JPH01299777A - Structure of plasma torch - Google Patents

Structure of plasma torch

Info

Publication number
JPH01299777A
JPH01299777A JP63127386A JP12738688A JPH01299777A JP H01299777 A JPH01299777 A JP H01299777A JP 63127386 A JP63127386 A JP 63127386A JP 12738688 A JP12738688 A JP 12738688A JP H01299777 A JPH01299777 A JP H01299777A
Authority
JP
Japan
Prior art keywords
cathode
working gas
magnetic field
magnet
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63127386A
Other languages
Japanese (ja)
Inventor
Shunichi Sakuragi
俊一 桜木
Toshihiko Nakamura
敏彦 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP63127386A priority Critical patent/JPH01299777A/en
Publication of JPH01299777A publication Critical patent/JPH01299777A/en
Pending legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • Arc Welding In General (AREA)

Abstract

PURPOSE:To prevent sudden consumption of a negative electrode by providing working gas blowout nozzles on the same axis as the negative electrode and arranging a magnet to the lower part of the negative electrode and bringing the Lorentz's force acting on the negative electrode in line with the turning direction of working gas. CONSTITUTION:The gas blowout nozzles of a working gas supply path 2 is provided on the same axis as the negative electrode 1 and further, the magnet 7 to generate a line of magnetic force is set up in the vicinity of the lower part of the negative electrode 1. At this time, in order to generate the turning flow of working gas to surround a plasma arc, the working gas blowout nozzles 8 are pierced and formed in the magnet 7. Since the working gas blowout nozzles 8 are provided in the magnet 7 itself and the magnet 7 is arranged in close vicinity to the negative electrode surface 1a, the acting force of the magnet 7 increases. By this method, the Lorentz's force on the negative electrode surface is brought in line with the turning direction of the working gas and the turning motion of a discharging point is stabilized. Accordingly, the sudden consumption of the negative electrode is prevented.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、金属の溶接・切断・被覆等広範な分野に利用
されるプラズマトーチの構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the structure of a plasma torch used in a wide range of fields such as welding, cutting, and coating metals.

[従来の技術] プラズマトーチの陰極の急激な消耗を軽減させるために
陰極面上の放電点を旋回移動させる技術としては、例え
ば実開昭62−41476に示されているように、陰極
の上方に磁力線発生コイルを配置し、陰極面上に働くロ
ーレンツ力によって放電点に旋回運動を起こさせる構造
が知られており、磁場印加の手段として磁力線発生コイ
ルの他に磁石が用いられる。
[Prior Art] As a technique for rotating the discharge point on the cathode surface in order to reduce rapid consumption of the cathode of a plasma torch, for example, as shown in Utility Model Application Laid-Open No. 62-41476, A structure is known in which a magnetic field line generating coil is disposed on the cathode surface and a rotating motion is caused at the discharge point by the Lorentz force acting on the cathode surface, and a magnet is used in addition to the magnetic field line generating coil as a means for applying the magnetic field.

また実開昭62−41476に示されているように、凹
面を有する陰極と磁力線発生コイルとの組合せにより、
放電点を陰極の凹面上で旋回移動させる構造が知られて
いる。
Furthermore, as shown in Utility Model Application No. 62-41476, by combining a cathode with a concave surface and a magnetic field line generating coil,
A structure in which a discharge point is rotated on a concave surface of a cathode is known.

プラズマトーチの陰極には陰極本体と、該陰極本体の先
端にこれより耐熱性の高い材料よりなる陰極部を埋設し
たものがあり、埋設は圧入、かしめ等の力学的方法また
はろう付は等の冶金学的方法によっている。
The cathode of a plasma torch includes a cathode body and a cathode part made of a material with higher heat resistance buried at the tip of the cathode body.The cathode can be buried by mechanical methods such as press-fitting or caulking, or by brazing or other methods. by metallurgical methods.

