JPH01301521A - Ceramic-based electrically conductive material - Google Patents

Ceramic-based electrically conductive material

Info

Publication number
JPH01301521A
JPH01301521A JP63132023A JP13202388A JPH01301521A JP H01301521 A JPH01301521 A JP H01301521A JP 63132023 A JP63132023 A JP 63132023A JP 13202388 A JP13202388 A JP 13202388A JP H01301521 A JPH01301521 A JP H01301521A
Authority
JP
Japan
Prior art keywords
phase
critical temperature
high critical
conductive material
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63132023A
Other languages
Japanese (ja)
Inventor
Eiji Natori
栄治 名取
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP63132023A priority Critical patent/JPH01301521A/en
Publication of JPH01301521A publication Critical patent/JPH01301521A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain the title nontoxic material of high environmental resistance with broad applications, by adding a specified amount of Pb to a Bi-M(Ca, Sr, Ba)-Cu-O-based superconducting product followed by calcination at specified temperature to attempt single phase formation at high critical temperature. CONSTITUTION:A Bi-M-Cu-O-based superconducting material (M is combination of plural elements selected from Ca, Sr and Ba) is spiked with Pb so as to be 0.006-0.08 in atom ratio Pb/Bi and calcined in an oxygen atmosphere at 500-810 deg.C. The resulting product is put to compression forming followed by sintering and annealing, thus obtaining the objective material. According the above process, separation of a low critical temperature-phase can be suppressed, leading to establishing stabilized superconducting phase, thereby accomplishing high critical current density and high critical magnetic field.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はジョセフソン素子、超伝導モーター、超伝導マ
グネット等に用いるセラミック系導電材料に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a ceramic conductive material used in Josephson elements, superconducting motors, superconducting magnets, and the like.

(従来の技術) 液体窒素温度以上の臨界温度を持つセラミック系導電材
料(超伝導材料)は大別してHoust。
(Prior Art) Ceramic conductive materials (superconducting materials) that have a critical temperature higher than the liquid nitrogen temperature are broadly classified into Houst materials.

n大学のC,W、Chuらが発見したY−Ba−Ca−
0系、科学技術庁金属材料技術研究所の前出らが発見し
たB1−8r−Ca−Cu−0系とArkansas大
学のA、M、Hermannらが発見したTl−Ca−
Ba−Cu”O系の3種類ある。これらの物質特性の詳
細はPhysical  Review  Lette
r、Vol。
Y-Ba-Ca- discovered by C, W, Chu et al. of n University
0 series, the B1-8r-Ca-Cu-0 series discovered by Mae et al. of the National Institute of Materials Science and Technology, and the Tl-Ca- series discovered by A.M. Hermann et al. of the University of Arkansas.
There are three types of Ba-Cu”O type.For details of these material properties, please refer to Physical Review Letter
r, Vol.

58、  N o、  9.  p 908−.910
. 1987、N1kkei  EleCtrOniC
81988年4月18日号(No、445)p175や
Nature (London)No、332.p55
゜1988等に述べられている。
58, No, 9. p 908-. 910
.. 1987, N1kkei EleCtrOniC
8 April 18, 1988 (No. 445) p175 and Nature (London) No. 332. p55
゜1988, etc.

(発明が解決しようとする課題) しかしながら従来の超伝導材料はY−Ba−Cu−0系
は加水分解し易いため耐環境性が悪く尚且希土類元素の
産出地域が偏っている(日本は産出無し)、B1−8r
−Ca−Cu−0系は単相の作成が困難(高臨界温度相
と低臨界温度相の混和で高臨界温度相は50%未満とな
り臨界電流密度、臨界磁界の低下を招く)、Tl−Ca
−Ba−0系は毒性が強いなどの問題を有していた。
(Problem to be solved by the invention) However, the Y-Ba-Cu-0 system of conventional superconducting materials has poor environmental resistance because it is easily hydrolyzed, and rare earth elements are produced in uneven regions (Japan does not produce them). ), B1-8r
-Ca-Cu-0 system is difficult to create a single phase (high critical temperature phase and low critical temperature phase are mixed, and the high critical temperature phase becomes less than 50%, causing a decrease in critical current density and critical magnetic field), Tl- Ca
-Ba-0 series had problems such as high toxicity.

特に加水分解し易い点や毒性が強い点は応用分野を非常
に限定させていた。
In particular, its easy hydrolysis and strong toxicity have severely limited its field of application.

本発明はこの様な問題を解決するものでありB1−3r
−Ca−0系の高臨界温度の単相化を図り毒性がなく、
耐環境性に優れ、質が良く(単相化)応用分野の限定の
少ないセラミック系導電材料(超電導材料)を得んとす
るものである。
The present invention solves these problems and
-The high critical temperature of the Ca-0 system is made into a single phase, and it is non-toxic.
The purpose is to obtain a ceramic conductive material (superconducting material) that has excellent environmental resistance, good quality (single phase), and has few limitations in its application fields.

(課題を解決するための手段) 上記の問題を解決するため本発明のセラミック系導電材
料はl)Bi−M−Cu−0系導電物質(ここでMはC
a、Br、Baより選ばれる複数種元素の組合せ)にp
bをP b / B i比(原子比)で表したとき0.
006〜0.08の範囲で添加して成ること2)仮焼を
8106C以下で行うことを特徴とする。
(Means for Solving the Problems) In order to solve the above problems, the ceramic conductive material of the present invention is l) Bi-M-Cu-0 conductive material (where M is C
combination of multiple elements selected from a, Br, Ba) to p
When b is expressed as P b / B i ratio (atomic ratio), it is 0.
2) Calcination is performed at 8106C or lower.

(実施例) 以下実施例に従い本発明の詳細な説明する。先ずオキシ
酢酸ビスマス、酢酸ストロンチウム、酢酸カルシウム、
酢酸銅の微粉末を混合した後純水を加え100℃に加熱
しながら攪はん分散させる。
(Examples) The present invention will be described in detail below according to Examples. First, bismuth oxyacetate, strontium acetate, calcium acetate,
After mixing fine powder of copper acetate, pure water is added and the mixture is stirred and dispersed while heating to 100°C.

第1表 Bi、Br、Ca、Cuの基本比率はモル比で2:  
2:  2:  3であるが後に加えるpbの添加量に
よりBiとCuの量を調整する。
Table 1 Basic ratios of Bi, Br, Ca, and Cu are 2:
2: 2: 3, but the amounts of Bi and Cu are adjusted depending on the amount of PB added later.

次にこの溶液に酢酸鉛を熱処理後の最終組成比(P b
 / B i )が第1表と成る様に添加し再度風はん
分散させる。
Next, lead acetate is added to this solution and the final composition ratio after heat treatment (P b
/ B i ) as shown in Table 1 and dispersed again with air.

尚pbは仮焼、焼結、アニール処理に於て蒸発し易いた
め予め蒸発分を補正して添加する必要がある。この時の
仕込値は0.05〜0.5であった。溶解がほぼ完了し
たら次に370℃に加熱し水分を除去すると共に有機物
を燃焼させる。水分を除去していくと徐々に粘土状にな
り、更に加熱すると有機物が燃焼して粉末状になる。
Note that since Pb easily evaporates during calcination, sintering, and annealing treatments, it is necessary to correct the evaporation amount before adding it. The charging value at this time was 0.05 to 0.5. When the dissolution is almost complete, the mixture is heated to 370° C. to remove moisture and burn off the organic matter. As the water is removed, it gradually becomes clay-like, and when heated further, the organic matter burns and becomes powder-like.

次にこの得られた粉末を500〜810°C酸素雲囲気
中に於て5時間仮焼を行い反応物を得る。この時の仮焼
温度は810℃を越えると低融点化合物が溶融分離(特
に拳法は固相反応法に比べ微粉末と成るため傾向が強い
)を起こしたり強固な低臨界温度相ができ焼結温度やア
ニール温度を調整しても高臨界温度相が出来ずらくなる
ため好ましくない0次にこの反応物を圧縮成形した後、
8700C酸素雰囲気中に於て1時間焼結、更に850
〜855℃において150時間アニール処理を行いセラ
ミック系導電材料を得た。試料形状はφ15*L  5
t(mm)である。
Next, the obtained powder is calcined for 5 hours at 500 to 810 DEG C. in an oxygen cloud atmosphere to obtain a reactant. If the calcination temperature exceeds 810°C, low-melting point compounds may melt and separate (particularly in Kempo, which is more likely to result in fine powder compared to solid-phase reaction methods), or a strong low-critical temperature phase may form, leading to sintering. After compression molding this reaction product, which is undesirable because it becomes difficult to form a high critical temperature phase even if the temperature and annealing temperature are adjusted,
Sintered for 1 hour in an oxygen atmosphere at 8700C, then sintered at 850C for 1 hour.
Annealing treatment was performed at ~855°C for 150 hours to obtain a ceramic conductive material. Sample shape is φ15*L 5
t (mm).

次にこの試料をIOKまで冷却しながら磁化測定を行い
高臨界温度相と低臨界温度相の体積比率を割り出した。
Next, magnetization was measured while cooling this sample to IOK, and the volume ratio of the high critical temperature phase and the low critical temperature phase was determined.

その結果を第2表に比較例と共に示す。The results are shown in Table 2 together with comparative examples.

100に級の臨界温度相を高臨界温度相、60〜80に
級の臨界温度相を低臨界温度相とし全体積に対する割合
で示されている。但し超電導相以外の相の比率(全体を
100とした時の残部)は参考値。
The critical temperature phase in the 100 degree range is defined as a high critical temperature phase, and the critical temperature phase in the 60 to 80 degree range is defined as a low critical temperature phase, and is expressed in proportion to the total volume. However, the ratio of phases other than the superconducting phase (the remainder when the total is 100) is a reference value.

表より判るようにpbを添加することにより顕著に高臨
界温度相が増加している。尚添加範囲はPb/Bi比(
原子比)で表したとき0.006〜0.08内が好まし
い。少ないと添加効果がなく、多すぎると比較例11と
12に示すように超電導相そのものが減少更に過剰添加
は耐環境性も低下させる。
As can be seen from the table, the addition of PB significantly increases the number of high critical temperature phases. The addition range is Pb/Bi ratio (
It is preferably within 0.006 to 0.08 when expressed as atomic ratio). If it is too small, there is no effect of addition, and if it is too large, the superconducting phase itself decreases as shown in Comparative Examples 11 and 12, and in addition, excessive addition also reduces the environmental resistance.

第2表     (%) また仮焼は前にも述べたが810℃を越え行うと以後焼
結温度、アニール温度の適正化を図っても第3表に示す
ように高臨界温度相が出来ずらくなるため810°C以
下で行うのが好ましい。
Table 2 (%) Also, as mentioned before, if the temperature of calcination exceeds 810℃, a high critical temperature phase will not be formed as shown in Table 3 even if the sintering temperature and annealing temperature are subsequently optimized. It is preferable to carry out the temperature below 810°C.

第3表 尚現時点ではpbがどのサイトに入っているが不明のた
め添加と表現した。
Table 3: At present, it is unknown which site contains PB, so it is expressed as added.

(発明の効果) 以上述べたように本発明によれば低臨界温度相の析出を
抑制できるため安定した超電導体相となり高臨界電流密
度化、高臨界磁界化が図れる。またBi系であるから毒
性がなく、耐環境性に優れ応用分野の限定の少ないセラ
ミック系導電材料と成る。尚この材料はジョセフソン素
子、電磁波センサー、磁気センサー、磁束メモリ、磁気
シールド材、送電ケーブル、通信ケーブル、超電導モー
タ、超電導マグネット等に応用できる。
(Effects of the Invention) As described above, according to the present invention, precipitation of a low critical temperature phase can be suppressed, resulting in a stable superconducting phase, and a high critical current density and high critical magnetic field can be achieved. Furthermore, since it is Bi-based, it is a ceramic-based conductive material that is non-toxic, has excellent environmental resistance, and has few limitations in its application fields. This material can be applied to Josephson elements, electromagnetic wave sensors, magnetic sensors, magnetic flux memories, magnetic shielding materials, power transmission cables, communication cables, superconducting motors, superconducting magnets, etc.

以上 出願人 セイコーエプソン株式会社 代理人 弁理士 上柳雅誉 他1名that's all Applicant: Seiko Epson Corporation Agent: Patent attorney Masayoshi Kamiyanagi and 1 other person

Claims (2)

【特許請求の範囲】[Claims] (1)Bi−M−Cu−O系導電物質(ここでMはCa
、Br、Baより選ばれる複数種元素の組合せ)にPb
をPb/Bi比(原子比)で表したとき0.006〜0
.08の範囲で添加して成ることを特徴とするセラミッ
ク系導電材料。
(1) Bi-M-Cu-O based conductive material (where M is Ca
, Br, Ba) and Pb
0.006 to 0 when expressed as Pb/Bi ratio (atomic ratio)
.. 1. A ceramic conductive material, characterized in that the ceramic conductive material is added in a range of 0.08 to 0.08.
(2)仮焼を810℃以下で行うことを特徴とするセラ
ミック系導電材料。
(2) A ceramic conductive material characterized by being calcined at 810°C or lower.
JP63132023A 1988-05-30 1988-05-30 Ceramic-based electrically conductive material Pending JPH01301521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63132023A JPH01301521A (en) 1988-05-30 1988-05-30 Ceramic-based electrically conductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63132023A JPH01301521A (en) 1988-05-30 1988-05-30 Ceramic-based electrically conductive material

Publications (1)

Publication Number Publication Date
JPH01301521A true JPH01301521A (en) 1989-12-05

Family

ID=15071703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63132023A Pending JPH01301521A (en) 1988-05-30 1988-05-30 Ceramic-based electrically conductive material

Country Status (1)

Country Link
JP (1) JPH01301521A (en)

Similar Documents

Publication Publication Date Title
JPH0764627B2 (en) Method for manufacturing melt-generated superconductor
JP3089294B2 (en) Manufacturing method of superconducting tape material
JPH0780710B2 (en) Manufacturing method of oxide high temperature superconductor
JPH01301521A (en) Ceramic-based electrically conductive material
JPH01301522A (en) Ceramic-based electrically conductive material
JPS63259927A (en) Manufacture of thin film of superconductive matter
JPH01308829A (en) Oxide superconducting material
JP2860017B2 (en) Bi-based high-temperature superconducting oxide material and method for producing the same
JPH01308828A (en) Oxide superconducting material
JPH01242419A (en) Bi-pb-ca-sr-cu-o based superconducting material
JPH0745357B2 (en) Superconducting fibrous single crystal and method for producing the same
JP2002037626A (en) Method for manufacturing bismuth type high temperature superconductor
JP2696690B2 (en) Oxide superconducting material
JPS63282120A (en) Production of superconductive conjugated metal oxide
JPH01275433A (en) Multiple oxide superconducting material and production thereof
JPH01157009A (en) Superconductor thin film
JPH026329A (en) Superconducting material composition
JPH01108149A (en) Oxide superconducting material
JPH01246131A (en) Production of oxide superconductor
JPH01290530A (en) Multiple oxides superconducting material and production thereof
JPH03187902A (en) Manufacture of high temperature, superconducting substance
JPS63303811A (en) Superconducting ceramic
JPH03112852A (en) Oxide superconductive material
JPH03131521A (en) Oxide superconductor and production thereof
JPH0745358B2 (en) Method for producing superconducting single crystal