JPH01301879A - Production of ion exchange membrane-electrode joined body - Google Patents

Production of ion exchange membrane-electrode joined body

Info

Publication number
JPH01301879A
JPH01301879A JP63131720A JP13172088A JPH01301879A JP H01301879 A JPH01301879 A JP H01301879A JP 63131720 A JP63131720 A JP 63131720A JP 13172088 A JP13172088 A JP 13172088A JP H01301879 A JPH01301879 A JP H01301879A
Authority
JP
Japan
Prior art keywords
ion exchange
exchange membrane
metal layer
membrane
soln
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63131720A
Other languages
Japanese (ja)
Other versions
JPH0832963B2 (en
Inventor
Hidehiko Tajima
英彦 田島
Kenji Ueda
健二 植田
Akihiro Sakanishi
彰博 坂西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP63131720A priority Critical patent/JPH0832963B2/en
Publication of JPH01301879A publication Critical patent/JPH01301879A/en
Publication of JPH0832963B2 publication Critical patent/JPH0832963B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To obtain a joined body having low electric resistance, superior adhesion and durability by reducing metal ions adsorbed on one side of an ion exchange membrane to deposit a thin metal layer, charging a soln. of a metal salt and a soln. of a reducing agent on both sides of the membrane and carrying out penetration operation. CONSTITUTION:Metal ions from a platinum-amine complex, etc., are adsorbed on one side of an ion exchange membrane by ion exchange and the membrane is immersed in a soln. of a reducing agent such as a borohydride to deposit a thin metal layer of platinum, etc. A soln. of a metal salt such as a metal chloride is charged on the metal layer side of the membrane and a soln. of a reducing agent is allowed to penetrate from the opposite side to deposit a metal layer on the thin metal layer. An ion exchange membrane-electrode joined body having superior electric current-voltage characteristics is obtd. without using a plating soln. requiring control and adjustment.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はイオン交換膜を固体電解質とする各種電気化学
装置に゛使用さnるイオン交換膜−電極接合体の製造法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing an ion exchange membrane-electrode assembly used in various electrochemical devices using an ion exchange membrane as a solid electrolyte.

〔従来の技術〕[Conventional technology]

イオン交換膜を固体電解質として用いる電気化学的装置
には水成解装置、ハロゲン化アルカリ電解装置、燃料電
池、酸素分離装置、水素分離装置などがある。これらの
装置においては一般にイオン交換膜に電極が一体に接合
されたものが用いられる。
Electrochemical devices that use ion exchange membranes as solid electrolytes include water crackers, halogen alkali electrolyzers, fuel cells, oxygen separators, hydrogen separators, and the like. In these devices, an ion exchange membrane and an electrode are generally used.

従来、イオン交換膜−電極接合体の製造法としては電極
材料粉末と結着剤との混合物からなる触媒成極をイオン
交換膜に加熱圧層する方法(例えば特公昭5B−155
44号公報)と無it′sメツキ法とが知られている。
Conventionally, as a method for producing an ion exchange membrane-electrode assembly, a method of heating and pressurizing an ion exchange membrane with catalyst polarization consisting of a mixture of electrode material powder and a binder (for example, Japanese Patent Publication No. 5B-155)
44) and an it's plating method are known.

さらに無[屏メツキ法を分類すると特公昭56−368
73号公報に記載のイオン交換膜を隔てて金属塩浴液と
還元剤溶液とを配し還元剤をイオン交換膜に浸透させて
金属塩浴液側の膜上に金属層を形成させる浸透法と呼ば
れる方法と、イオン交換膜に白金族に属する金属イオン
をイオン交換吸着させ、次いで水素化ホウ素塩水溶液で
処理して該膜の表面内に金属層を析出させ引き続き金属
塩と還元剤との混合溶液に浸漬して膜面の金属層?成長
させる吸着還元成長法と呼ばれる方法とがある。
Furthermore, there is no [Category of the folding method is
A permeation method described in Publication No. 73 in which a metal salt bath liquid and a reducing agent solution are placed across an ion exchange membrane, and the reducing agent permeates the ion exchange membrane to form a metal layer on the membrane on the metal salt bath liquid side. A method called ion-exchange adsorption of metal ions belonging to the platinum group onto an ion-exchange membrane, followed by treatment with an aqueous borohydride salt solution to precipitate a metal layer on the surface of the membrane, followed by a reaction between the metal salt and a reducing agent. Is the metal layer on the membrane surface immersed in a mixed solution? There is a method called the adsorption-reduction growth method.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