[発明が解決しようとする課題] 従来の技術による磁場印加型プラズマトーチにおいて、
磁力線発生コイルまたは磁石は第8図に示すように、下
部に作動ガスの旋回流を生じさせるための作動ガス噴出
口を設けた絶縁体6の上方に配置されているため、磁場
の印加に磁石を用いた場合、陰極lの表面から磁石7ま
での距離が長くなり、陰極表面で所定の磁場強度を確保
するためには磁石の体積を大きくしたり、残留磁束密度
の大きい強力な磁石を使用する必要があった。従って陰
極の急激な消耗を軽減するためには、原価の高いあるい
は機械的強度の極度に小さい磁石を使用しなければなら
ないという問題点があった。
[Problem to be solved by the invention] In the magnetic field application type plasma torch according to the conventional technology,
As shown in FIG. 8, the magnetic field line generating coil or magnet is placed above the insulator 6, which has a working gas outlet at the bottom to generate a swirling flow of working gas. When using , the distance from the surface of the cathode l to the magnet 7 becomes long, and in order to secure the specified magnetic field strength on the cathode surface, the volume of the magnet must be increased or a strong magnet with a high residual magnetic flux density must be used. I needed to. Therefore, in order to reduce the rapid consumption of the cathode, there is a problem in that it is necessary to use magnets that are expensive or have extremely low mechanical strength.

また実開昭62〒41476に示されているプラズマト
ーチにおいては、磁場の極性と作動ガスの旋回方向とを
任意に選択した場合、第9図に示す凹面9を有する陰極
1の表面に働くローレンツ力の方向と、作動ガスの旋回
方向が相反する場合を生じ、このような場合には陰極表
面における放電点の旋回運動を妨げる力が発生するため
、ローレンツ力による放電点の高速移動の効果が低減し
、陰極が早期に消耗するという問題点があった。
Furthermore, in the plasma torch shown in Japanese Utility Model Application Publication No. 41476/1983, when the polarity of the magnetic field and the swirling direction of the working gas are arbitrarily selected, the Lorentz force acting on the surface of the cathode 1 having the concave surface 9 shown in FIG. There are cases where the direction of the force and the swirling direction of the working gas are contradictory, and in such cases, a force is generated that impedes the swirling movement of the discharge point on the cathode surface, so the effect of high-speed movement of the discharge point due to Lorentz force is reduced. There was a problem that the cathode was consumed early.

次に陰極本体の先端に陰極部を埋設したプラズマトーチ
の接合陰極において、該陰極部の接合を圧入・かしめ等
によって行フた場合、陰極本体および陰極部の接合面仕
上げ精度を十分に良くしたものであっても、微視的に観
察すればその接合面は互いに点接触であるため、電気・
熱の伝導が必ずしも完全に行われているとはいえない。
Next, in the bonded cathode of a plasma torch in which the cathode part is embedded in the tip of the cathode body, when the cathode part is joined by press-fitting, caulking, etc., the finishing accuracy of the joint surface of the cathode body and the cathode part is sufficiently improved. microscopically, the bonding surfaces are in point contact with each other, so there is no electricity or
It cannot be said that heat conduction is necessarily carried out perfectly.

これに対しろう付けによる接合の場合、接合面は完全に
接合するが、陰極部の形状からろう付は作業時に発生す
るガスが抜けずに接合面に残留して生ずる中空部を完全
になくすことは困難であり、該中空部は電気・熱伝導を
低下させる。接合にいずれの方法を用いた場合でも、電
気伝導性の不良はミスファイア等を起こして安定した機
能が得られず、熱伝導性の不良は陰極部を過熱させ陰極
が急激に消耗するという問題点があった。
On the other hand, in the case of joining by brazing, the joint surfaces are completely joined, but due to the shape of the cathode part, with brazing it is necessary to completely eliminate the hollow space that is created when gas generated during work does not escape and remains on the joint surface. is difficult, and the hollow portion reduces electrical and thermal conduction. No matter which method is used for bonding, poor electrical conductivity causes misfires and other problems, making it impossible to obtain stable functionality, while poor thermal conductivity causes the cathode to overheat and rapidly wear out. There was a point.

本発明は従来の技術が有するこのような問題点に鑑みて
なされたもので、陰極の急激な消耗を軽減させるために
、体積が小さく機械的強度の大きい磁石と、作動ガスの
旋回気流によって陰極表面における放電点の旋回運動が
妨げられることのない磁場発生装置と、電気・熱伝導性
が良く、アーク発生時に冷却の容易な接合陰極とを提供
することを目的としている。
The present invention was made in view of the above-mentioned problems of the conventional technology.In order to reduce the rapid consumption of the cathode, the present invention uses a magnet with a small volume and high mechanical strength, and a swirling airflow of working gas to attach the cathode. The object of the present invention is to provide a magnetic field generating device in which the swirling movement of a discharge point on the surface is not hindered, and a bonded cathode that has good electrical and thermal conductivity and is easy to cool when an arc occurs.

[課題を解決するための手段] 上記目的を達成するために、本発明のプラズマトーチに
おいては、プラズマアークを包囲する作動ガスの旋回流
を生じさせるための作動ガス噴出口を有し、陰極と同軸
状に配置されて磁場配位が軸対称であり、かつ磁場を形
成する磁力線を発生する磁石を、陰極の下端部に設置し
たものである。
[Means for Solving the Problems] In order to achieve the above object, the plasma torch of the present invention has a working gas outlet for generating a swirling flow of working gas surrounding the plasma arc, and has a working gas outlet that is connected to the cathode. A magnet is placed at the lower end of the cathode, which is coaxially arranged so that the magnetic field configuration is axially symmetrical, and which generates lines of magnetic force that form the magnetic field.

また凹面を有する陰極の表面に働くローレンツ力の方向
と、作動ガスの旋回方向が一致するように極性を選択し
て磁場発生装置を取着する。
Further, the magnetic field generator is attached with the polarity selected so that the direction of the Lorentz force acting on the surface of the cathode having a concave surface coincides with the swirling direction of the working gas.

接合陰極については、陰極本体と接合する陰極部の上部
端面の一部が露出するごとく貫通させた1個以上の通気
穴を、陰極本体に設けたものである。
As for the bonded cathode, one or more ventilation holes are provided in the cathode body so that a part of the upper end surface of the cathode portion that is bonded to the cathode body is exposed.

[作用] 陰極下端部に設置された磁石は、所定の磁場強度で磁力
線を発生し、陰極表面の放電点に旋回運動を起こさせる
とともに、作動ガス噴出口から噴出する作動ガスは旋回
流を生じてアークを包囲する。
[Function] The magnet installed at the lower end of the cathode generates magnetic lines of force at a predetermined magnetic field strength, causing swirling motion at the discharge point on the cathode surface, and the working gas ejected from the working gas outlet produces a swirling flow. and surround the arc.

また凹面を有する陰極面上で発生するローレンツ力の方
向と、作動ガスの旋回方向が一致するように磁場発生装
置の極性を選択することにより、放電点は陰極面上で安
定した旋回運動を行うことができる。
In addition, by selecting the polarity of the magnetic field generator so that the direction of the Lorentz force generated on the concave cathode surface matches the swirling direction of the working gas, the discharge point can perform stable swirling motion on the cathode surface. be able to.

接合陰極の陰極本体を貫通する1個以上の通気穴は、陰
極部と陰極本体とをろう付けによって接合する際に発生
するガスを外部に放出するとともに、アーク発生時には
旋回する作動ガスの一部が上記通気穴内を通過して陰極
部を冷却する。
One or more ventilation holes penetrating the cathode body of the bonded cathode discharge the gas generated when the cathode part and the cathode body are joined by brazing to the outside, and also discharge part of the working gas that swirls when an arc occurs. passes through the ventilation hole to cool the cathode section.

[実施例コ 実施例について図面を参照して説明する。[Example code] Examples will be described with reference to the drawings.

第1図、第2図は請求項(1)の実施例を示し、陰極l
は陰極部1aを陰極本体lbの下端に埋設したもので、
前記陰極lを包囲する作動ガス供給路2を形成するごと
く中間ノズル3と、該中間ノズル3を包囲するシールド
ガス供給路4を形成するごとくノズル5を設け、前記陰
極1の上部は絶縁体6で包囲されている。該絶縁体6の
下方に、前記陰極lの下部を包囲し、陰極1と同軸状に
環状のフェライト系磁石7を配設する。該磁石7は磁場
配位が軸対称で、磁場を形成する磁力線を発生し、かつ
第2図に示すようにプラズマアークを包囲する作動ガス
の旋回流を生じさせるための作動ガス噴出口8を有して
いる。
1 and 2 show an embodiment of claim (1), and the cathode l
The cathode part 1a is buried in the lower end of the cathode body lb,
An intermediate nozzle 3 is provided to form a working gas supply path 2 surrounding the cathode 1, and a nozzle 5 is provided to form a shield gas supply path 4 surrounding the intermediate nozzle 3. is surrounded by. An annular ferrite magnet 7 is disposed below the insulator 6, surrounding the lower part of the cathode 1, and coaxially with the cathode 1. The magnet 7 has an axially symmetrical magnetic field configuration, generates magnetic lines of force that form a magnetic field, and has a working gas outlet 8 for generating a swirling flow of working gas surrounding the plasma arc, as shown in FIG. have.

第3図は請求項(2)の実施例であるが、陰極1は軸対
称でかつ上方向に凹となる凹面9を有する陰極部1aを
陰極本体ibの下端に埋設したもので、該陰極lの上方
に同軸状に配置されて磁場配位が軸対称であり、かつ磁
場を形成する磁力線を発生する磁場発生装置10を配置
するとともに、陰極1を包囲する作動ガス供給路2を形
成するごとく中間ノズル3と、該中間ノズル3を包囲す
るシールドガス供給路4を形成するごとくノズル5を設
ける。前記磁場発生装置1.0はコイルあるいは磁石に
よるものとし、例えば磁石を用いる場合は、作動ガス旋
回装置11から噴出する作動ガスの旋回方向が、ノズル
5の開口部から見て右回りならば、磁石のN極を下側に
して設置するものとし、陰極lの表面に働くローレンツ
力の方向を、作動ガスの旋回方向と一致させる。
FIG. 3 shows an embodiment of claim (2), in which the cathode 1 has a cathode portion 1a that is axially symmetrical and has a concave surface 9 that is concave upwardly buried in the lower end of the cathode body ib. A magnetic field generator 10 is disposed coaxially above the cathode 1 so that the magnetic field configuration is axially symmetrical and generates magnetic lines of force that form a magnetic field, and a working gas supply path 2 that surrounds the cathode 1 is formed. A nozzle 5 is provided to form an intermediate nozzle 3 and a shield gas supply path 4 surrounding the intermediate nozzle 3. The magnetic field generating device 1.0 is made of a coil or a magnet. For example, when using a magnet, if the swirling direction of the working gas ejected from the working gas swirling device 11 is clockwise when viewed from the opening of the nozzle 5, The magnet is installed with the north pole facing downward, and the direction of the Lorentz force acting on the surface of the cathode 1 is made to coincide with the swirling direction of the working gas.

第4図〜第7図は請求項(3)の実施例であるが、陰極
本体1bと陰極部1aの接合はろう付けによるものとし
、第4図、第5図において陰極本体1bの、陰極部1a
を挿入する穴の底面に、直径がろう付は部12の厚さの
数倍以上あり、かつろう付は後上記陰極部1aの端面の
一部が露出するような通気穴13を2細手行に貫通させ
る。上記接合陰極1の下端付近に作動ガス旋回装置11
を設け、また接合陰極lを包囲する形で内側に作動ガス
供給路2および中間ノズル3を、外側にシールドガス供
給路4およびノズル5を設ける。
4 to 7 show embodiments of claim (3), the cathode body 1b and the cathode portion 1a are joined by brazing, and in FIGS. 4 and 5, the cathode body 1b and the cathode Part 1a
At the bottom of the hole into which the cathode part 1a is inserted, make two narrow ventilation holes 13 whose diameter is several times the thickness of the cathode part 12 or more, and after the brazing, a part of the end face of the cathode part 1a is exposed. Penetrate the line. A working gas swirling device 11 is located near the lower end of the bonded cathode 1.
A working gas supply path 2 and an intermediate nozzle 3 are provided on the inside, and a shielding gas supply path 4 and a nozzle 5 are provided on the outside so as to surround the bonding cathode 1.

陰極本体1bと陰極部1aの接合は、圧入・かしめ等に
よる方法を用いてもよい。
The cathode main body 1b and the cathode portion 1a may be joined by a method such as press-fitting or caulking.

[発明の効果] 本発明は上述の通り構成されているので、次に記載する
効果を奏する。
[Effects of the Invention] Since the present invention is configured as described above, it produces the following effects.

磁場発生装置としての磁石に作動ガス噴出口を設け、陰
極面に近接して設置することにより、従来よりも体積が
小さくかつ十分な機械的強度を有する磁性材料の使用が
可能となるので、陰極面上における放電点の旋回運動が
確実に行われ、陰極の急激な消耗を軽減させることがで
きる。
By providing a working gas outlet in the magnet as a magnetic field generator and installing it close to the cathode surface, it is possible to use a magnetic material that is smaller in volume than before and has sufficient mechanical strength. The rotating movement of the discharge point on the surface is reliably performed, and rapid wear of the cathode can be reduced.

また極性を選択した上で磁場発生装置を取着することに
より、陰極面上に働くローレンツ力の方向と、作動ガス
の旋回方向は常に一致し、陰極面上における放電点の旋
回運動は定常運転時に安定したものとなるので、陰極の
急激な消耗を防止することができる。
In addition, by selecting the polarity and attaching the magnetic field generator, the direction of the Lorentz force acting on the cathode surface always matches the swirling direction of the working gas, and the swirling motion of the discharge point on the cathode surface is maintained during steady operation. Since it becomes stable at times, rapid consumption of the cathode can be prevented.

接合陰極の陰極本体に穿設した通気穴は、陰極本体と陰
極部をろう付けする際に発生するガスの放出を容易にし
、接合面の内部欠陥発生を防止するので、運転時の電気
・熱伝導性を良好に保つとともに作動ガスが上記通気穴
を通過して陰極部を冷却するので、陰極の急激な消耗を
防止し耐用寿命を延長させることができる。また上記通
気穴は、陰極本体と陰極部を圧入・かしめ等によって接
合する場合には空気抜きの機能を果たすので、これらの
場合にも活用することができる。
The ventilation hole drilled in the cathode body of the bonded cathode facilitates the release of gas generated when the cathode body and cathode part are brazed, and prevents internal defects on the bonded surface, so there is no electricity or heat during operation. Since good conductivity is maintained and the working gas passes through the ventilation hole to cool the cathode section, rapid consumption of the cathode can be prevented and its service life can be extended. Furthermore, since the vent hole functions as an air vent when the cathode body and the cathode portion are joined by press-fitting, caulking, etc., it can be utilized in these cases as well.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第7図は本発明の実施例を示す図面で、第1図
は請求項(1)に記載した磁石を陰極下端部に設けてな
るプラズマトーチの要部断面図、第2図は第1図のA−
A線に沿う磁石の断面図、第3図は請求項(2)に記載
の磁場発生装置を有するプラズマトーチの断面図、第4
図は請求項(3)に記載の通気穴を設けた接合陰極の断
面図、第5図は同じく下面図、第6図は上記通気穴を有
する接合陰極を取着したプラズマトーチの要部断面図、
第7図は作動ガスによる陰極の冷却を示す第6図のA−
A&Iに沿う作動ガス旋回装置と陰極の断面説明図、第
8図は従来の技術による磁場印加型プラズマトーチの要
部断面図、第9図は陰極が凹面を有する磁場印加型プラ
ズマトーチの構成説明図である。 1・・・・・・陰極 1a・・・・・・陰極部 1b・・・・・・陰極本体 2・・・・・・作動ガス供給路 3・・・・・・中間ノズル 4・・・・・・シールドガス供給路 5・・・・・・ノズル 6・・・・・・絶縁体 7・・・・・・磁石 8・・・・・・作動ガス噴出口 9・・・・・・凹面 10・・・・・・磁場発生装置 11・・・・・・作動ガス旋回装置 12・・・・・・ろう付は部 13・・・・・・通気穴 14・・・・・・プラズマアーク 15争・φ・φ串ホルダ 第2図 第3図 第412I 第7図
1 to 7 are drawings showing embodiments of the present invention, and FIG. 1 is a cross-sectional view of a main part of a plasma torch in which the magnet described in claim (1) is provided at the lower end of the cathode, and FIG. is A- in Figure 1.
FIG. 3 is a cross-sectional view of the magnet along line A; FIG.
The figure is a sectional view of a bonded cathode provided with ventilation holes according to claim (3), FIG. figure,
Figure 7 is A- of Figure 6 showing cooling of the cathode by working gas.
A cross-sectional explanatory diagram of a working gas swirling device and a cathode along A&I, Fig. 8 is a cross-sectional view of main parts of a conventional magnetic field application type plasma torch, and Fig. 9 is an explanation of the configuration of a magnetic field application type plasma torch in which the cathode has a concave surface. It is a diagram. 1...Cathode 1a...Cathode part 1b...Cathode body 2...Working gas supply path 3...Intermediate nozzle 4... ... Shield gas supply path 5 ... Nozzle 6 ... Insulator 7 ... Magnet 8 ... Working gas outlet 9 ... Concave surface 10 ... Magnetic field generator 11 ... Working gas swirling device 12 ... Brazing part 13 ... Ventilation hole 14 ... Plasma Arc 15 war・φ・φ Skewer holder Fig. 2 Fig. 3 Fig. 412I Fig. 7

Claims (3)

【特許請求の範囲】[Claims] (1)陰極1と、該陰極1を包囲し作動ガス供給路2を
形成するごとく設置された中間ノ ズル3と、更に前記中間ノズル3を包囲し シールドガス供給路4を形成するごとく設 置されたノズル5を備えたプラズマトーチ において、プラズマアークを包囲する作動 ガスの旋回流を生じさせるための作動ガス 噴出口8を有し、陰極1と同軸状に配置さ れて磁場配位が軸対称であり、かつ磁場を 形成する磁力線を発生する磁石7を、陰極 1の下端部に設置したことを特徴とするプ るプラズマトーチの構造。
(1) A cathode 1, an intermediate nozzle 3 installed to surround the cathode 1 to form a working gas supply path 2, and further installed to surround the intermediate nozzle 3 to form a shield gas supply path 4. A plasma torch equipped with a nozzle 5 has a working gas outlet 8 for generating a swirling flow of working gas surrounding the plasma arc, and is arranged coaxially with the cathode 1 so that the magnetic field configuration is axially symmetrical. , and a magnet 7 that generates lines of magnetic force forming a magnetic field is installed at the lower end of the cathode 1.
(2)陰極形状が軸対称であり、かつ上方向に凹となる
凹面9を有する陰極1と、該陰極 1の上方に同軸状に配置されて磁場配位が 軸対称であり、かつ磁場を形成する磁力線 を発生する磁場発生装置10と、前記陰極 1を包囲し作動ガス供給路2を形成するご とく設置された中間ノズル3と、更に前記 中間ノズル3を包囲しシールドガス供給路 4を形成するごとく設置されたノズル5と、前記陰極1
の外周にプラズマアークを包囲 する作動ガスの旋回流を生じさせるための 作動ガス旋回装置11とを備えたプラズマ トーチにおいて、前記凹面9を有する陰極 1の表面に働くローレンツ力の方向と、作 動ガスの旋回方向とが一致するように磁場 発生装置10の極性を選択したことを特徴 とするプラズマトーチの構造。
(2) A cathode 1 having an axially symmetrical cathode shape and a concave surface 9 concave upward, and a cathode 1 disposed coaxially above the cathode 1 and having an axially symmetrical magnetic field configuration and a magnetic field generating device 10 that generates magnetic lines of force to be formed, an intermediate nozzle 3 that surrounds the cathode 1 and is installed to form a working gas supply path 2, and further surrounds the intermediate nozzle 3 to form a shield gas supply path 4. The nozzle 5 and the cathode 1
In the plasma torch, the direction of the Lorentz force acting on the surface of the cathode 1 having the concave surface 9 and the working gas are determined. A structure of a plasma torch characterized in that the polarity of the magnetic field generator 10 is selected so that the rotation direction of the magnetic field generator 10 coincides with the rotating direction of the plasma torch.
(3)陰極本体1bの下端に陰極部1aを埋設してなる
接合陰極1と、該接合陰極1を包 囲レ、作動ガス供給路2を形成するごとく 設置された中間ノズル3と、更に前記中間 ノズル3を包囲し、シールドガス供給路4 を形成するごとく設置されたノズル5と、 上記接合陰極1の下端付近に作動ガス旋回 装置11を備えたプラズマトーチにおいて、陰極本体1
bと接合する陰極部1aの上部 端面の一部が露出するごとく貫通させた1 個以上の通気穴13を、陰極本体1bに設 けたことを特徴とするプラズマトーチの構 造。
(3) A bonded cathode 1 having a cathode section 1a buried in the lower end of the cathode body 1b, an intermediate nozzle 3 surrounding the bonded cathode 1 and forming a working gas supply path 2, and furthermore, In a plasma torch equipped with a nozzle 5 that surrounds the nozzle 3 and is installed to form a shield gas supply path 4 , and a working gas swirling device 11 near the lower end of the bonded cathode 1 , the cathode body 1
A structure of a plasma torch characterized in that the cathode body 1b is provided with one or more ventilation holes 13 which are penetrated so that a part of the upper end surface of the cathode part 1a which is joined to the cathode body 1b is exposed.
JP63127386A 1988-05-24 1988-05-24 Structure of plasma torch Pending JPH01299777A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63127386A JPH01299777A (en) 1988-05-24 1988-05-24 Structure of plasma torch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63127386A JPH01299777A (en) 1988-05-24 1988-05-24 Structure of plasma torch

Publications (1)

Publication Number Publication Date
JPH01299777A true JPH01299777A (en) 1989-12-04

Family

ID=14958708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63127386A Pending JPH01299777A (en) 1988-05-24 1988-05-24 Structure of plasma torch

Country Status (1)

Country Link
JP (1) JPH01299777A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0461263A1 (en) * 1990-01-04 1991-12-18 Nkk Corporation Plasma torch with instable plasma arc
WO1995003910A1 (en) * 1993-07-28 1995-02-09 Kabushiki Kaisha Komatsu Seisakusho Plasma torch
WO1995012965A1 (en) * 1993-11-02 1995-05-11 Komatsu Ltd. Plasma torch
JP2007066677A (en) * 2005-08-31 2007-03-15 Koike Sanso Kogyo Co Ltd Electrode for plasma torch
JP2008508683A (en) * 2004-07-30 2008-03-21 アマランテ テクノロジーズ,インク. Plasma nozzle array for uniform and scalable microwave plasma generation

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0461263A1 (en) * 1990-01-04 1991-12-18 Nkk Corporation Plasma torch with instable plasma arc
EP0461263B1 (en) * 1990-01-04 1998-04-01 Nkk Corporation Plasma torch with instable plasma arc
WO1995003910A1 (en) * 1993-07-28 1995-02-09 Kabushiki Kaisha Komatsu Seisakusho Plasma torch
US5569397A (en) * 1993-07-28 1996-10-29 Kabushiki Kaisha Komatsu Seisakusho Plasma torch
WO1995012965A1 (en) * 1993-11-02 1995-05-11 Komatsu Ltd. Plasma torch
US5726414A (en) * 1993-11-02 1998-03-10 Komatsu Ltd. Plasma torch with swirling gas flow in a shielding gas passage
JP2008508683A (en) * 2004-07-30 2008-03-21 アマランテ テクノロジーズ,インク. Plasma nozzle array for uniform and scalable microwave plasma generation
JP4896880B2 (en) * 2004-07-30 2012-03-14 アマランテ テクノロジーズ,インク. Method for constructing microwave plasma nozzle array, microwave plasma nozzle array unit and microwave plasma system
JP2007066677A (en) * 2005-08-31 2007-03-15 Koike Sanso Kogyo Co Ltd Electrode for plasma torch

Similar Documents

Publication Publication Date Title
US7659488B2 (en) Composite electrode for a plasma arc torch
US5767478A (en) Electrode for plasma arc torch
CA2174317C (en) Plasma torch
US5676864A (en) Electrode for plasma arc torch
RU2526862C2 (en) Plasma torch electrode
JP2006519103A (en) System for welding and method of use thereof
US4851636A (en) Method and apparatus for generating an ultra low current plasma arc
JPH08319552A (en) Plasma torch and plasma thermal spraying device
JPH01299777A (en) Structure of plasma torch
CA2137594A1 (en) Welding apparatus for studs of annular cross-section
JP2020011292A (en) Torch for welding tig
US5202544A (en) Method of machining plate materials with a plasma cutter and plasma torch
JPH08243755A (en) Welding torch for cladding by plasma arc welding
WO2020017222A1 (en) Tig welding torch
JPS629779A (en) Plasma cutter for metallic work
JPH11197841A (en) Torch for narrow beveling welding, and narrow beveling welding method
JP3211318B2 (en) Torch for TIG arc welding and pulse TIG arc welding method
KR100217855B1 (en) Arc welding method and device for electromagnetic power
CN218874069U (en) Stud welding gun guiding clamp
JPH0220666A (en) Welding torch
JP3812116B2 (en) Arc machining torch and arc machining electrode
JPH0222151Y2 (en)
JPS6010793Y2 (en) Electrode for positive plasma welding torch
JPS61169180A (en) Spot welding device
JP2000263227A (en) Magnetic stir welding torch