JPH01300579A - Semiconductor laser device - Google Patents
Semiconductor laser deviceInfo
- Publication number
- JPH01300579A JPH01300579A JP13204288A JP13204288A JPH01300579A JP H01300579 A JPH01300579 A JP H01300579A JP 13204288 A JP13204288 A JP 13204288A JP 13204288 A JP13204288 A JP 13204288A JP H01300579 A JPH01300579 A JP H01300579A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor laser
- wavelength
- ambient temperature
- current
- laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 89
- 230000007613 environmental effect Effects 0.000 claims description 7
- 230000010355 oscillation Effects 0.000 abstract description 36
- 230000000087 stabilizing effect Effects 0.000 abstract description 2
- 230000001419 dependent effect Effects 0.000 abstract 4
- 230000003247 decreasing effect Effects 0.000 abstract 2
- 238000010276 construction Methods 0.000 abstract 1
- 238000001514 detection method Methods 0.000 abstract 1
- 230000007423 decrease Effects 0.000 description 25
- 238000010586 diagram Methods 0.000 description 7
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 241000277269 Oncorhynchus masou Species 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 238000009429 electrical wiring Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/06—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
- H01S5/068—Stabilisation of laser output parameters
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明はレーザ光線を発生する半導体レーザ装置に関
する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor laser device that generates a laser beam.
従来この種の装置として第3図に示すようなものがあっ
た。この図はELECTRONIC5I、ETTER5
Vol。Conventionally, there has been a device of this type as shown in FIG. This diagram shows ELECTRONIC5I, ETTER5
Vol.
16、 No、18 P、709に示されたもので、図
において1は半導体レーザ、2はファブリベロー共振器
、3はハーフミラ−・、4はミラー、5は受光素子A、
6は受光素子B、7は差動アンプ、8は定電流駆動回路
、Lは半導体レーザ出力光、Lアはファブリベロー共振
器の出力光、L、はファブリベロー共振器を透過しない
光、10は半導体レーザ駆動電流供給ライン、lは電流
帰還ラインである。なお半導体レーザ1は一定電流IL
を供給する定電流駆動回路8により、電流ライン10を
通して駆動される。半導体レーザ1の出力光りはハーフ
ミラ−3により2分割され、一方の光はファブリベロー
共振器2に人力し、他方の光り、はミラー4で反射され
受光素子B6に入力する。ファブリペロ−共振器2に入
力した光は、ファブリベロー共振器2により波長に応じ
た強度の減衰を受けて出力し、出力光LTは受光素子A
5に入力する。受光素子A5では入力した光り、の強度
に比例した電流Iaが発生し差動アンプ7に入力する。16, No., 18 P, 709, in the figure, 1 is a semiconductor laser, 2 is a Fabry-Bello resonator, 3 is a half mirror, 4 is a mirror, 5 is a light receiving element A,
6 is a light receiving element B, 7 is a differential amplifier, 8 is a constant current drive circuit, L is the semiconductor laser output light, L is the output light of the Fabry-Bello resonator, L is the light that does not pass through the Fabry-Bello resonator, 10 is a semiconductor laser drive current supply line, and l is a current feedback line. Note that the semiconductor laser 1 has a constant current IL.
is driven through a current line 10 by a constant current drive circuit 8 that supplies . The output light of the semiconductor laser 1 is divided into two parts by a half mirror 3, one of which is applied to the Fabry-Bello resonator 2, and the other part of the light is reflected by the mirror 4 and input to the light receiving element B6. The light input to the Fabry-Perot resonator 2 is output after being attenuated in intensity according to the wavelength by the Fabry-Perot resonator 2, and the output light LT is transmitted to the light receiving element A.
Enter 5. In the light receiving element A5, a current Ia proportional to the intensity of the input light is generated and input to the differential amplifier 7.
受光素子B6では入力した光L+の強度に比例した電流
1、が発生し差動アンプ7に入力する。差動アンプ7で
はこの2つの電流IAと■、の差を増幅し出力する。こ
の差動アンプ7の増幅率をαとすると差動アンプ7の出
力電流はα(IA−11)となり、この帰還電流α(I
A −Im )は電流帰還ラインlを通って電流供給ラ
イン10に合流され、一定駆動電流TLに加えられて半
導体レーザ1に注入される。In the light receiving element B6, a current 1 proportional to the intensity of the input light L+ is generated and input to the differential amplifier 7. The differential amplifier 7 amplifies and outputs the difference between these two currents IA and . If the amplification factor of the differential amplifier 7 is α, the output current of the differential amplifier 7 is α(IA-11), and this feedback current α(I
A −Im ) is passed through the current feedback line l and merged into the current supply line 10 , added to the constant drive current TL, and injected into the semiconductor laser 1 .
従来の半導体レーザ装置は上記のように構成されている
ので次のように動作する。Since the conventional semiconductor laser device is configured as described above, it operates as follows.
半導体レーザは、注入電流及び周囲温度の変動により発
振波長が変動し屈折率が変動するという性質がある。し
たがって半導体レーザ1のレーザ光線の発振波長は注入
電流を一定にしても、周囲温度が変化すれば変動する。Semiconductor lasers have the property that their oscillation wavelength changes and their refractive index changes due to changes in injection current and ambient temperature. Therefore, even if the injection current is kept constant, the oscillation wavelength of the laser beam of the semiconductor laser 1 changes if the ambient temperature changes.
注入電流が一定電流■、で周囲温度がT(’C)の時の
半導体レーザ1の発振波長がλ、であるとする。半導体
レーザ1の出力光りのうち半分はファブリペロ−共振器
2に入力する。第4図にファブリペロ−共振器2の入射
光の波長に対する透過特性を示す。ファブリペロ−共振
器2は透過曲線の負の傾き領域の中央が波長λ、になる
ように調整されている。したがってファブリペロ−共振
器2の出力光10の強度は半導体レーザ1の発振波長が
λ、で一定であれば変化せずに一定であるが、発振波長
が変化するとそれに応じて変動する。例えば、周囲温度
がTから減少した時、半導体レーザ1の発振波長がλ、
からλLlに減少したとする。この時第4図に示すよう
にファブリベロー共振器2の出力光Lアの強度は増加す
る。又、逆に周囲温度がTから増加すると出力光LTの
強度は減少する。したがって、出力光Lアを受光する受
光素子A5に流れる電流■4は、半導体レーザ1の発振
波長の変動に応じて変動する。一方半導体レーザ出力光
りのうち、ファブリペロ−共振器2を通過しない光Ll
は、半導体レーザ1の発振波長が変動にかかわらず一定
である。したがって受光素子B6に流れる電流1Bは一
定である。差動アンプ7では半導体レーザ1の発振波長
変動に応じて変動する電流■4と変動しない電流1つの
差をα倍増幅する。Assume that the oscillation wavelength of the semiconductor laser 1 is λ when the injection current is a constant current ① and the ambient temperature is T ('C). Half of the output light from the semiconductor laser 1 is input to the Fabry-Perot resonator 2 . FIG. 4 shows the transmission characteristics of the Fabry-Perot resonator 2 with respect to the wavelength of incident light. The Fabry-Perot resonator 2 is adjusted so that the center of the negative slope region of the transmission curve is at wavelength λ. Therefore, the intensity of the output light 10 of the Fabry-Perot resonator 2 remains unchanged if the oscillation wavelength of the semiconductor laser 1 is constant at λ, but changes accordingly when the oscillation wavelength changes. For example, when the ambient temperature decreases from T, the oscillation wavelength of the semiconductor laser 1 becomes λ,
Suppose that it decreases from λLl to λLl. At this time, as shown in FIG. 4, the intensity of the output light LA of the Fabry-Bello resonator 2 increases. Conversely, when the ambient temperature increases from T, the intensity of the output light LT decreases. Therefore, the current (4) flowing through the light-receiving element A5 that receives the output light LA varies in accordance with the variation in the oscillation wavelength of the semiconductor laser 1. On the other hand, among the semiconductor laser output light, the light Ll that does not pass through the Fabry-Perot resonator 2
is constant regardless of fluctuations in the oscillation wavelength of the semiconductor laser 1. Therefore, the current 1B flowing through the light receiving element B6 is constant. The differential amplifier 7 amplifies the difference between the current (4) which fluctuates according to the fluctuation of the oscillation wavelength of the semiconductor laser 1 and the current (1) which does not fluctuate by α times.
差動アンプ7から出力される電流α(■4−■m)は、
半導体レーザ1の波長変動成分のみに応じた電流であり
、波長が長くなると減少し、波長が短くなると増加する
。この電流α(IA −1、+)は、電流帰還ラインl
を通って半導体レーザ駆動電流の供給ライン10に合流
され、駆動電流■、に足し合わされて半導体レーザ1に
注入される。半導体レーザ1の発振波長が周囲温度が上
昇することにより増加した場合、帰還電流α(IA−I
3)は減少し、半導体レーザlに注入される電流も減少
する。この時半導体レーザエの発振波長は注入電流の減
少に伴い短くなり、上記の周囲温度上昇による発振波長
の長くなった分を打ち消す。又、半導体レーザ1の発振
波長が、周囲温度が低下することにより短くなった場合
、帰還電流α(rA−In )は増加し、半導体レーザ
lに注入される電流も増加する。この時半導体レーザ1
の発振波長は注入電流の増加に伴い長くなり、上記の周
囲温度低下による発振波長の短くなった分を打ち消す。The current α (■4−■m) output from the differential amplifier 7 is
This current corresponds only to the wavelength fluctuation component of the semiconductor laser 1, and decreases as the wavelength becomes longer, and increases as the wavelength becomes shorter. This current α (IA −1, +) is the current feedback line l
The current flows through the semiconductor laser drive current supply line 10, is added to the drive current (2), and is injected into the semiconductor laser 1. When the oscillation wavelength of the semiconductor laser 1 increases due to a rise in ambient temperature, the feedback current α (IA-I
3) decreases, and the current injected into the semiconductor laser l also decreases. At this time, the oscillation wavelength of the semiconductor laser becomes shorter as the injection current decreases, canceling out the lengthening of the oscillation wavelength due to the above-mentioned increase in ambient temperature. Furthermore, when the oscillation wavelength of the semiconductor laser 1 becomes shorter due to a decrease in the ambient temperature, the feedback current α(rA-In) increases, and the current injected into the semiconductor laser 1 also increases. At this time, the semiconductor laser 1
The oscillation wavelength becomes longer as the injection current increases, canceling out the shortening of the oscillation wavelength due to the above-mentioned decrease in ambient temperature.
従来の半導体レーザ装置は以上のように構成されている
ので、半導体レーザの発振波長を安定化するための部品
として、ファブリペロ−共振器。Since the conventional semiconductor laser device is configured as described above, a Fabry-Perot resonator is used as a component to stabilize the oscillation wavelength of the semiconductor laser.
受光素子A及びB、差動アンプを必要とする。又、半導
体レーザの出力光をこれらの部品に結合する必要がある
。そのため、装置全体が大形化してしまうという問題点
があった。又、各部品間において光を結合するための光
軸合わせが必要となるという問題点があった。又、系全
体が複雑な構成となるため振動等の外部変動に弱いなど
の問題点があった。Requires light receiving elements A and B and a differential amplifier. It is also necessary to couple the output light of the semiconductor laser to these components. Therefore, there is a problem in that the entire device becomes large in size. Additionally, there is a problem in that optical axis alignment is required to couple light between each component. In addition, since the entire system has a complicated structure, it is susceptible to external fluctuations such as vibrations.
この発明は上記のような問題点を解消するためになされ
たもので、半導体レーザの出力光を用いずに、少ない部
品数の簡便な構成で半導体レーザ装置のレーザ光線の発
振波長を安定化できる半導体レーザ装置を得ることを目
的とする。This invention was made to solve the above-mentioned problems, and it is possible to stabilize the oscillation wavelength of a laser beam of a semiconductor laser device with a simple configuration with a small number of parts without using the output light of a semiconductor laser. The purpose is to obtain a semiconductor laser device.
この発明においては、レーザ光の出力波長が環境温度と
駆動電流により定まる半導体レーザ1と、環境温度によ
り抵抗値が定まる抵抗素子14とを備え、これらを直列
に接続した。The present invention includes a semiconductor laser 1 whose output wavelength of laser light is determined by the environmental temperature and drive current, and a resistor element 14 whose resistance value is determined by the environmental temperature, and these are connected in series.
環境温度の変動を抵抗素子14の抵抗値変動としてとら
え、この抵抗素子14を流れる駆動電流を制御して、半
導体レーザ1が出力するレーザ光の波長の変動を減少さ
せるようにする。Fluctuations in the environmental temperature are interpreted as fluctuations in the resistance value of the resistor element 14, and the drive current flowing through the resistor element 14 is controlled to reduce fluctuations in the wavelength of the laser light output by the semiconductor laser 1.
以下、この発明の一実施例を図面を参照して説明する。 An embodiment of the present invention will be described below with reference to the drawings.
第1図はこの発明の一実施例を示す構成図であり、1は
半導体レーザ、14は抵抗素子としての補償素子、15
は定電圧供給回路である。なお、半導体レーザlと補償
素子14は隣接して設置されており、電気的に直列に接
続されている。定電圧供給回路15は、この直列に接続
された半導体レーザ1と補償素子14の両端に接続され
ている。FIG. 1 is a configuration diagram showing one embodiment of the present invention, in which 1 is a semiconductor laser, 14 is a compensation element as a resistance element, and 15 is a configuration diagram showing an embodiment of the present invention.
is a constant voltage supply circuit. Note that the semiconductor laser l and the compensation element 14 are installed adjacent to each other and are electrically connected in series. A constant voltage supply circuit 15 is connected to both ends of the semiconductor laser 1 and the compensation element 14 which are connected in series.
以上のように構成された装置にあって、半導体レーザ1
に流れる電流をIL、定電圧供給回路15の出力電圧を
V o 、半導体レーザ1の抵抗をRL%補償素子14
の抵抗をR2とすると、電流ILは第(11式で表され
る。In the device configured as described above, the semiconductor laser 1
IL is the current flowing through the constant voltage supply circuit 15, V o is the output voltage of the constant voltage supply circuit 15, and RL% is the resistance of the semiconductor laser 1.
When the resistance of is R2, the current IL is expressed by equation (11).
I L = V o / (Rt +Rp )
−(11半導体レーザ1には上記の電流ILが
流れており、発振波長λ、で発振している0周囲温度が
変動すると、半導体レーザ1のレーザ光線の発振波長は
λ、から変動しその屈折率が変動する。この時周囲温度
が上昇すると半導体レーザ1のレーザ光線の波長が長く
なり屈折率は増加する。逆に周囲温度が低下すると、半
導体レーザ1のレーザ光線の波長が短くなり屈折率は減
少する。一方、周囲温度が変動すると、補償素子14の
電気抵抗値R2が変動する。この時、周囲温度が上昇す
ると補償素子14の電気抵抗値R,は増加し、周囲温度
が低下すると補償素子14の電気抵抗値R1は減少する
。補償素子14の電気抵抗値R,が変動すると第(1)
式に従って半導体レーザ1に流れる電流ILが変動する
。第(1)式より電流1Lは補償素子14の電気抵抗値
R2が増加すると減少し、R2が減少すると増加する。I L = Vo / (Rt + Rp)
-(11 The above current IL flows through the semiconductor laser 1, and it oscillates at the oscillation wavelength λ.) When the ambient temperature changes, the oscillation wavelength of the laser beam of the semiconductor laser 1 changes from λ, and its refraction At this time, when the ambient temperature rises, the wavelength of the laser beam from the semiconductor laser 1 becomes longer and the refractive index increases. Conversely, when the ambient temperature falls, the wavelength of the laser beam from the semiconductor laser 1 becomes shorter and the refractive index increases. On the other hand, when the ambient temperature changes, the electrical resistance value R2 of the compensation element 14 changes.At this time, when the ambient temperature rises, the electrical resistance value R, of the compensation element 14 increases, and when the ambient temperature falls, the electrical resistance value R2 of the compensation element 14 increases. The electrical resistance value R1 of the compensation element 14 decreases.When the electrical resistance value R, of the compensation element 14 changes, the (1)
The current IL flowing through the semiconductor laser 1 varies according to the formula. According to equation (1), the current 1L decreases as the electrical resistance value R2 of the compensation element 14 increases, and increases as the electric resistance value R2 decreases.
半導体レーザ1に流れる電流■、が変動すると、これに
応じて半導体レーザ1のレーザ光線の屈折率が変動する
。この時電流ILが減少すると発振波長が減少し屈折率
は減少する。又電流ILが増加すると発振波長が増加し
屈折率は増加する。When the current (1) flowing through the semiconductor laser 1 changes, the refractive index of the laser beam of the semiconductor laser 1 changes accordingly. At this time, when the current IL decreases, the oscillation wavelength decreases and the refractive index decreases. Furthermore, as the current IL increases, the oscillation wavelength increases and the refractive index increases.
以上のように、周囲温度が上昇し半導体レーザ1の発振
波長λ1が長くなった場合、補償素子14の電気抵抗値
R7が増加し、半導体レーザlに流れる電流■、が減少
し、半導体レーザ1のレーザ光線の波長が短くなり屈折
率は減少し、これにより上記の発振波長の長くなった分
は打ち消される。逆に、周囲温度が低下し半導体レーザ
1のレーザ光線の発振波長λLが短くなった場合、補償
素子14の電気抵抗値RPが減少し、半導体レーザ1に
流れる電流■、が増加し、半導体レーザlのレーザ光線
の波長が長(なり屈折率が増加し、これにより上記の発
振波長の短くなった分は打ち消される。As described above, when the ambient temperature rises and the oscillation wavelength λ1 of the semiconductor laser 1 becomes longer, the electric resistance value R7 of the compensation element 14 increases, the current 2 flowing through the semiconductor laser 1 decreases, and the semiconductor laser 1 As the wavelength of the laser beam becomes shorter, the refractive index decreases, thereby canceling out the longer oscillation wavelength. Conversely, when the ambient temperature decreases and the oscillation wavelength λL of the laser beam of the semiconductor laser 1 becomes shorter, the electrical resistance value RP of the compensation element 14 decreases, the current flowing through the semiconductor laser 1 increases, and the semiconductor laser As the wavelength of the laser beam 1 becomes longer, the refractive index increases, thereby canceling out the above shortening of the oscillation wavelength.
この場合抵抗素子14の温度特性と、半導体レーザ1の
温度特性とが数量的に相補正する素子等を実験的に見出
し互いに接続する。In this case, an element or the like which quantitatively corrects the phase characteristics of the resistance element 14 and the temperature characteristic of the semiconductor laser 1 is found experimentally and connected to each other.
第2図はこの発明の他の実施例を示すもので、18は半
導体レーザの収納ブロック、14は補償素子、15は定
電圧供給回路、16は半導体レーザの活性層、17は半
導体レーザの電極である。FIG. 2 shows another embodiment of the present invention, in which 18 is a storage block for a semiconductor laser, 14 is a compensation element, 15 is a constant voltage supply circuit, 16 is an active layer of the semiconductor laser, and 17 is an electrode of the semiconductor laser. It is.
補償素子14は半導体レーザ1のブロックの中に作られ
ており、電気的に直列に半導体レーザの電極と接続され
ている。このように構成すれば、半導体レーザの活性層
16の温度変動は収納ブロック18を伝わって瞬間的に
補償素子14に伝わるので、上述したような過程により
半導体レーザのレーザ光線の波長の変動による屈折率変
動は瞬間的に抑えられるという効果がある。かくして常
に安定して一定波長のレーザ光線が得られる。The compensation element 14 is formed within the block of the semiconductor laser 1 and is electrically connected in series with the electrodes of the semiconductor laser. With this configuration, temperature fluctuations in the active layer 16 of the semiconductor laser are instantaneously transmitted to the compensation element 14 through the storage block 18, so that the refraction due to wavelength fluctuations of the laser beam of the semiconductor laser is reduced by the process described above. This has the effect of instantly suppressing rate fluctuations. In this way, a laser beam of a constant wavelength can always be obtained stably.
以上説明してきたように、この発明によれば、レーザ光
の出力波長が環境温度と駆動電流により定まる半導体レ
ーザと、環境温度により抵抗値が定まる抵抗素子とを備
え、これらを直列に接続して、半導体レーザの発振波長
を安定化するための部品は補償素子1個だけとしたので
、装置を容易に組むことができるようになった。又装置
を小形に安価にできるという効果がある。又この発明に
よれば半導体レーザの出力光を用いずに、電気配線だけ
で装置を構成しているので、振動等の外部変動に強い信
組性の高い装置が得られるという効果がある。As described above, the present invention includes a semiconductor laser whose output wavelength of laser light is determined by the environmental temperature and drive current, and a resistive element whose resistance value is determined by the environmental temperature, and which are connected in series. Since only one compensation element is required for stabilizing the oscillation wavelength of the semiconductor laser, the device can be easily assembled. Another advantage is that the device can be made smaller and cheaper. Further, according to the present invention, since the device is configured only with electrical wiring without using the output light of a semiconductor laser, it is possible to obtain a device with high reliability and resistance to external fluctuations such as vibration.
第1図は本発明の半導体し〜ザ装置の一実施例を示す構
成図、第2図は本発明の他の実施例の構成を示す図、第
3図は従来のレーザ装置の構成図、第4図はレーザ光線
の透過特性図である。
1・・・半導体レーザ、14・・・補償素子、15・・
・定電圧供給回路、16・・・活性層、17・・・電極
、18・・・収納ブロック。
代理人 大 岩 増 m(ばか2名)第1区
b
1 ・ し−ザ羊偽賂ネト
14 : λ亀 イ1■ 県手
15:芝竜圧祇玲洞誇
手続補正書(自発)
fぺ7年 。月 2日
2、発明の名称
半導体レーザ装置
3、補正をする者
代表者志岐守哉
4、代理人
5 補正の対象
発明の詳細な説明の欄。
G 補正の内容
(1)明細書第1頁第11行目「この発明はレーザ光線
を発生する」とあるのを「この発明は周囲温度の変動に
かかわらず一定の発振波長のレーザ光線を発生する」と
補正する。
(2)同書第3頁第7行目「発振波長が変動し屈折率が
変動する」とあるのを「屈折率が変動し、これにより発
振波長が変動する」と補正する。
(3)同書第8頁第1行目乃至第6行目「半導体レーザ
1の・・・・・・屈折率は減少する。」とあるのを「半
導体レーザ1の屈折率が変動し、これに応じて発振波長
はえ、から変動する。この時周囲温度が上昇すると半導
体レーザ1の屈折率は増加し、発振波長は増加する。逆
に周囲温度が低下すると、半導体レーザ1の屈折率は減
少し、発振波長は短くなる。」と補正する。
(4)同書第8頁第16行目乃至第20行目[これに応
じて・・・・・・屈折率は増加する。」とあるのを「こ
れに応じて半導体レーザ1の屈折率が変動する。この時
電流工、が減少すると屈折率は減少し発振波長は減少す
る。又電流■、が増加すると屈折率は増加し発振波長は
増加する。」と補正する。
(5)同書第9頁第4行目乃至第5行目「半導体レーザ
1の・・・・・・屈折率は減少し、」とあるのを「半導
体レーザ1の屈折率は減少し発振波長は短くなり、」と
補正する。
(6)同書第9頁第10行目乃至第11行目「半導体レ
ーザ1のレーザ光線の波長が長くなり屈折率が増加し、
Jとあるのを[半導体レーザ1の屈折率が増加し発振波
長は長くなり、」と補正する。
(7)同書第10頁第6行目乃至第7行目「半導体レー
ザのレーザ光線の波長の変動による屈折率変動は」とあ
るのを「半導体レーザの屈折率変動による波長変動は」
と補正する。
以上FIG. 1 is a block diagram showing an embodiment of a semiconductor laser device of the present invention, FIG. 2 is a block diagram showing the structure of another embodiment of the present invention, and FIG. 3 is a block diagram of a conventional laser device. FIG. 4 is a diagram showing transmission characteristics of a laser beam. 1... Semiconductor laser, 14... Compensation element, 15...
- Constant voltage supply circuit, 16... active layer, 17... electrode, 18... storage block. Agent Masu Oiwa M (2 idiots) 1st ward b 1 Shi-za-hitsu fake bribe net 14: λkame I 1■ Prefectural hand 15: Shiba Ryu Pressure Urei-dou boasting procedure amendment (self-motivated) fpe 7 years. Month 2, 2, Name of the invention: Semiconductor laser device 3, Person making the amendment Representative Moriya Shiki 4, Agent 5 Column for detailed explanation of the invention to be amended. G. Contents of the amendment (1) On page 1, line 11 of the specification, the phrase ``This invention generates a laser beam'' has been changed to ``This invention generates a laser beam with a constant oscillation wavelength regardless of fluctuations in ambient temperature.''"Yes," he corrected. (2) On page 3, line 7 of the same book, the phrase ``The oscillation wavelength changes and the refractive index changes'' is corrected to ``The refractive index changes, which causes the oscillation wavelength to change.'' (3) On page 8 of the same book, lines 1 to 6, the phrase ``The refractive index of the semiconductor laser 1 decreases'' was replaced with ``The refractive index of the semiconductor laser 1 fluctuates. The oscillation wavelength varies from and the oscillation wavelength becomes shorter.'' (4) Same book, page 8, lines 16 to 20 [Accordingly, the refractive index increases. "The refractive index of the semiconductor laser 1 changes accordingly. At this time, as the current , decreases, the refractive index decreases and the oscillation wavelength decreases. Also, as the current , increases, the refractive index increases. Therefore, the oscillation wavelength increases.'' (5) On page 9 of the same book, lines 4 and 5, the phrase ``The refractive index of the semiconductor laser 1 decreases,'' was replaced with ``The refractive index of the semiconductor laser 1 decreases, and the oscillation wavelength becomes shorter,” he corrects. (6) The same book, page 9, lines 10 to 11, “The wavelength of the laser beam of the semiconductor laser 1 becomes longer and the refractive index increases,
J is corrected to read, "The refractive index of the semiconductor laser 1 increases and the oscillation wavelength becomes longer." (7) On page 10 of the same book, lines 6 and 7, "The refractive index variation due to the wavelength variation of the laser beam of a semiconductor laser" is replaced with "The wavelength variation due to the refractive index variation of the semiconductor laser"
and correct it. that's all
Claims (1)
半導体レーザと、環境温度により抵抗値が定まる抵抗素
子とを備え、これ等両素子を直列接続して成る半導体レ
ーザ装置。A semiconductor laser device includes a semiconductor laser whose output wavelength of laser light is determined by environmental temperature and drive current, and a resistive element whose resistance value is determined by the environmental temperature, and these two elements are connected in series.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13204288A JPH01300579A (en) | 1988-05-30 | 1988-05-30 | Semiconductor laser device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13204288A JPH01300579A (en) | 1988-05-30 | 1988-05-30 | Semiconductor laser device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01300579A true JPH01300579A (en) | 1989-12-05 |
Family
ID=15072152
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13204288A Pending JPH01300579A (en) | 1988-05-30 | 1988-05-30 | Semiconductor laser device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01300579A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0848466A2 (en) * | 1996-12-14 | 1998-06-17 | Toshiba Corporation | Semiconductor light emitting element and optical fiber transmission system |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5754383A (en) * | 1980-09-19 | 1982-03-31 | Matsushita Electric Ind Co Ltd | Power source device for laser diode |
JPS5943587A (en) * | 1982-09-03 | 1984-03-10 | Canon Inc | Drive system for semiconductor laser |
-
1988
- 1988-05-30 JP JP13204288A patent/JPH01300579A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5754383A (en) * | 1980-09-19 | 1982-03-31 | Matsushita Electric Ind Co Ltd | Power source device for laser diode |
JPS5943587A (en) * | 1982-09-03 | 1984-03-10 | Canon Inc | Drive system for semiconductor laser |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0848466A2 (en) * | 1996-12-14 | 1998-06-17 | Toshiba Corporation | Semiconductor light emitting element and optical fiber transmission system |
EP0848466A3 (en) * | 1996-12-14 | 2001-04-18 | Kabushiki Kaisha Toshiba | Semiconductor light emitting element and optical fiber transmission system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0870351B1 (en) | Light source for a fiber optic gyroscope with wavelength control | |
Luvsandamdin et al. | Micro-integrated extended cavity diode lasers for precision potassium spectroscopy in space | |
US4254382A (en) | Crystal oscillator temperature compensating circuit | |
JPH07501659A (en) | wavelength stabilization | |
KR910013640A (en) | Stable Feedback Controller for Semiconductor Lasers | |
Szatmari et al. | Comparative study of the gain dynamics of XeCl and KrF with subpicosecond resolution | |
JP6519925B2 (en) | Tunable laser system | |
Cahillane et al. | Laser frequency noise in next generation gravitational-wave detectors | |
JP2000332348A (en) | Mode-locked semiconductor laser | |
Wu et al. | Rapid and precise compensation of scale factor in a fiber-optic gyroscope with a twin-peaks source | |
JPH01300579A (en) | Semiconductor laser device | |
US4051446A (en) | Temperature compensating circuit for use with a crystal oscillator | |
JPS60247982A (en) | Driving circuit for semiconductor laser | |
JP3795340B2 (en) | Fiber optic gyro | |
Shajenko et al. | Signal stabilization of optical interferometric hydrophones by tuning the light source | |
Dutta et al. | Stable 671-nm external cavity diode laser with output power exceeding 150 mW suitable for laser cooling of lithium atoms | |
US6756851B2 (en) | Transimpedance amplifier | |
JPS59140B2 (en) | semiconductor laser equipment | |
Fürstenau | Bistable fiber-optic Michelson interferometer that uses wavelength control | |
RU2734999C1 (en) | Fiber-optic gyroscope photodetector current stabilization device | |
JP3940724B2 (en) | Wavelength stabilizer | |
JPS6077504A (en) | Oscillator | |
KR940010168B1 (en) | Laser frequency controlling apparatus and method the same | |
JPS60117693A (en) | Light frequency stabilizing device | |
JPH04137575A (en) | Frequency-stabilized laser light source |