電気化学的装置に用いるイオン交換膜−電極接合体に要
求される性質としては電気抵抗が小でらること、イオン
交換膜に接合される金属層が柔軟性を有していること、
イオン交換膜と金属層との接着性が良好であること、接
合体使用時において金属層の剥離等がなく耐久性に優れ
ていること、等があり、また、接合体製造のための操作
、工程は簡便、短時間であることが望まれている。
The properties required of the ion exchange membrane-electrode assembly used in electrochemical devices include low electrical resistance, flexibility of the metal layer bonded to the ion exchange membrane,
The adhesive properties between the ion exchange membrane and the metal layer are good, the metal layer does not peel off when the bonded body is used, and the durability is excellent.In addition, the operation for manufacturing the bonded body, It is desired that the process be simple and quick.

上記のような要望があるが、浸透法は操作、工程は簡便
、短時間でるるものの不均一な厚みを有する金H層がイ
オン交換膜上に形成され、イオン交換膜と金属層との接
着性が弱く、電気抵抗が大きな接合体が得られるにとど
まる。−方吸着還元成長法は浸透法で得られた接合体に
比して電気抵抗が小であシ接着性にも浸れているが金属
層を成長させるために金属塩と還元剤との混合溶液を用
いるためメツキ浴の調製と管理に細心の注意が必要で、
メツキ浴の安定性が失なわれないようにメツキ速度を上
げることが雌しい、等の操作工程上の問題がある。
Although the above-mentioned demands are met, the permeation method is simple in operation and process, and takes a short time, but it forms a gold H layer with a non-uniform thickness on the ion-exchange membrane, and improves the adhesion between the ion-exchange membrane and the metal layer. However, only a bonded body with low strength and high electrical resistance can be obtained. The adsorption-reduction growth method has lower electrical resistance and adhesive properties than the bonded body obtained by the infiltration method, but in order to grow the metal layer, a mixed solution of metal salt and reducing agent is used. Since the method uses
There are problems in the operational process, such as the need to increase the plating speed so as not to lose the stability of the plating bath.

〔課題を解決するための手段] 本発明者らは鋭意研究した結果、上記浸透法の問題点は
金属析出成長のだめの核形成が不均一に、かつ、接着性
悪く進行するためであること、また上記吸着還元成長法
の問題点は金属塩と還元剤を混合して用いている限シ基
本的な解決は見られないことに思い至り、吸着還元成長
法における金属塩と還元剤との混合溶液による金属層の
成長を排し、新たに金属塩と還元剤とをイオン交換P@
を隔てて配置する浸透操作による金属層の成長を行なう
ことにより、電気抵抗が小で柔軟性、接着性及び耐久性
に潰れた接合体をメツキ浴の調製や管理を行なうことな
く、しかも、メツキ速度を容易に変更し得る方法が提供
できることの知見を得た。
[Means for Solving the Problems] As a result of intensive research, the present inventors have found that the problem with the above-mentioned infiltration method is that the formation of nuclei for metal precipitation growth progresses unevenly and with poor adhesion. In addition, we realized that there is no fundamental solution to the problem of the above-mentioned adsorption-reduction growth method as long as the metal salt and reducing agent are mixed. Eliminating the growth of the metal layer due to the solution, the metal salt and reducing agent are newly ion-exchanged P@
By growing the metal layer by osmosis operation, the bonded body with low electrical resistance, flexibility, adhesion, and durability can be grown without preparing or managing a plating bath. It was found that a method for easily changing the speed can be provided.

本発明は上記知見によって完成されたものでろって、 (1)  イオン交換膜の片面に金属イオンをイオン交
換吸着させ、次いで還元剤で該金属イオンを還元して該
イオン交換膜の表面内に金属薄層を析出させた後、該イ
オン交換膜をはさんで該金属薄層面に金属塩溶液を配し
、該金属薄層の反対面より還元剤溶液を浸透させて金属
層を該金属薄層上に析出させることを特徴とするイオン
交換膜−電極接合体の製造法及び (2)  イオン交換膜の両面に金属イオンをイオン交
換吸着させ、次いで還元剤で該金属イオンを還元して該
イオン交換膜の表面内に金属薄層を析出させた後、該イ
オン交換膜をはさんで一方の金属薄層面に金属塩浴液を
配し、その反対面より還元剤溶液を浸透させて金属層を
該金属薄層上に析出させる操作を金属薄層面それぞれに
ついて行うことを特徴とするイオン交換膜−電極接合体
の製造法 でめる。
The present invention was completed based on the above findings. (1) Metal ions are ion-exchanged and adsorbed on one side of an ion-exchange membrane, and then the metal ions are reduced with a reducing agent to be absorbed into the surface of the ion-exchange membrane. After depositing a thin metal layer, a metal salt solution is placed on the surface of the thin metal layer across the ion exchange membrane, and a reducing agent solution is permeated from the opposite side of the thin metal layer to form a thin metal layer. A method for producing an ion exchange membrane-electrode assembly characterized by depositing on a layer, and (2) ion exchange adsorption of metal ions on both sides of an ion exchange membrane, and then reducing the metal ions with a reducing agent to reduce the metal ions. After depositing a thin metal layer on the surface of the ion exchange membrane, a metal salt bath solution is placed on one side of the thin metal layer across the ion exchange membrane, and a reducing agent solution is permeated from the opposite side to remove the metal. A method for producing an ion exchange membrane-electrode assembly, characterized in that the operation of depositing a layer on the thin metal layer is performed on each side of the thin metal layer.

本発明において使用されるイオン交換膜としては、スル
ホン基、カルボキシル基又はホスホン基を有する陽イオ
ン交換膜、もしくは各級アミン基、第四アンモニウム又
はスルホニウム基を有する陰イオン交換膜などがあげら
れる。
Examples of the ion exchange membrane used in the present invention include cation exchange membranes having sulfone groups, carboxyl groups, or phosphonic groups, or anion exchange membranes having various amine groups, quaternary ammonium groups, or sulfonium groups.

本発明においてイオン交換吸着させる金属イオンとして
は、アンミン錯イオンもしくはノ・ロゲン錯イオンなど
があげられ、イオン交換吸着させた金属イオンの還元剤
としては、水素、次亜リン酸塩、水素化ホウ素化合物又
はヒドラジンなどがあげられる。
In the present invention, examples of metal ions to be ion-exchanged and adsorbed include ammine complex ions and no-rogen complex ions, and examples of reducing agents for metal ions adsorbed by ion-exchange include hydrogen, hypophosphite, and borohydride. Examples include compounds such as hydrazine and the like.

更に本発明において使用される金属塩としては、塩化物
、硫酸塩、硝酸塩、過塩素酸塩又はクロロアンモニウム
塩などがめげられ、これら金属塩の還元剤としては、次
亜リン酸塩、水素化ホウ素化合物又はヒドラジンなどが
めげられる。
Furthermore, the metal salts used in the present invention include chlorides, sulfates, nitrates, perchlorates, and chloroammonium salts, and the reducing agents for these metal salts include hypophosphites, hydrogenated Examples include boron compounds or hydrazine.

以下、本発明の実施列をあげ本発#4ft更に詳述する
Hereinafter, examples of implementation of the present invention will be listed and the #4ft model will be further described in detail.

〔実施列1〕 第1図に示す内径16■のL型ホルダーにイオン交換膜
4(デュポン社製商標名:ナフィオン117)を固定し
た。L型ホルダーはアクリル樹脂製枠体1a、1bとパ
ツキン2a、2bと締め付は金具3a、5bとから構成
され、イオン交換膜4は中央部に固定した。
[Implementation row 1] An ion exchange membrane 4 (trade name: Nafion 117, manufactured by DuPont) was fixed to an L-shaped holder with an inner diameter of 16 cm as shown in FIG. The L-shaped holder was composed of acrylic resin frames 1a, 1b, gaskets 2a, 2b, and fastening fittings 3a, 5b, and the ion exchange membrane 4 was fixed at the center.

このホルダーのム室5に注入ロアから白金アミン錯体[
Pt(IJH,)、04 )  (L 2 %水溶g2
awtを注入、30℃で2時間放置の後残液を排出して
から水洗した。次にこれをα296 NaEH,水溶液
に30℃で1時間浸漬しイオン交換膜4中に捕捉されて
いる白金ア/ミ/錯体イオンを還元しイオン交換膜40
片面に白金を析出させた。
Platinum amine complex [
Pt (IJH,), 04 ) (L 2 % water soluble g2
awt was injected and left at 30°C for 2 hours, the remaining liquid was drained and washed with water. Next, this is immersed in an α296 NaEH aqueous solution at 30° C. for 1 hour to reduce the platinum a/mi/complex ions captured in the ion exchange membrane 4.
Platinum was deposited on one side.

続いてA室5に5%H,ptat、・6H!O水浴液を
、B室6に1%NaEも水溶液を注入し、60℃で15
分間浸漬してA室5側の膜面に所定量の金属層を析出さ
せた。
Next, 5% H, ptat, 6H in room A 5! The O water bath solution was injected into the B chamber 6, and the 1% NaE aqueous solution was injected into the B chamber 6 and heated at 60℃ for 15 minutes.
A predetermined amount of metal layer was deposited on the membrane surface on the A chamber 5 side by dipping for a minute.

〔実施列2〕 実施列1で用いたL型ホルダーに同じイオン交換膜4を
固定し、このホルダーのA呈5及びB室6にそれぞれ注
入ロア及び8から白金アンミン錯体(Pt(′MHs)
*04 )  α2%水溶液20m?注入し、30℃で
2時間放置の後残液?排出してから水洗し九。次にこれ
l CL 2 % IJaEE4水溶液に30℃で1時
間浸漬し、イオン交換膜4中に捕捉されている白金アン
ミン錯体イオン交換膜し、イオン交換膜4両面に白金を
析出させた。
[Implementation row 2] The same ion exchange membrane 4 was fixed to the L-shaped holder used in implementation row 1, and a platinum ammine complex (Pt('MHs)
*04) α2% aqueous solution 20m? Residual liquid after injecting and leaving at 30℃ for 2 hours? After draining, wash with water. Next, this membrane was immersed in a 1 CL 2 % IJaEE4 aqueous solution at 30° C. for 1 hour to remove the platinum ammine complex ion exchange membrane captured in the ion exchange membrane 4 and deposit platinum on both surfaces of the ion exchange membrane 4.

続イテム室5 K: 3 S R,Pt04−6E、O
水溶液?、B室乙に1 * NaBH4水溶液を注入し
、60℃で15分間浸漬してム室5側の膜面に所定量の
金属層を析出させた。さらにL型ホルダーを水洗し、A
室5 K 1 % NaBE、水溶液’Jj(B室6に
5%H2Ptc4・6馬0 水溶液を注入し、同様にし
てB菟6側の膜面にも金属層を析出させた。
Continuation item room 5 K: 3 SR, Pt04-6E, O
Aqueous solution? A 1*NaBH4 aqueous solution was injected into chamber B and immersed at 60° C. for 15 minutes to deposit a predetermined amount of metal layer on the membrane surface on the chamber 5 side. Furthermore, wash the L-shaped holder with water, and
Chamber 5 K1% NaBE, aqueous solution 'Jj (5% H2Ptc4.6m0 aqueous solution was injected into the B chamber 6, and a metal layer was similarly deposited on the film surface on the B chamber 6 side.

上述の実施列2で得られたイオン交換膜−電極接合本人
と、浸透法によυイオン交換膜に白金を接合して得られ
たイオン交換膜−電極接合体Bと吸着還元成長法により
イオン交換膜に白金?接合して得られたイオン交換膜−
電極接合体Oをそれぞれ水電解槽に用いた時の′1流−
電圧特性を比較したところ、第2図に示す結果が得られ
た。
The ion exchange membrane-electrode assembly itself obtained in Example 2 above, the ion exchange membrane-electrode assembly B obtained by bonding platinum to the υ ion exchange membrane by the osmosis method, and the ion exchange membrane-electrode assembly B obtained by the adsorption-reduction growth method. Platinum in the exchange membrane? Ion exchange membrane obtained by bonding
'1 flow when each electrode assembly O is used in a water electrolyzer -
When the voltage characteristics were compared, the results shown in FIG. 2 were obtained.

第2図において本発明方法により得られた接合体は浸透
法により得られた接合体よりも潰れ、吸着還元成長法に
より得られ九接合体に匹敵するttM、〜電圧特性を示
すことがわかる。
In FIG. 2, it can be seen that the conjugate obtained by the method of the present invention is more crushed than the conjugate obtained by the infiltration method, and exhibits ttM to voltage characteristics comparable to the conjugate obtained by the adsorption-reduction growth method.

〔発明の効果〕〔Effect of the invention〕

本発明方法により調製、管理を心安とするメツキ浴を使
用せずに潰れた電流−電圧特性を示すイオン交換膜−電
極接合t*を得ることができる。
By the method of the present invention, it is possible to obtain an ion exchange membrane-electrode junction t* that exhibits flat current-voltage characteristics without using a plating bath, which is safe to prepare and manage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施列にかかるイオン交換膜のホルダ
ー断面図、第2図は本発明方法及び従来の浸透法、吸着
還元成長法によって得られたイオン交換膜−電極接合体
を水X解槽に用いた場合の電流−電圧特性を示す図であ
る。
FIG. 1 is a cross-sectional view of an ion exchange membrane holder according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view of an ion exchange membrane-electrode assembly obtained by the method of the present invention, the conventional infiltration method, and the adsorption-reduction growth method. FIG. 3 is a diagram showing current-voltage characteristics when used for tank decomposition.

Claims (1)

【特許請求の範囲】 1、イオン交換膜の片面に金属イオンをイオン交換吸着
させ、次いて還元剤で該金属イオンを還元して該イオン
交換膜の表面内に金属薄層を析出させた後、該イオン交
換膜をはさんで該金属薄層面に金属塩溶液を配し、該金
属薄層の反対面より還元剤溶液を浸透させて金属層を該
金属薄層上に析出させることを特徴とするイオン交換膜
−電極接合体の製造法。 2、イオン交換膜の両面に金属イオンをイオン交換吸着
させ、次いで還元剤で該金属イオンを還元して該イオン
交換膜の表面内に金属薄層を析出させた後、該イオン交
換膜をはさんで一方の金属薄層面に金属塩溶液を配し、
その反対面より還元剤溶液を浸透させて金属層を該金属
薄層上に析出させる操作を金属薄層面それぞれについて
行うことを特徴とするイオン交換膜−電極接合体の製造
法。
[Claims] 1. After ion exchange adsorption of metal ions on one side of the ion exchange membrane, and then reducing the metal ions with a reducing agent to deposit a thin metal layer on the surface of the ion exchange membrane. , a metal salt solution is placed on the surface of the thin metal layer across the ion exchange membrane, and a reducing agent solution is permeated from the opposite side of the thin metal layer to deposit a metal layer on the thin metal layer. A method for producing an ion exchange membrane-electrode assembly. 2. After ion exchange adsorption of metal ions on both sides of the ion exchange membrane, and then reducing the metal ions with a reducing agent to deposit a thin metal layer on the surface of the ion exchange membrane, the ion exchange membrane is removed. Place the metal salt solution on one side of the thin metal layer between the
1. A method for producing an ion exchange membrane-electrode assembly, which comprises performing an operation for each thin metal layer surface to infiltrate a reducing agent solution from the opposite side to deposit a metal layer on the thin metal layer.
JP63131720A 1988-05-31 1988-05-31 Ion-exchange membrane-electrode assembly manufacturing method Expired - Fee Related JPH0832963B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63131720A JPH0832963B2 (en) 1988-05-31 1988-05-31 Ion-exchange membrane-electrode assembly manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63131720A JPH0832963B2 (en) 1988-05-31 1988-05-31 Ion-exchange membrane-electrode assembly manufacturing method

Publications (2)

Publication Number Publication Date
JPH01301879A true JPH01301879A (en) 1989-12-06
JPH0832963B2 JPH0832963B2 (en) 1996-03-29

Family

ID=15064628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63131720A Expired - Fee Related JPH0832963B2 (en) 1988-05-31 1988-05-31 Ion-exchange membrane-electrode assembly manufacturing method

Country Status (1)

Country Link
JP (1) JPH0832963B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007317595A (en) * 2006-05-29 2007-12-06 Nippon Telegr & Teleph Corp <Ntt> Solution pouring holder for solid oxide fuel cell
EP3815763A1 (en) * 2019-11-01 2021-05-05 I3 Membrane GmbH Method and apparatus for dc voltage controlled adsorption and desorption on charged membranes
US11701618B2 (en) 2015-07-07 2023-07-18 I3 Membrane Gmbh Metal coated polymembrane

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007317595A (en) * 2006-05-29 2007-12-06 Nippon Telegr & Teleph Corp <Ntt> Solution pouring holder for solid oxide fuel cell
US11701618B2 (en) 2015-07-07 2023-07-18 I3 Membrane Gmbh Metal coated polymembrane
EP3815763A1 (en) * 2019-11-01 2021-05-05 I3 Membrane GmbH Method and apparatus for dc voltage controlled adsorption and desorption on charged membranes
WO2021084080A1 (en) * 2019-11-01 2021-05-06 I3 Membrane Gmbh Method and device for dc-voltage-controlled adsorption and desorption on charged membranes
JP2023505010A (en) * 2019-11-01 2023-02-08 アイスリー メンブレイン ゲーエムベーハー Separation method by adsorption and electrodesorption, electroadsorption and/or electrofiltration device and system

Also Published As

Publication number Publication date
JPH0832963B2 (en) 1996-03-29

Similar Documents

Publication Publication Date Title
US4364803A (en) Deposition of catalytic electrodes on ion-exchange membranes
CN101203980B (en) Membrane-electrode assemblies for fuel cell, their manufacture and use and fuel cells incorporating them
US4326930A (en) Method for electrolytic deposition of metals
EP0245684A2 (en) Metallized membranes
JPS5847471B2 (en) Manufacturing method of electrolytic assembly
JPH01301879A (en) Production of ion exchange membrane-electrode joined body
CN109680310A (en) A kind of nickel antimony electroplating solution and preparation method thereof
KR20210061958A (en) Method for manufacturing Metal-Organic Frameworks and Layered Double Hydroxide Composite Using Electrodeposition
JPH067679A (en) Production of platinum alloy catalyst for phosphoric acid type fuel cell
JPS5980764A (en) Electroless plating bath for plating platinum or platinum-palladium alloy
JP2692736B2 (en) Method for producing gold-ion exchange membrane assembly
JP2863831B2 (en) Method for producing gold-ion exchange membrane assembly
CN106164341A (en) There is the method that the optical fiber of conductive coating is combined with hardware
JPS58204188A (en) Method for producing joined body of ion exchange membrane and catalytic electrode
WO1992007975A1 (en) Process for the galvanic production of a smooth, non-porous coating in the micrometre range of a palladium alloy of defined composition
JPS6261117B2 (en)
CN113644192B (en) Preparation method of asymmetric electrode IPMC and prepared asymmetric electrode IPMC
JPS63216988A (en) Fluorine-containing anion exchange membrane-electrode joined body
JPH01208489A (en) Catalytic electrode and production thereof
JPS5933668B2 (en) Ruthenium coating method
JPS61231190A (en) Method for joining catalytic electrode to ion exchange membrane
JP3652854B2 (en) Method for producing cell for hydrogen production
JP2000129022A (en) Method for plating nonconductive porous material having continuous gas permeability with metal
JP2521888B2 (en) Method for manufacturing electrode assembly
JPH01208490A (en) Production of joined body for electroysis

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees