固化させたフッ化水素酸水溶液を冷却固化させたクロロシラン類に接触させることにより、あるいは液体のフッ化水素酸水溶液を冷却固化させたクロロシラン類に接触させることにより、加水分解させる化学処理に関する。クロロシラン類の分析試料を冷却固化させることで反応性の高い気体分子の蒸気圧を極めて低く抑えることができるため、また反応熱を低く抑えることができるため、安全に分析試料を扱うことができる。必要に応じて反応性の高い空気中の酸素や水分との接触を避けるために、また環境からの不純物の汚染を避けるために不活性ガス雰囲気下でクロロシラン類と反応試薬を接触させながら分解することもできる。   In the method of the present invention, high-purity chlorosilanes are cooled and solidified, and the cooled and solidified hydrofluoric acid aqueous solution is contacted with the cooled and solidified chlorosilanes, or the liquid hydrofluoric acid aqueous solution is cooled. The present invention relates to a chemical treatment for hydrolyzing by bringing it into contact with solidified chlorosilanes. By cooling and solidifying the analysis sample of chlorosilanes, the vapor pressure of highly reactive gas molecules can be kept extremely low, and the reaction heat can be kept low, so that the analysis sample can be handled safely. If necessary, decompose in contact with chlorosilanes and reagents in an inert gas atmosphere to avoid contact with highly reactive oxygen and moisture in the air and to avoid contamination of impurities from the environment. You can also.

冷却固化させたフッ化水素酸水溶液を予め冷却固化させたクロロシラン類試料の上にのせる、あるいは液体のフッ化水素酸水溶液を予め冷却固化させたクロロシラン類試料の上に滴下接触させ、固化させた試料表面へフッ化水素酸を反応させることで加水分解を順次極低温で安定した状態で穏やかに進行させる。静置したままで自然にクロロシラン類試料の分解を行うことができ、試料処理としてクロロシラン類を安全に取り扱うことができる。 Place the cooled and solidified hydrofluoric acid aqueous solution on the chlorosilane sample that has been cooled and solidified in advance, or drop the liquid hydrofluoric acid aqueous solution onto the chlorosilane sample that has been cooled and solidified in advance to allow it to solidify. By hydrofluoric acid reacting with the sample surface, hydrolysis proceeds in a stable manner at a very low temperature. The sample of chlorosilanes can be decomposed naturally while still standing, and the chlorosilanes can be handled safely as sample processing.

また環境からの不純物の汚染を避けるために不活性ガス雰囲気下で、この分解液を加熱し主成分であるケイ素を揮発性の高いフッ化物として除去しながら、分解液中に残存する不純物を濃縮することで分析前試料を調製することができる。本操作により高純度クロロシラン類の不純物分析を容易ならしめる。 In addition, in order to avoid contamination of impurities from the environment, this decomposition solution is heated in an inert gas atmosphere to remove the main component silicon as a highly volatile fluoride, while concentrating impurities remaining in the decomposition solution. By doing so, a sample before analysis can be prepared. This operation facilitates the analysis of impurities in high-purity chlorosilanes.

前記の試料の冷却固化は具体的に次のようにして行う。図1に一例としてあげた装置で、予め配管内をアルゴンガスまたは窒素ガス等の不活性ガスで置換しておき、クロロシラン類(試料)をボンベなどの容器から内径約5mmのポリテトラフルオロエチレン製配管を経由し、同様にアルゴンまたは窒素ガス等で置換された内容量200mlの試料採取容器に供給する。その後にこの容器を液体窒素で冷却し、試料を完全に凍結する。   Specifically, the cooling and solidification of the sample is performed as follows. In the apparatus shown as an example in FIG. 1, the inside of the pipe is previously replaced with an inert gas such as argon gas or nitrogen gas, and chlorosilanes (samples) are made of polytetrafluoroethylene having an inner diameter of about 5 mm from a container such as a cylinder. Through a pipe, the sample is supplied to a sampling container having an internal volume of 200 ml that is similarly substituted with argon or nitrogen gas. The container is then cooled with liquid nitrogen and the sample is completely frozen.

アルゴンガスなどの不活性ガスで系内を置換することで反応性の高い空気中の水分や酸素を遮断することができ、安全にクロロシラン類を取り扱うことができる。以上述べた分解反応に使用する器具や配管は図1に示すように、各部を連結させ、必要な箇所に切り替えバルブを配置し、相互に連結させた密封系とするのが安全上好ましい。 By replacing the inside of the system with an inert gas such as argon gas, moisture and oxygen in the air with high reactivity can be shut off, and chlorosilanes can be handled safely. As shown in FIG. 1, it is preferable from the viewpoint of safety that the devices and pipes used for the decomposition reaction described above are connected to each other, a switching valve is disposed at a necessary location, and a mutual connection system is established.

次いでフッ化水素酸水溶液を同様に別の容器(内容量200ml)で予め冷却固化しておき、それを取り出し冷却固化された試料上に置くことにより、あるいは液体のフッ化水素酸水溶液を冷却固化された試料に滴下することにより、それぞれ冷却固化されたクロロシラン類の固体の表面に接触させることで、固体表面から水やフッ化水素との反応の際に生成する反応熱により徐々に溶解しながら加水分解反応が進行する。 Next, the hydrofluoric acid aqueous solution is similarly cooled and solidified in a separate container (with an internal volume of 200 ml) in advance, and then taken out and placed on the cooled and solidified sample, or the liquid hydrofluoric acid aqueous solution is cooled and solidified. While being gradually dissolved by the heat of reaction generated from the solid surface during the reaction with water or hydrogen fluoride, it is brought into contact with the solid surface of each cooled and solidified chlorosilane by dropping it onto the prepared sample. The hydrolysis reaction proceeds.

生成する酸化ケイ素は、さらにフッ化水素と反応し、水に可溶なケイ素のフッ化物や揮発性の高いフッ化物となる。この操作に於いて、クロロシラン類と反応性の高い空気中の酸素や水分との接触を避けるために、本分解反応を不活性ガス雰囲気下で行うことが望ましい。 The generated silicon oxide further reacts with hydrogen fluoride to form silicon-soluble silicon fluoride or highly volatile fluoride. In this operation, it is desirable to carry out this decomposition reaction in an inert gas atmosphere in order to avoid contact with oxygen or moisture in the air that is highly reactive with chlorosilanes.

前記の固体試料の分解工程において、使用するフッ化水素酸水溶液のフッ化水素の濃度は30〜70質量%程度であることが好ましい。また使用する水の量やフッ化水素の量は以下に示す反応式を参考に必要量を計算し、実際に使用する水やフッ化物の量は反応を完全に行わせるために、また反応の際に生成する塩酸やフッ酸の酸性水溶液中に不純物化合物を安定に溶解させるため、過剰量、具体的には計算量の1.1〜1.5倍量を使用するのが好ましい。
但し、クロロシラン類の加水分解反応やフッ化水素酸との反応は、以下に示すジクロロシランの反応例のように、複数の反応が進行する。
水との反応では無水ケイ酸が生成する。
SiHCl+2HO → SiO+2HCl+3H
フッ化水素酸との反応では、加熱により揮発性の四フッ化ケイ素が生成する。
SiHCl+4HF → SiF+2HCl+H
また、過剰のフッ化水素酸の存在下では、水溶性の六フッ化ケイ素酸が生成するが、加熱により揮発性の四フッ化ケイ素に変化する。
SiHCl+6HF → SiH(水溶性)+2HCl+H
一方、生成した無水ケイ素酸はフッ化水素酸との反応で、加熱により揮発性の四フッ化ケイ素となる。
SiO+4HF → SiF+2H
この様にして、それぞれの反応により生成するケイ素化合物は、加熱処理により最終的にはSiFとして揮発し消失する。
In the solid sample decomposition step, the concentration of hydrogen fluoride in the hydrofluoric acid aqueous solution used is preferably about 30 to 70% by mass. The amount of water and hydrogen fluoride to be used are calculated based on the following reaction formula, and the amount of water and fluoride to be actually used is used to complete the reaction. In order to stably dissolve the impurity compound in the acidic aqueous solution of hydrochloric acid or hydrofluoric acid generated at the time, it is preferable to use an excess amount, specifically 1.1 to 1.5 times the calculated amount.
However, in the hydrolysis reaction of chlorosilanes and the reaction with hydrofluoric acid, a plurality of reactions proceed as in the following reaction examples of dichlorosilane.
Silicic anhydride is produced in the reaction with water.
SiH 2 Cl 2 + 2H 2 O → SiO 2 + 2HCl + 3H 2
In the reaction with hydrofluoric acid, volatile silicon tetrafluoride is generated by heating.
SiH 2 Cl 2 + 4HF → SiF 4 + 2HCl + H 2
In addition, in the presence of excess hydrofluoric acid, water-soluble hexafluorosilicon acid is generated, but changes to volatile silicon tetrafluoride by heating.
SiH 2 Cl 2 + 6HF → SiH 2 F 6 (water-soluble) + 2HCl + H 2
On the other hand, the produced silicon anhydride is reacted with hydrofluoric acid, and becomes volatile silicon tetrafluoride by heating.
SiO 2 + 4HF → SiF 4 + 2H 2 O
In this way, the silicon compound produced by each reaction, eventually evaporates disappeared as SiF 4 by heat treatment.

さらに、前記の工程において、固体試料の分解を行ない、溶液状態になった後、好ましくは100℃〜120℃の温度に加熱し、主成分であるケイ素のフッ化物を分解液から実質的に蒸発し除去する。本発明の化学処理法で、前記の分解工程において、分析上、必要であればマンニトールなどのホウ酸との錯形成剤を少量添加することで揮発しやすいホウ素化合物を補足することができる。本発明の化学処理によりケイ素化合物の除去された分解液を得た後、残存する不純物を加熱濃縮し、その後に採用する分析方法に適合する操作を行い測定前の試料を調製することができる。   Further, in the above step, after the solid sample is decomposed to be in a solution state, it is preferably heated to a temperature of 100 ° C. to 120 ° C. to substantially evaporate the main component silicon fluoride from the decomposition solution. And remove. In the chemical treatment method of the present invention, in the above-described decomposition step, if necessary for analysis, a boron compound that easily volatilizes can be supplemented by adding a small amount of a complexing agent with boric acid such as mannitol. After obtaining the decomposition solution from which the silicon compound has been removed by the chemical treatment of the present invention, the remaining impurities can be heated and concentrated, and then an operation suitable for the analysis method employed can be performed to prepare a sample before measurement.

加熱濃縮後、残渣と高純度カーボン粉末を混合し、電極に成形してスパークイオン源質量分析法(以下SSMS法と略す)で定量を行うことができるし、または、加熱濃縮の後、塩酸や硝酸により濃縮された不純物を再溶解し塩酸あるいは硝酸溶液とし、誘導結合プラズマ質量分析法、誘導結合プラズマ発光分光分析法、あるいは元素によりグラファイトファーネス原子吸光法などにより分析することもできる。 After heating and concentration, the residue and high-purity carbon powder can be mixed, molded into an electrode, and quantified by spark ion source mass spectrometry (hereinafter abbreviated as SSMS method), or after heating and concentrated, hydrochloric acid or Impurities concentrated with nitric acid can be redissolved to form a hydrochloric acid or nitric acid solution, which can be analyzed by inductively coupled plasma mass spectrometry, inductively coupled plasma emission spectroscopy, or by graphite furnace atomic absorption with elements.

SSMS法は固体試料中の微量不純物を検出できるため、高純度材料の分析に用いられる。この方法では試料を電極として真空中でスパーク放電させ、イオン化した原子を質量分析することにより、元素の同定・定量が可能となる。写真乾板を検出器として用い、炭素の黒化度を標準に元素の定量を行う。少量の高純度炭素粉末に試料を濃縮することで簡単に濃縮倍率を上げることができる。また同時に軽元素を含めた固体中の全元素の測定が可能である。この優れた分析手段をさらに活用し、電極の先端部のみに試料を濃縮・成形し、残査と混合するカーボンの量を最小限の量にすることで、要求される分析感度をあげることができる。   Since the SSMS method can detect trace impurities in a solid sample, it is used for analysis of high-purity materials. In this method, an element can be identified and quantified by performing a spark discharge in a vacuum using a sample as an electrode and mass analyzing ionized atoms. Using a photographic plate as a detector, the element is quantified using the carbon blackness as a standard. Concentration magnification can be easily increased by concentrating the sample in a small amount of high purity carbon powder. At the same time, it is possible to measure all elements in a solid including light elements. By further utilizing this excellent analytical means, the sample can be concentrated and shaped only at the tip of the electrode, and the amount of carbon mixed with the residue can be minimized, thereby increasing the required analytical sensitivity. it can.

一方、テトラクロロシラン、トリクロロシラン、ジクロロシランから選ばれる1種または2種以上のクロロシラン類混合物を冷却固化させ、同様にフッ化水素酸水溶液を冷却固化させ、これら固体同志を接触させることにより分解する、あるいはフッ化水素酸水溶液を接触させることにより分解し、その後、得られる分解液を加熱し、主成分であるケイ素をフッ化物として除去したのち、残存する不純物を濃縮後、酸により再溶解し酸性水溶液とし、これを誘導結合プラズマ質量分析装置により高感度に不純物分析を行うことができる。 On the other hand, a mixture of one or more chlorosilanes selected from tetrachlorosilane, trichlorosilane, and dichlorosilane is cooled and solidified. Similarly, a hydrofluoric acid aqueous solution is cooled and solidified, and these solids are brought into contact with each other to be decomposed. Alternatively, it is decomposed by bringing it into contact with an aqueous hydrofluoric acid solution, and then the resulting decomposition solution is heated to remove silicon, which is the main component, as a fluoride. Then, the remaining impurities are concentrated and then redissolved with an acid. Impurity analysis can be performed with high sensitivity using an inductively coupled plasma mass spectrometer.

以下、実施例に基づき本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail based on examples.

実施例1
製造設備の工程から専用容器に取り出した精製工程前のジクロロシラン試料中のホウ素の定量は、スパークイオン源固体質量分析装置(日本電子株式会社 JMS-01BM-2)を用いて行った。
アルゴンガスボンベ容器のバルブを開き、内径約5mmのポリテトラフルオロエチレン製配管中に配置させたバルブを切り変えることにより系内(容器や配管)の空気(酸素)や水分をアルゴンガスで充満させることにより除去した。ジクロロシランを収納するボンベ容器のバルブを開き、常温では液体のジクロロシランを自らの圧力によりバルブ内を通過させることにより共洗いしながら、配管洗浄に使用するクロロシラン類を収納する容器(内容量500ml)まで導き、共洗いに必要な量を流した。次に試料採取容器4のバルブを閉とし、バルブを切り変えて、分析するためのジクロロシラン20gを図1に示す容量200mlのポリテトラフルオロエチレン製の試料採取用の容器4に取り、液体窒素用容器に液体窒素を満たすことにより、容器4に導かれたジクロロシランを凍結固化させた。
Example 1
Quantification of boron in the dichlorosilane sample before the purification step, which was taken out from the manufacturing facility step into a dedicated container, was performed using a spark ion source solid mass spectrometer (JEOL Ltd. JMS-01BM-2).
Open the valve of the argon gas cylinder container and fill the air (oxygen) or moisture in the system (container or pipe) with argon gas by switching the valve placed in the polytetrafluoroethylene pipe with an inner diameter of about 5 mm. Removed. Open the valve of the cylinder container that stores dichlorosilane, and store the chlorosilanes used for pipe cleaning (500 ml capacity) while co-washing liquid dichlorosilane by passing it through the valve with its own pressure at room temperature ) And flushed the amount necessary for co-washing. Next, the valve of the sampling container 4 is closed, the valve is switched, and 20 g of dichlorosilane for analysis is placed in the container 4 for sampling made of polytetrafluoroethylene shown in FIG. By filling the container with liquid nitrogen, dichlorosilane introduced into the container 4 was frozen and solidified.

冷却固化されたジクロロシランの入った試料採取容器4を取り外し、これに1質量%マンニトール水溶液0.2mlを添加し、凍結固化させる。凍結されたジクロロシラン固体を専用のポリテトラフルオロエチレン製の反応容器(内容量300ml)に移し、そこへ内容量200mlのポリテトラフルオロエチレン製の容器内で予め凍らせておいた固体のフッ化水素酸水溶液(濃度50質量%)20gを、冷却固化されたジクロロシランの上にのせ、分解反応が終了するまで静置した。分解反応に使用するポリテトラフルオロエチレン製容器の蓋には不活性ガスを出し入れする配管を2本配置している。その片方の配管からアルゴンガスを少量流し、反応容器内を不活性雰囲気に保つ。 The sampling container 4 containing chilled and solidified dichlorosilane is removed, and 0.2 ml of a 1% by mass aqueous mannitol solution is added to the container and frozen and solidified. The frozen dichlorosilane solid was transferred to a dedicated polytetrafluoroethylene reaction vessel (with an internal volume of 300 ml), and the solid fluoride previously frozen in the polytetrafluoroethylene vessel with an internal volume of 200 ml was transferred there. 20 g of an aqueous hydrogen acid solution (concentration: 50% by mass) was placed on the cooled and solidified dichlorosilane and allowed to stand until the decomposition reaction was completed. Two pipes for taking in and out the inert gas are arranged on the lid of the polytetrafluoroethylene container used for the decomposition reaction. A small amount of argon gas is flowed from one of the pipes to keep the reaction vessel in an inert atmosphere.

分解終了後、反応容器を100〜120℃に加熱した熱板上に置き、塩酸、ケイフッ化物及び過剰のフッ化水素酸、水を蒸発して取り除き、乾固した。少量の超純水を滴下し濃縮成分を溶解させると共に高純度炭素粉末(日立化成工業 HSG-P2)40mgと良く混合することで炭素粉末に吸着・濃縮する。熱板上で乾燥後、試料をかき取り、電極に成形し、SSMS法で定量を行った。標準試料は発光分析用標準試料(Spex社製 G−Standardsを使用)50mgを高純度炭素粉末(日立化成工業HSG-P2)450mg及びマンニトール25mgで希釈して調製する。5回繰り返して得たホウ素(B)濃度の分析値(平均値)と標準偏差を表1に示す。 After completion of the decomposition, the reaction vessel was placed on a hot plate heated to 100 to 120 ° C., and hydrochloric acid, silicofluoride, excess hydrofluoric acid and water were removed by evaporation and dried. A small amount of ultrapure water is added dropwise to dissolve the concentrated components and adsorbed and concentrated on the carbon powder by mixing well with 40 mg of high-purity carbon powder (Hitachi Chemical Industry HSG-P2). After drying on a hot plate, the sample was scraped, formed into an electrode, and quantified by the SSMS method. A standard sample is prepared by diluting 50 mg of a standard sample for luminescence analysis (using G-Standards manufactured by Spex) with 450 mg of high-purity carbon powder (Hitachi Chemical Industry HSG-P2) and 25 mg of mannitol. Table 1 shows the analytical value (average value) and standard deviation of the boron (B) concentration obtained by repeating 5 times.

実施例2
製造設備の蒸留前の工程から専用容器に取り出したテトラクロロシランとトリクロロシランが7対3の比率で混合された混合物中のホウ素の定量を実施例1と同様にして行った。結果を表2に示す。
Example 2
Boron in the mixture of tetrachlorosilane and trichlorosilane taken out from the pre-distillation step of the production facility in a ratio of 7 to 3 was quantified in the same manner as in Example 1. The results are shown in Table 2.

実施例3
製造設備の蒸留精製工程から専用容器に取り出した高純度ジクロロシランを実施例1と同様、凍結されたジクロロシラン固体を専用のポリテトラフルオロエチレン製の反応容器に移し、その分解専用容器へ溶液状態のフッ化水素酸水溶液(濃度50質量%)20mlを少量ずつ加え、分解反応が終了するまで静置した。この後、実施例1と同様、蒸発乾固処理を行う。残存する不純物を硝酸(濃度0.6質量%)3mlにより再溶解して酸性水溶液とし、これを誘導結合プラズマ質量分析装置(HEWLETT PACKARD HP4500)により不純物の分析を行った。結果を表3に示す。試料採取量は2回の繰り返し分析でそれぞれ、31g、29.1gであった。
Example 3
In the same manner as in Example 1, the high-purity dichlorosilane taken out from the distillation purification process of the production facility was transferred to a dedicated polytetrafluoroethylene reaction vessel in the same manner as in Example 1, and the solution was put into the decomposition-dedicated vessel. 20 ml of an aqueous hydrofluoric acid solution (concentration: 50% by mass) was added little by little and allowed to stand until the decomposition reaction was completed. Thereafter, as in Example 1, evaporation to dryness is performed. The remaining impurities were redissolved with 3 ml of nitric acid (concentration 0.6% by mass) to obtain an acidic aqueous solution, which was analyzed by an inductively coupled plasma mass spectrometer (HEWLETT PACKARD HP4500). The results are shown in Table 3. Sampling amounts were 31 g and 29.1 g, respectively, in two repeated analyses.

半導体産業で使用するモノシランの原料となるクロロシラン類の製造における、或いは半導体製造で使用するジクロロシランなどのクロロシラン類の製造における高純度を要求される製品の品質管理のための不純物分析作業において、反応性の極めて高いクロロシラン類を冷却固化させ、それに予め冷却固化させたフッ化水素酸水溶液、あるいは液体のフッ化水素酸水溶液を接触させることにより、クロロシラン類を安全で穏やかに短時間で分解し、分析試料を作成することで、半導体用ガスの品質管理に大きな効果をもたらす。   Reaction in impurity analysis work for quality control of products that require high purity in the production of chlorosilanes used as raw materials for monosilane used in the semiconductor industry or in the production of chlorosilanes such as dichlorosilane used in semiconductor production Chlorosilanes can be safely and gently decomposed in a short period of time by bringing chlorosilanes with extremely high cooling properties into solid, and bringing them into contact with a hydrofluoric acid aqueous solution or liquid hydrofluoric acid aqueous solution that has been cooled and solidified in advance. Creating an analysis sample has a great effect on quality control of semiconductor gases.

クロロシラン類を冷却固化する装置。(実施例1〜3)Equipment for cooling and solidifying chlorosilanes. (Examples 1-3)

符号の説明Explanation of symbols

1.アルゴンガスボンベ
2.クロロシラン類入った容器(ボンベなど)
3.配管洗浄済みクロロシランの収納容器
4.試料採取用容器
5.液体窒素
6.トラップ(系外へ排出されないように冷却液化、あるいは固化する)
1. 1. Argon gas cylinder Containers containing chlorosilanes (eg cylinders)
3. Storage container for chlorosilane after pipe cleaning 4. 4. Sample collection container Liquid nitrogen
6). Trap (cooled or liquefied or solidified so as not to be discharged outside the system)

Claims (2)

テトラクロロシラン、トリクロロシラン、ジクロロシランから選ばれる1種または2種以上のクロロシラン類混合物を冷却固化させ、同様にフッ化水素酸水溶液を冷却固化させ、これら固体同士を接触させることにより分解することを特徴とするクロロシラン類の処理方法。 One or two or more chlorosilane mixtures selected from tetrachlorosilane, trichlorosilane, and dichlorosilane are cooled and solidified, the hydrofluoric acid aqueous solution is similarly cooled and solidified, and these solids are brought into contact with each other to be decomposed. A characteristic method for treating chlorosilanes. テトラクロロシラン、トリクロロシラン、ジクロロシランから選ばれる1種または2種以上のクロロシラン類混合物を冷却固化させ、液体のフッ化水素酸水溶液を接触させることにより分解することを特徴とするクロロシラン類の処理方法。 A method for treating chlorosilanes, comprising cooling and solidifying a mixture of one or more chlorosilanes selected from tetrachlorosilane, trichlorosilane, and dichlorosilane, and bringing the mixture into contact with a liquid hydrofluoric acid aqueous solution. .
JP2008023427A 2008-02-04 2008-02-04 Chemical treatment method of chlorosilanes Expired - Fee Related JP4837687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008023427A JP4837687B2 (en) 2008-02-04 2008-02-04 Chemical treatment method of chlorosilanes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008023427A JP4837687B2 (en) 2008-02-04 2008-02-04 Chemical treatment method of chlorosilanes

Publications (2)

Publication Number Publication Date
JP2009186197A JP2009186197A (en) 2009-08-20
JP4837687B2 true JP4837687B2 (en) 2011-12-14

Family

ID=41069602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008023427A Expired - Fee Related JP4837687B2 (en) 2008-02-04 2008-02-04 Chemical treatment method of chlorosilanes

Country Status (1)

Country Link
JP (1) JP4837687B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016127180A1 (en) * 2015-02-06 2016-08-11 Elemental Scientific, Inc. System and method for sampling halosilanes
CN107923893B (en) * 2015-08-05 2021-02-12 东亚合成株式会社 Carbon analysis method
CN111289689A (en) * 2018-12-07 2020-06-16 新疆新特新能材料检测中心有限公司 Method and system for detecting content of each component in tail gas in polycrystalline silicon production

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0682119B2 (en) * 1988-05-31 1994-10-19 宇部興産株式会社 Method for analyzing high-purity silicon or boron chloride
JP3107677B2 (en) * 1993-03-31 2000-11-13 セントラル硝子株式会社 Synthesis method of difluorosilane
JP3123698B2 (en) * 1994-07-13 2001-01-15 セントラル硝子株式会社 Manufacturing method of fluorinated silane
CN1646425A (en) * 2002-02-27 2005-07-27 霍尼韦尔国际公司 Preparation of mixed-halogen halo-silanes
JP3778870B2 (en) * 2002-04-04 2006-05-24 株式会社トクヤマ Method for concentrating volatile elements

Also Published As

Publication number Publication date
JP2009186197A (en) 2009-08-20

Similar Documents

Publication Publication Date Title
KR100225832B1 (en) Method and apparatus for etching the silicon material
CN103253674B (en) Polysilicon fragment and the method for purifying polycrystalline silicon fragment
JP2009062213A (en) Method for purifying chlorosilanes
JP4837687B2 (en) Chemical treatment method of chlorosilanes
EP2311776A1 (en) Process for producing fluoride gas
Dong et al. Determination of trace elements in high-purity quartz samples by ICP-OES and ICP-MS: A normal-pressure digestion pretreatment method for eliminating unfavorable substrate Si
JP2002040009A (en) Micro impurity analytical method in silicon substrate
CN108680697A (en) Ammonium nitrogen isotope ratio values determination method in a kind of atmospheric aerosol based on chemical conversion
TWI714124B (en) Manufacturing method of boron trichloride
US6995834B2 (en) Method for analyzing impurities in a silicon substrate and apparatus for decomposing a silicon substrate through vapor-phase reaction
US7273588B1 (en) Methods of sampling halosilanes for metal analytes
JP3778870B2 (en) Method for concentrating volatile elements
JP6112914B2 (en) Method for preparing sample for measuring mercury in coal ash and measuring method for mercury in coal ash
JP2010008048A (en) Method of etching silicon wafer surface oxide film, metal contamination analysis method of silicon wafer with oxide film, and method of manufacturing silicon wafer with oxide film
WO2011046139A1 (en) Fluorine storage device
CN109580320A (en) The pre-treating method and device that trace impurity is analyzed in electron level ethyl orthosilicate
JP6702325B2 (en) Carbon analysis method
KR101064657B1 (en) Apparatus and method for processing poly silicon
JP6424742B2 (en) Pretreatment method for impurity analysis of semiconductor silicon crystal, and impurity analysis method of semiconductor silicon crystal
Gilligan et al. Reactions of protonated water clusters with chlorine nitrate revisited
WO2010067677A1 (en) Method for eliminating unwanted substances from chlorine trifluoride
JP6439782B2 (en) Method for decomposing quartz sample, method for analyzing metal contamination of quartz sample, and method for producing quartz member
WO2019181045A1 (en) Treatment solution and treatment method
Vilakazi et al. A thermogravimetric investigation into the synthesis of CoF3 from Co3O4
JP2005300450A (en) Method for analyzing nickel concentration in alkaline solution

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110928

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees