JPH0130075B2 - - Google Patents

Info

Publication number
JPH0130075B2
JPH0130075B2 JP60234172A JP23417285A JPH0130075B2 JP H0130075 B2 JPH0130075 B2 JP H0130075B2 JP 60234172 A JP60234172 A JP 60234172A JP 23417285 A JP23417285 A JP 23417285A JP H0130075 B2 JPH0130075 B2 JP H0130075B2
Authority
JP
Japan
Prior art keywords
pressure
temperature
compressor
solenoid valve
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60234172A
Other languages
Japanese (ja)
Other versions
JPS6294780A (en
Inventor
Katsuyuki Sawai
Nobuki Wakabayashi
Sadao Oda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Kogyo Co Ltd filed Critical Daikin Kogyo Co Ltd
Priority to JP23417285A priority Critical patent/JPS6294780A/en
Publication of JPS6294780A publication Critical patent/JPS6294780A/en
Publication of JPH0130075B2 publication Critical patent/JPH0130075B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は冷凍庫内の温度上昇を可及的に仰えて
冷凍品の品質保持をはかる温度制御機能を有し、
特に海上用冷凍コンテナに適する冷凍装置の構成
に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention has a temperature control function that maintains the quality of frozen products by increasing the temperature inside the freezer as much as possible.
In particular, the present invention relates to the configuration of a refrigeration system suitable for marine refrigerated containers.

(従来の技術) 海上用冷凍コンテナにおける冷凍装置は、外気
温度が例えば50℃乃至−40℃と温度変動幅が広範
な状態で使用されることから、一般の陸上定置形
冷凍装置とは異なつた運転制御が成されるもので
あり、特に外気温度が−40℃等の極低温域で運転
する場合には以下述べる如き特殊な運転制御を行
つて圧縮機への液戻りを起生させないようにする
ことが、必要であつて、これは従来より公知とさ
れている。
(Prior art) Refrigeration equipment for marine refrigerated containers is different from general land-based refrigeration equipment because it is used under conditions where the outside air temperature fluctuates over a wide range, for example from 50°C to -40°C. In particular, when operating in an extremely low temperature range such as -40℃ outside air temperature, special operation control as described below is performed to prevent liquid from returning to the compressor. It is necessary to do this, and this is known in the art.

すなわち、圧縮機、凝縮器、減圧器例えば膨脹
弁及び蒸発器からなる公知の冷凍サイクルにおい
て、凝縮器の出口と蒸発器の入口とを連結する液
管(高圧、低圧の両液管を指す)の途中に液側電
磁弁を介設せしめる一方、低圧ガス管に低圧々力
を検出する圧力検知器を設けて、冷凍運転中に冷
凍庫内の温度が設定温度まで低下してきた場合
に、冷凍運転を中断するに先立つて、圧縮機を駆
動したままで前記液側電磁弁を閉弁させ低圧側の
冷媒を吸入して凝縮器側に送り、低圧側を真空に
近い稀薄ガス状態に保持した後、前記圧力検知器
が低域の限界圧力を検知し作動することによつて
圧縮機を停止せしめる運動を行わせるようにして
おり、これをポンプダウン運転と称している。
That is, in a known refrigeration cycle consisting of a compressor, a condenser, a pressure reducer, such as an expansion valve, and an evaporator, a liquid pipe (referring to both high-pressure and low-pressure liquid pipes) connects the outlet of the condenser and the inlet of the evaporator. A liquid-side solenoid valve is installed in the middle of the refrigeration process, and a pressure detector is installed in the low-pressure gas pipe to detect low pressure and pressure. Prior to interrupting the operation, the liquid side solenoid valve is closed while the compressor is still running, and the refrigerant on the low pressure side is sucked in and sent to the condenser side, maintaining the low pressure side in a diluted gas state close to vacuum. The pressure sensor detects a low limit pressure and operates to stop the compressor, and this is called pump-down operation.

このようにポンプダウン運転を行うことによつ
て、圧縮機再起動時に液冷媒が吸入される不都合
を解消させることが可能であるが、外気温度が極
低温域の状態では、低圧ガス管内の圧力が低いま
ま持続されて、例えば冷媒にフロンR−12を使用
しているときに水銀柱400mm(−50℃)の圧力状
態が長く持続されて圧縮機が起動可能な圧力状態
例えば0.2Kg/cm2に上昇するのに長時間を要する
結果、冷凍装置の運転中断時間が普通の場合とは
違つて相当長くなるものである。
By performing pump-down operation in this way, it is possible to eliminate the inconvenience of liquid refrigerant being sucked in when the compressor is restarted, but when the outside temperature is in the extremely low range, the pressure in the low-pressure gas pipe may For example, when CFC R-12 is used as a refrigerant, the pressure of 400 mm of mercury (-50°C) is maintained for a long time and the compressor can be started, for example, 0.2 kg/cm 2 As a result, it takes a long time for the refrigeration system to rise to a certain temperature, and as a result, the operation interruption time of the refrigeration equipment becomes considerably longer than in the normal case.

ところが、冷凍庫内では庫内雰囲気の温度平均
化をはかるために、モータと直結したフアンを要
素とする送風装置は運転し続けたまゝであつて、
モータの発熱分が熱負荷となり庫内温度が徐々に
上昇してくることとなり、庫内温度が設定温度よ
りも高くなつてきて冷凍運転が必要であるにもか
かわらず圧縮機が再起動しなくて冷凍庫内の温度
変化幅が大きくなり、これが貯蔵品の品質に悪影
響を及ぼす問題につながるのであつた。
However, in order to average the temperature of the atmosphere inside the freezer, the blower device, which consists of a fan directly connected to the motor, continues to operate.
The heat generated by the motor becomes a heat load and the temperature inside the refrigerator gradually rises.The temperature inside the refrigerator becomes higher than the set temperature and the compressor does not restart even though refrigeration operation is required. As a result, the range of temperature changes inside the freezer becomes large, which leads to problems that adversely affect the quality of stored products.

(発明が解決しようとする問題点) そこで実開昭55−172779号公報によつても開示
されてなる如く、一部のフアンを除き他のフアン
は圧縮機に連動させて停止し、前記一部のフアン
を間欠的に発停するようにしたものがあるが、こ
れは熱負荷が減じて庫内温度の上昇を抑制する点
で目的は一応達成し得るが、依然として熱負荷は
存在していて温度上昇は避けられなく、しかも平
均循環送風量が可成り減少してくるので庫内温度
が不均一となるおそれもあつて、万全な解決策と
は云い難かつた。
(Problems to be Solved by the Invention) Therefore, as disclosed in Japanese Utility Model Application Publication No. 55-172779, except for a part of the fans, the other fans are stopped in conjunction with the compressor. There is a system that starts and stops the fans in the refrigerator intermittently, but this can achieve the purpose of reducing the heat load and suppressing the rise in temperature inside the refrigerator, but the heat load still exists. This cannot be said to be a perfect solution, since an increase in temperature is unavoidable, and since the average circulating air volume is considerably reduced, there is a risk that the temperature inside the refrigerator will become uneven.

このような問題点に鑑みて本発明は従来の装置
が有する欠点を排除し得る冷凍装置を提供すべく
成されたものであつて、特に外気極低温時に、熱
負荷の最大要素となる送風装置の運転を許容限度
持続して、それ以外は全面停止させることにより
熱負荷の消失をはからせ、もつて冷凍庫内温度の
安定維持ならびに省エネルギーの実現に資せしめ
ようとする点を特徴とする。
In view of these problems, the present invention has been made to provide a refrigeration system that can eliminate the drawbacks of conventional systems, and the present invention has been developed to provide a refrigeration system that can eliminate the drawbacks of conventional systems. The feature is that the operation of the freezer is continued for a permissible limit, and the rest is completely stopped, thereby eliminating heat load, thereby contributing to maintaining a stable temperature inside the freezer and realizing energy savings.

(問題点を解決するための手段) 本発明はその構成を明示する第1図によつて明
らかな如く、圧縮機1、凝縮器2、減圧器3、冷
凍庫内を冷却させる蒸発器4を有する冷凍サイク
ルと、前記冷凍サイクルの液管中に介設し、管路
を開閉し得る液側電磁弁5と、前記蒸発器4に付
設し、モータによつて付勢せしめる送風装置6
と、電磁弁制御手段7と、低圧圧力検出手段15
と、圧縮機制御手段8と、送風装置制御手段9と
によつて冷凍装置を構成せしめている。
(Means for Solving the Problems) As is clear from FIG. 1 showing its configuration, the present invention has a compressor 1, a condenser 2, a pressure reducer 3, and an evaporator 4 for cooling the inside of the freezer. A refrigeration cycle, a liquid side electromagnetic valve 5 which is interposed in a liquid pipe of the refrigeration cycle and can open and close the pipe, and a blower device 6 which is attached to the evaporator 4 and is energized by a motor.
, solenoid valve control means 7 , and low pressure detection means 15
, compressor control means 8, and blower control means 9 constitute a refrigeration system.

しかして前記電磁弁制御手段7は、前記冷凍庫
の庫内温度を検出して、設定温度に制御するよう
に前記液側電磁弁5を開閉弁せしめる構成を有す
る。
The solenoid valve control means 7 is configured to detect the internal temperature of the freezer and open/close the liquid side solenoid valve 5 so as to control the temperature to a set temperature.

前記低圧圧力検出手段15は、設定圧力とそれ
よりも低い限界圧力との2段の設定値を有し、前
記冷凍サイクルの低圧圧力を検出して該検出圧力
が、上昇により設定圧力に達してから限界圧力に
低下するまでの間は第1出力を発生し、一方、下
降により限界圧力に達してから設定圧力に上昇す
るまでの間は第2出力を発生する構成を有する。
The low pressure detection means 15 has a two-stage set value of a set pressure and a lower limit pressure, and detects the low pressure of the refrigeration cycle and detects when the detected pressure reaches the set pressure due to an increase. The configuration is such that the first output is generated during the period from when the pressure decreases to the limit pressure, and the second output is generated during the period from when the limit pressure is reached due to the decrease until the pressure rises to the set pressure.

一方、圧縮機制御手段8は、前記電磁弁制御手
段7の作動による前記液側電磁弁5の開放の後に
発生する前記第1出力によつて圧縮機1を駆動せ
しめる駆動出力を発生し、一方、液側電磁弁5の
閉成の後に発生する前記第2出力によつてポンプ
ダウン運転中の圧縮機1を停止せしめる停止出力
を発生する構成を備えている。
On the other hand, the compressor control means 8 generates a drive output for driving the compressor 1 by the first output generated after the liquid side solenoid valve 5 is opened by the operation of the solenoid valve control means 7. The compressor 1 is configured to generate a stop output for stopping the compressor 1 during pump-down operation by the second output generated after the liquid side solenoid valve 5 is closed.

また、送風装置制御手段9は、前記圧縮機制御
手段8が停止出力を発している条件と、前記電磁
弁制御手段7が前記液側電磁弁5を開弁している
条件との論理積によつて、前記送風装置6を強制
的に前面停止せしめる構成を有する。
Further, the blower control means 9 calculates the logical product of the condition under which the compressor control means 8 is issuing a stop output and the condition under which the solenoid valve control means 7 opens the liquid side solenoid valve 5. Therefore, it has a configuration in which the blower device 6 is forcibly stopped at the front.

(作用) 本発明は液側電磁弁5と、電磁弁制御手段7に
おける閉弁出力への切換作動と、圧縮機制御手段
8における停止出力への切換作動とによつて冷凍
運転自動停止の際のポンプダウン運転が成される
ので、再起動時の液圧縮は未然に防止される。
(Function) The present invention uses the liquid-side solenoid valve 5, the solenoid valve control means 7 to switch to the valve-closing output, and the compressor control means 8 to switch to the stop output when the refrigeration operation is automatically stopped. Since the pump down operation is performed, liquid compression at the time of restart is prevented.

さらに本発明は外気温低下時に圧縮機1を再起
動可能な低圧々力条件になるまで強制停止させて
いる間において、庫内温度が設定温度から上昇し
ない間は送風装置6を運転させて庫内温度分布平
均化がはかられ、庫内温度が上昇するおそれのあ
る場合には送風装置6を全面停止させて熱負荷を
消失せしめ庫内温度の安定的維持ならびに電力消
費の節減が可能である。
Furthermore, the present invention operates the air blower 6 while the compressor 1 is forced to stop until a low pressure and force condition that allows restarting is reached when the outside temperature drops, and the air blower 6 is operated until the temperature inside the refrigerator rises from the set temperature. The internal temperature distribution is averaged, and if there is a risk of the internal temperature rising, the blower device 6 is completely stopped to eliminate the heat load, making it possible to maintain stable internal temperature and reduce power consumption. be.

(実施例) 以下、本発明の実施例について添付図面を参照
しつつ詳述する。
(Embodiments) Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

第2図は海上用冷凍コンテナに使用する冷凍装
置回路図であつて、該図において、1は圧縮機、
2は送風機13を有する空冷式の凝縮器、3は減
圧器例えば膨脹弁、4は冷凍庫10を冷却するた
めの蒸発器、12はアキユムレータを夫々示し、
それ等各機器を記載順序のサイクリツクに接続し
て公知の冷凍サイクルを形成している。
FIG. 2 is a circuit diagram of a refrigeration system used in marine refrigerated containers, in which 1 is a compressor;
2 is an air-cooled condenser having a blower 13; 3 is a pressure reducer, such as an expansion valve; 4 is an evaporator for cooling the freezer 10; 12 is an accumulator;
A known refrigeration cycle is formed by connecting each of these devices to a cycle in the order described.

6は前記蒸発器に付設して冷気を冷凍庫内に循
環させるための送風装置であつて、モータ6
AM,6BMを夫々直結した2基のフアン6A,
6Bにより形成されている。
Reference numeral 6 denotes a blower device attached to the evaporator to circulate cold air into the freezer, and includes a motor 6.
Two fans 6A directly connected to AM and 6BM,
6B.

5は前記冷凍サイクルの液管中、凝縮器2出口
と膨脹弁3入口とを接続する高圧液管の途中に設
けて、この液管路を開閉路することが可能な液側
電磁弁である。
Reference numeral 5 designates a liquid-side solenoid valve that is installed in the liquid pipe of the refrigeration cycle, in the middle of a high-pressure liquid pipe that connects the condenser 2 outlet and the expansion valve 3 inlet, and is capable of opening and closing this liquid pipe. .

一方、14は蒸発器4の空気吸込側に設けた温
度検知用のセンサで、冷凍庫10内の雰囲気温度
を吸込空気の温度で代表して測定するようになつ
ている。
On the other hand, 14 is a temperature detection sensor provided on the air suction side of the evaporator 4, and is designed to measure the atmospheric temperature in the freezer 10 as a representative of the temperature of the suction air.

また、15は圧縮機1の吸入口に接続する吸入
配管に対して感圧部を分岐接続せしめた低圧圧力
検出手段としての低圧々力開閉器であつて、例え
ば冷凍サイクルにフロン冷媒R−12を使用したも
のにおいては、低圧々力が上昇する過程で設定圧
力の0.2Kg/cm2(温度換算で−21℃)に達した際
に開放していた出力接点(停止出力に相当する)
を閉成させて(駆動出力に相当する)、この閉成
状態を低圧々力が下降して限界圧力の水銀柱400
mm(温度換算で−50℃)に達する直前まで保持し
て、限界圧力に達することにより閉成中の出力接
点を開放させるように作動するものであつて、こ
の出力接点の開閉による電気信号はコントローラ
11に制御信号としてインプツトされるようにな
つている。
Reference numeral 15 denotes a low-pressure force switch as a low-pressure pressure detection means in which a pressure sensitive part is branch-connected to the suction pipe connected to the suction port of the compressor 1. The output contact (corresponding to the stop output) that opened when the set pressure of 0.2Kg/cm 2 (temperature conversion: -21℃) was reached in the process of increasing the low pressure force.
is closed (corresponding to the drive output), and a low pressure force descends in this closed state to reach the limit pressure of 400 mercury columns.
mm (-50℃ in terms of temperature), and operates to open the output contact that is currently closed when the pressure reaches the limit pressure.The electrical signal caused by the opening and closing of this output contact is The signal is input to the controller 11 as a control signal.

前記センサ14の温度検知信号は、低圧々力開
閉器15と同じようにコントローラ11に制御信
号としてインプツトされるものであつて、前記コ
ントローラ11内の温度制御部は、センサ14の
温度検知信号を受けると、例えば冷凍庫10の庫
内温度が上昇する過程で設定温度の上限値である
−17℃に達した際にLレベル出力(閉弁出力に相
当する)をHレベル出力(開弁出力に相当する)
に切換えて、このHレベル出力を庫内温度が低下
して設定温度の下限値である−18℃に達する直前
まで保持して、この下限値に達することによりH
レベル出力をLレベル出力に切換えるようにな
り、所謂フリツプフロツプ回路に形成されるが、
さらに前記温度制御部はフリツプフロツプ回路と
は別にスイツチング回路を備えていて、庫内温度
が前記上限値(−17℃)を越えて上昇し、僅かに
高い限界温度例えば−16℃になると、単独に発し
ていたHレベル出力をLレベル出力に切換えるよ
うに形成されていた。
The temperature detection signal from the sensor 14 is inputted to the controller 11 as a control signal in the same way as the low-pressure force switch 15, and the temperature control section in the controller 11 receives the temperature detection signal from the sensor 14. For example, when the internal temperature of the freezer 10 rises and reaches -17°C, which is the upper limit of the set temperature, the L level output (corresponding to the valve closing output) is changed to the H level output (corresponding to the valve opening output). Equivalent to)
, and hold this H level output until just before the temperature inside the refrigerator drops and reaches the lower limit of the set temperature of -18℃, and when this lower limit is reached, the H level output is
The level output is switched to the L level output, and it is formed into a so-called flip-flop circuit.
Furthermore, the temperature control section is equipped with a switching circuit separate from the flip-flop circuit, and when the internal temperature rises beyond the upper limit (-17°C) and reaches a slightly higher limit temperature, for example -16°C, It was formed so that the H level output that was emitted was switched to an L level output.

しかして前記コントローラ11を含み冷凍装置
の運転を掌る電気制御回路の概要は第3図に示し
ているが、圧縮機1のモータ1M及び送風機13
のモータ13Mはコイル17c、常開接点17a
を備えた主マグネツトスイツチ17の閉成によつ
て駆動せしめられ、前記各フアン6A,6Bのモ
ータ6AM,6BMは、コイル18ACを有する
第1マグネツトスイツチ18A、コイル18BC
を有する第2マグネツトスイツチ18Bの閉成に
よつて駆動せしめられる。
An outline of the electric control circuit that controls the operation of the refrigeration system, including the controller 11, is shown in FIG.
The motor 13M has a coil 17c and a normally open contact 17a.
The motors 6AM, 6BM of each of the fans 6A, 6B are driven by the closing of a main magnetic switch 17 having a coil 18AC, a first magnetic switch 18A having a coil 18AC, a first magnetic switch 18A having a coil 18BC, and a first magnetic switch 18A having a coil 18AC.
It is actuated by closing the second magnetic switch 18B having a .

前記コイル17cは低圧々力開閉器15の前記
出力接点を直列に介してコントローラ11の出力
端子に接続され、一方、コイル18AC、コイル
18BC及び液側電磁弁5のソレノイド5Sは
夫々、コントローラ11の出力端子に接続されて
いる。
The coil 17c is connected to the output terminal of the controller 11 via the output contact of the low pressure force switch 15 in series, while the coil 18AC, the coil 18BC and the solenoid 5S of the liquid side solenoid valve 5 are connected to the output terminal of the controller 11, respectively. connected to the output terminal.

なお、第3図中、16は運転スイツチ、17a
は低圧々力開閉器15の出力接点の作動状態を間
接的にコントローラ11に伝えるための補助接点
に用いており、また19は逓降形のトランスを示
している。
In addition, in Fig. 3, 16 is the operation switch, 17a
is used as an auxiliary contact for indirectly transmitting the operating state of the output contact of the low-pressure force switch 15 to the controller 11, and 19 indicates a step-down type transformer.

次に第2図及び第3図ならびにコントローラ1
1の作動態様を示す第4図のフローチヤートにも
とづいて冷凍装置の運転制御を説明する。
Next, Figures 2 and 3 and controller 1
The operation control of the refrigeration system will be explained based on the flowchart of FIG. 4 showing the operation mode of No. 1.

運転スイツチ16を投入した状態で低圧々力開
閉器15が出力接点を閉成しており(低圧々力が
0.2Kg/cm2以上のときである。)、かつ冷凍庫10
内の温度が−17℃よりも高くてコントローラ11
内の温度制御部がHレベル出力を発していると、
前記出力接点の閉成によつて主マグネツトスイツ
チ17が投入され、また前記Hレベル出力によつ
てソレノイド5Sが励磁して液側電磁弁5が開弁
する。
With the operation switch 16 turned on, the low pressure and force switch 15 closes the output contact (low pressure and force
When it is 0.2Kg/cm2 or more . ), and freezer 10
The temperature inside is higher than -17℃ and controller 11
If the internal temperature control section emits an H level output,
The main magnet switch 17 is turned on by closing the output contact, and the solenoid 5S is energized by the H level output, and the liquid side solenoid valve 5 is opened.

かくして圧縮機1、送風機13が駆動し、同時
に2基のフアン6A,6Bも駆動するので冷凍装
置は定常運転にはいり庫内温度が低下してくる
(ステツプ(イ))。
In this way, the compressor 1 and the blower 13 are driven, and the two fans 6A and 6B are also driven at the same time, so that the refrigeration system enters steady operation and the temperature inside the refrigerator decreases (step (a)).

前記温度制御部によつて温度のチエツクを行い
(ステツプ(ロ))、吸込空気温度(I.T)が設定温度
の下限値(S.T=−18℃)に低下してくると、前
記Hレベル出力はLレベル出力に切換わるので、
液側電磁弁5を閉じさせる(ステツプ(ハ))。
The temperature control section checks the temperature (step (B)), and when the intake air temperature (IT) falls to the lower limit of the set temperature (ST = -18°C), the H level output changes. Since it switches to L level output,
Close the liquid side solenoid valve 5 (step (c)).

このステツプ(ハ)が電磁弁制御手段7の作動に相
当する。
This step (c) corresponds to the operation of the electromagnetic valve control means 7.

かくして圧縮機1は低圧冷媒を吸入し、圧縮し
て凝縮器2側に送り込むポンプダウン運転が成さ
れることにより低圧々力は漸次低下し、圧縮機1
吸入側が稀薄ガス状態になつて、低圧々力が水銀
柱400mmの限界圧力になると低圧々力開閉器15
の出力接点が開放するので(ステツプ(ニ))、圧縮
機1は停止する(ステツプ(ホ))。
In this way, the compressor 1 performs a pump-down operation in which the low-pressure refrigerant is sucked, compressed, and sent to the condenser 2 side, so that the low-pressure force gradually decreases, and the compressor 1
When the suction side becomes a lean gas state and the low pressure force reaches the limit pressure of 400 mm of mercury, the low pressure force switch 15
Since the output contact of the compressor 1 is opened (step (d)), the compressor 1 is stopped (step (e)).

従つてポンプダウン運転が終了し液側電磁弁5
が閉弁し、低圧々力が限界圧力を保つた状態で冷
凍装置は停止するが、フアン6A,6Bは駆動し
たまゝで庫内空気の温度分布の均一化を行つてい
る。
Therefore, the pump down operation is completed and the liquid side solenoid valve 5
is closed and the refrigeration system stops with the low pressure maintained at the critical pressure, but the fans 6A and 6B remain driven to equalize the temperature distribution of the air inside the refrigerator.

なお、ステツプ(ニ)が低圧圧力検出手段15、ス
テツプ(ホ)が圧縮機制御手段8の作動に夫々相当し
ている。
Note that step (d) corresponds to the operation of the low pressure detection means 15, and step (e) corresponds to the operation of the compressor control means 8, respectively.

前記コントローラ11の温度制御部は、温度の
チエツクを行い(ステツプ(ヘ))、吸込空気温度
(I.T)が設定温度の上限値(S.T+1℃=−17
℃)に上昇してくると、前記Lレベル出力はHレ
ベル出力に切換わるので、液側電磁弁5を開かせ
る(ステツプ(ト))。
The temperature control section of the controller 11 checks the temperature (step (F)), and the suction air temperature (IT) reaches the upper limit of the set temperature (S.T + 1°C = -17°C).
℃), the L level output is switched to the H level output, so the liquid side solenoid valve 5 is opened (step (T)).

このステツプ(ト)は電磁弁制御手段7の作動に相
当する。
This step corresponds to the operation of the electromagnetic valve control means 7.

次いで、低圧々力開閉器15の出力接点が圧力
上昇によつて閉成に切り換つているかどうかのチ
エツクを行い(ステツプ(チ))、閉成に切り換つて
いると圧縮機1を駆動させて初めの定常運転に戻
させ再び冷凍運動を開始する(ステツプ(イ))。
Next, it is checked whether the output contact of the low-pressure force switch 15 has switched to closing due to the pressure increase (step (ch)), and if it has switched to closing, the compressor 1 is driven. Then, the system returns to the initial steady operation and starts the refrigeration movement again (step (a)).

このステツプ(チ)とステツプ(イ)における圧縮機1
の駆動とが圧縮機制御手段8の作動に相当する。
Compressor 1 in this step (ch) and step (a)
The driving corresponds to the operation of the compressor control means 8.

一方、外気温度が極端に低下して−40℃程度に
なつており、低圧々力が下つたまゝの状態である
と、前記温度制御部によつて庫内温度のチエツク
(ステツプ(リ))を行わせて、吸込空気温度(I.T)
が設定温度の上昇値よりも高い限界温度(S.T+
2℃=−16℃)に達していなければ圧縮機1は停
止させ、かつ、前記両フアン6A,6Bは運転さ
せたまゝにしておくが、限界温度に達している
と、前記両フアン6A,6Bを停止せしめる(ス
テツプ(ヌ))。
On the other hand, if the outside air temperature has dropped extremely to around -40°C and the low pressure remains low, the temperature control section will check the inside temperature (step (re)). ), the suction air temperature (IT)
is higher than the set temperature rise value (S.T+
2°C = -16°C), the compressor 1 is stopped and both the fans 6A and 6B are kept running; however, if the temperature has reached the limit temperature, the fans 6A, Stop 6B (step (N)).

このようにして庫内温度がフアン6A,6B運
転による熱負荷で上昇してきて、しかも外気温度
が極端に低くて熱浸入が無い状態で圧縮機1が再
起動しない条件のもとでは、フアン6A,6Bを
全面停止させることによつて冷凍負荷をなくさ
せ、温度の上昇を抑えることができる。
In this way, the temperature inside the refrigerator increases due to the heat load caused by the operation of fans 6A and 6B, and under conditions where the outside air temperature is extremely low and there is no heat penetration, and the compressor 1 does not restart, fan 6A , 6B, the refrigerating load can be eliminated and the temperature rise can be suppressed.

なお、ステツプ(チ)〜(ヌ)が送風装置制御手段9の
作動に相当している。
Note that steps (ch) to (n) correspond to the operation of the blower control means 9.

その後、ステツプ(チ)のチエツクを反復させて低
圧々力開閉器15の出力接点が閉成した状態にな
ると、圧縮機1が駆動し、同時に両フアン6A,
6Bが駆動して定常運転に戻される(ステツプ
(イ))。
Thereafter, when the check in step (ch) is repeated and the output contact of the low-pressure force switch 15 is closed, the compressor 1 is driven, and at the same time both fans 6A,
6B is driven to return to normal operation (step
(stomach)).

以上説明した実施例は、送風装置制御手段9に
おける限界温度(−16℃)のチエツクを温度検知
用のセンサによつて検出するようにしたものであ
るが、次に第5図に示す他の実施例は前記センサ
に替えてタイマを限界温度チエツク用の発信器に
利用したものを示している。
In the embodiment described above, the check of the limit temperature (-16°C) in the blower control means 9 is detected by a temperature detection sensor. In this embodiment, a timer is used as a transmitter for checking the temperature limit instead of the sensor.

本実施例における制御態様を説明すると、ステ
ツプ(イ)乃至ステツプ(ト)については前掲した実施例
と同様であり、ステツプ(ト)において液側電磁弁5
を開かせるのに対応して前記タイマを計時作動さ
せる(ステツプ(ル))。
To explain the control mode in this embodiment, steps (A) to (G) are the same as in the above-mentioned embodiment, and in step (T), the liquid side solenoid valve
The timer is activated in response to the opening of the timer (step).

ところで前記タイマは設定時限を冷凍装置の設
計時点で決めるものであつて、この冷凍装置の運
転が行われる地域の最低外気温度と、冷凍庫10
の庫壁における断熱性能とフアン6A,6Bの熱
負荷等との条件から、液側電磁弁5が開いたとき
の温度(−17℃)から庫内が1℃上昇するに要す
る時間を計算により求めて、これをタイマの設定
時限とするものである。
By the way, the set time limit of the timer is determined at the time of designing the refrigeration system, and is based on the lowest outside temperature in the area where the refrigeration system is operated and the freezer 10.
The time required for the temperature inside the refrigerator to rise by 1°C from the temperature (-17°C) when the liquid side solenoid valve 5 is opened is calculated based on the conditions such as the insulation performance of the refrigerator wall and the heat load of the fans 6A and 6B. This is then used as the time limit for setting the timer.

しかして、タイマの計時作動後、低圧々力開閉
器15の出力接点の状態のチエツクを行い(ステ
ツプ(チ))、閉成に切り換つていると、タイマをリ
セツト作動させる(ステツプ(ヲ))と同時に、
圧縮機1を駆動させて初めの定常運転に戻させる
(ステツプ(イ))。
After the timer has started counting, the state of the output contact of the low-pressure force switch 15 is checked (step (H)), and if it has been switched to closing, the timer is reset and activated (step (W)). ) and at the same time,
The compressor 1 is driven to return to the initial steady operation (step (a)).

一方、外気温度が極端に低下していて、低圧々
力が下つたまゝの状態であると、前記タイマがカ
ウントアツプするまで現状態を保たせ、タイマの
カウントアツプ(ステツプ(ワ))によつて両フ
アン6A,6Bを停止せしめる(ステツプ(ヌ))。
On the other hand, if the outside temperature is extremely low and the low pressure remains low, the current state is maintained until the timer counts up, and the timer counts up (step (wa)). Therefore, both fans 6A and 6B are stopped (step (N)).

その後、ステツプ(チ)のチエツクを反復させて低
圧々力開閉器15の出力接点が閉成した状態にな
ると、圧縮機1が駆動し、同時にフアン6A,6
Bが駆動して定常運転に戻される(スツテプ(イ))。
Thereafter, when the check in step (ch) is repeated and the output contact of the low-pressure force switch 15 is closed, the compressor 1 is driven and at the same time the fans 6A, 6
B is driven and normal operation is returned (step (a)).

なお、前記タイマを電子的タイマ回路により形
成して外気温度をパラメータとし外気温度が低い
ときには設定時限を長くし、逆に高いときには短
くするよう自動調節機能を持たせることも可能で
あり、定設定時限形、可変設定時限形のいずれか
を随時選択すればよい。
It is also possible to form the above-mentioned timer with an electronic timer circuit and have an automatic adjustment function that uses the outside air temperature as a parameter and lengthens the set time period when the outside air temperature is low, and shortens it when the outside air temperature is high. Either the timed type or the variable setting timed type may be selected at any time.

以上述べた実施例は、送風装置制御手段9にお
ける送風装置6の強制停止条件として、液側電磁
弁5を開弁させるための前記設定温度上限値より
も僅かに高い限界温度に庫内が上昇することを挙
げているが、本発明は送風装置6の強制停止を液
側電磁弁5の開弁に連動させるようにしたもので
あつてもよく、この場合にも、当然のことである
が、圧縮機制御手段8が駆動出力を発して圧縮機
1が駆動すると同時に、前記送風装置6を駆動せ
しめるようにするものである。
In the embodiment described above, as a forced stop condition for the blower device 6 in the blower device control means 9, the inside of the refrigerator rises to a limit temperature slightly higher than the set temperature upper limit value for opening the liquid side solenoid valve 5. However, the present invention may be such that the forced stop of the blower device 6 is linked to the opening of the liquid-side solenoid valve 5, and in this case, as a matter of course, The compressor control means 8 generates a drive output to drive the compressor 1, and at the same time, the blower device 6 is driven.

(発明の効果) 本発明は以上の説明によつて明らかなように、
外気温度低下の際に、圧縮機1を再起動可能な低
圧々力条件になるまで強制停止させている状態
で、冷凍庫の温度が設定温度以上に上昇してきた
場合には、運転させていた送風装置6を全面停止
させるようにしているので、温度上昇につながる
熱負荷を消失せしめて庫内温度の安定維持がはか
れるとともに、ランニングコストの低減が可能で
あり、庫内貯蔵品の品質保持と運転経済面の改善
との一石二鳥の効果が奏される。
(Effects of the Invention) As is clear from the above description, the present invention has the following effects:
If the temperature of the freezer rises above the set temperature while the compressor 1 is forced to stop until the pressure and force conditions are low enough to restart it when the outside air temperature drops, the air blower that was being operated will be turned off. Since the device 6 is completely stopped, it is possible to maintain a stable temperature inside the refrigerator by dissipating the heat load that causes the temperature to rise, and it is also possible to reduce running costs, and to maintain the quality of stored items in the refrigerator and improve operation. This will have the effect of killing two birds with one stone and improving the economy.

また、本発明は従来のポンプダウン制御を可能
とした冷凍装置において、庫内温度を検出する検
知器に対して送風装置6を電気的に連繋させるだ
けでよいので、改良に要するコストは低廉であつ
て汎用的価値にも富むところ大である。
Furthermore, in the present invention, in a conventional refrigeration system that enables pump-down control, it is only necessary to electrically connect the blower device 6 to a detector that detects the temperature inside the refrigerator, so the cost required for improvement is low. It is great because it is rich in general-purpose value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成を明示するブロツク線
図、第2図は本発明の1実施例に係る装置回路
図、第3図は同じく電気回路図、第4図及び第5
図は本発明の各実施例における運転制御態様を示
すフローチヤートである。 1……圧縮機、2……凝縮器、3……減圧器、
4……蒸発器、5……液側電磁弁、6……送風装
置、7……電磁弁制御手段、8……圧縮機制御手
段、9……送風装置制御手段、15……低圧圧力
検出手段。
FIG. 1 is a block diagram clearly showing the configuration of the present invention, FIG. 2 is a device circuit diagram according to an embodiment of the present invention, FIG. 3 is an electric circuit diagram, and FIGS.
The figure is a flowchart showing the operation control mode in each embodiment of the present invention. 1...Compressor, 2...Condenser, 3...Compressor,
4...Evaporator, 5...Liquid side solenoid valve, 6...Blower device, 7...Solenoid valve control means, 8...Compressor control means, 9...Blower device control means, 15...Low pressure detection means.

Claims (1)

【特許請求の範囲】 1 圧縮機1、凝縮器2、減圧器3、冷凍庫用の
蒸発器4を有する冷凍サイクルと、 前記冷凍サイクルの液管中に介設し、管路を開
閉し得る液側電磁弁5と、 前記蒸発器4に付設し、モータによつて付勢せ
しめる送風装置6と、 前記冷凍庫の庫内温度を検出し、設定温度に制
御するように前記液側電磁弁5を開閉せしめる電
磁弁制御手段7と、 設定圧力とそれよりも低い限界圧力との2段の
設定値を有し、前記冷凍サイクルの低圧圧力を検
出して該検出圧力が、上昇により設定圧力に達し
てから限界圧力に低下するまでの間は第1出力を
発生し、一方、下降により限界圧力に達してから
設定圧力に上昇するまでの間は第2出力を発生す
る低圧圧力検出手段15と、 前記電磁弁制御手段7の作動による前記液側電
磁弁5の開放の後に発生する前記第1出力によつ
て圧縮機1を駆動せしめる駆動出力を発生し、一
方、液側電磁弁5の閉成の後に発生する前記第2
出力によつてポンプダウン運転中の圧縮機1を停
止せしめる停止出力を発生する圧縮機制御手段8
と、 前記圧縮機制御手段8が停止出力を発生してい
る条件と、前記電磁弁制御手段7が前記液側電磁
弁5を開かせる作動になつている条件との論理積
によつて、前記送風装置6を強制的に全面停止せ
しめる送風装置制御手段9とからなることを特徴
とする冷凍装置。
[Scope of Claims] 1. A refrigeration cycle having a compressor 1, a condenser 2, a pressure reducer 3, and an evaporator 4 for a freezer, and a liquid interposed in a liquid pipe of the refrigeration cycle and capable of opening and closing the pipe. a side solenoid valve 5; a blower device 6 attached to the evaporator 4 and energized by a motor; and a blower device 6 that detects the internal temperature of the freezer and controls the liquid side solenoid valve 5 to control the temperature to a set temperature. It has a solenoid valve control means 7 for opening and closing, and a two-stage set value of a set pressure and a lower limit pressure, and detects the low pressure of the refrigeration cycle and the detected pressure reaches the set pressure by rising. a low-pressure pressure detection means 15 that generates a first output from the time the pressure reaches the limit pressure until the pressure decreases to the limit pressure, and generates a second output from the time the pressure reaches the limit pressure due to lowering until the pressure rises to the set pressure; A driving output for driving the compressor 1 is generated by the first output generated after the liquid side solenoid valve 5 is opened by the operation of the solenoid valve control means 7; said second occurring after
compressor control means 8 that generates a stop output that stops the compressor 1 during pump-down operation according to the output;
The above condition is determined by the logical product of the condition in which the compressor control means 8 is generating a stop output and the condition in which the solenoid valve control means 7 is in operation to open the liquid side solenoid valve 5. A refrigeration system comprising a blower control means 9 for forcibly stopping the blower 6 completely.
JP23417285A 1985-10-19 1985-10-19 Refrigerator Granted JPS6294780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23417285A JPS6294780A (en) 1985-10-19 1985-10-19 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23417285A JPS6294780A (en) 1985-10-19 1985-10-19 Refrigerator

Publications (2)

Publication Number Publication Date
JPS6294780A JPS6294780A (en) 1987-05-01
JPH0130075B2 true JPH0130075B2 (en) 1989-06-15

Family

ID=16966793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23417285A Granted JPS6294780A (en) 1985-10-19 1985-10-19 Refrigerator

Country Status (1)

Country Link
JP (1) JPS6294780A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5843744U (en) * 1981-09-17 1983-03-24 松下電器産業株式会社 Seesaw type switch
JPS599040A (en) * 1982-07-09 1984-01-18 Mitsubishi Heavy Ind Ltd Green tire delivery device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5843744U (en) * 1981-09-17 1983-03-24 松下電器産業株式会社 Seesaw type switch
JPS599040A (en) * 1982-07-09 1984-01-18 Mitsubishi Heavy Ind Ltd Green tire delivery device

Also Published As

Publication number Publication date
JPS6294780A (en) 1987-05-01

Similar Documents

Publication Publication Date Title
EP2592372A2 (en) Refrigerator using non-azeotropic refrigerant mixture and control method thereof
US4286438A (en) Condition responsive liquid line valve for refrigeration appliance
JPH0828969A (en) Cooling system
JP2000257964A (en) Refrigerating system
JP2000199669A (en) Method for operating compressor in ordinary state
CN110542255B (en) Compressor oil return method, refrigeration system and air conditioner
JP2000230767A (en) Refrigerator
JPH07180933A (en) Refrigerating cycle device
CN111426126A (en) Double-system air-cooling frequency conversion refrigerator and control method thereof
JP2001066000A (en) Heat pump type air conditioner and outdoor unit
JPH0130075B2 (en)
JPH09318165A (en) Electric refrigerator
JP4301546B2 (en) Refrigeration equipment
JPH07218003A (en) Control system for refrigerator
JPS62116862A (en) Refrigerator
JPH11118264A (en) Freezer adapted to hfc refrigerant
CN220669813U (en) Heating power expansion valve refrigerating system capable of being started under pressure
JPH0620051Y2 (en) Capacity controlled refrigeration system
JP2001033138A (en) Refrigeration system
JP2001174112A (en) Air conditioner
JPH06159891A (en) Control device for refrigerator
JPH07285325A (en) Operation control device for refrigerating cycle
JP2604501Y2 (en) Cooling unit with abnormality detection switch
JPH11257765A (en) Refrigerating machine
JPS5956670A (en) Refrigerator

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term