JPH0129972B2 - - Google Patents

Info

Publication number
JPH0129972B2
JPH0129972B2 JP55157571A JP15757180A JPH0129972B2 JP H0129972 B2 JPH0129972 B2 JP H0129972B2 JP 55157571 A JP55157571 A JP 55157571A JP 15757180 A JP15757180 A JP 15757180A JP H0129972 B2 JPH0129972 B2 JP H0129972B2
Authority
JP
Japan
Prior art keywords
intake
intake air
engine
temperature
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55157571A
Other languages
Japanese (ja)
Other versions
JPS5781118A (en
Inventor
Yoshio Iwasa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP15757180A priority Critical patent/JPS5781118A/en
Publication of JPS5781118A publication Critical patent/JPS5781118A/en
Publication of JPH0129972B2 publication Critical patent/JPH0129972B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Supercharger (AREA)

Description

【発明の詳細な説明】 本発明は吸気過給機付内燃機関における吸気冷
却装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an intake air cooling device for an internal combustion engine with an intake air supercharger.

ターボ過給機等吸気過給機を搭載した機関にお
いては、過給機のコンプレツサによる圧縮で吸気
温度が上昇し過給効率が低下することを防止する
ためコンプレツサと機関(シリンダヘツド)との
間の吸気路にインタクーラと称する水冷式熱交換
器を介装したものがある。
In engines equipped with an intake supercharger such as a turbo supercharger, there is a Some engines have a water-cooled heat exchanger called an intercooler installed in the air intake path.

しかしながら従来の前記インタクーラは吸気路
と別体に形成されていたため該インタクーラと吸
気路とを接続するダクトやインタクーラを固定保
持するための保持部材を要し、重量、コスト、生
産性に難点があつた。
However, since the conventional intercooler was formed separately from the intake passage, it required a duct to connect the intercooler and the intake passage and a holding member to securely hold the intercooler, which caused problems in terms of weight, cost, and productivity. Ta.

又、インタクーラへの冷却水の循環をウオータ
ポンプにより機関始動と同時に行なつていたた
め、機関冷間時にインタクーラによつて吸気が過
冷却されることにより燃料の霧化が悪化したり燃
料消費率が増大するという問題を生じる一方、暖
機後は80〜110℃にまで高められた高温の機関冷
却水によつて冷却を行うため、冷却効率が悪く、
過給空気を十分に冷却することができない等の問
題を生じていた。
In addition, since cooling water was circulated to the intercooler using a water pump at the same time as the engine was started, the intercooler supercooled the intake air when the engine was cold, resulting in poor fuel atomization and low fuel consumption. On the other hand, since cooling is performed using high-temperature engine cooling water that has reached a temperature of 80 to 110 degrees Celsius after warming up, the cooling efficiency is poor.
This has caused problems such as the inability to sufficiently cool the supercharged air.

本発明はかかる従来の難点に鑑み為されたもの
で、機関冷却水路とは遮断されたインタクーラと
しての冷却水路を吸気マニホルドの壁部に沿つて
一体成形すると共に、該吸気マニホルドを機関本
体へ断熱ガスケツトを介して接続し、かつ、イン
タクーラへの冷却水の循環供給を例えば設定吸気
温度以上で行なう構成として、従来の難点を解消
しさらに吸気冷却効率を積極的に高めた過給機付
内燃機関の吸気冷却装置を提供するものである。
The present invention has been made in view of such conventional difficulties, and includes integrally molding a cooling waterway as an intercooler that is isolated from the engine cooling waterway along the wall of the intake manifold, and also insulates the intake manifold from the engine body. This is an internal combustion engine with a supercharger that is connected via a gasket and has a configuration in which cooling water is circulated to the intercooler at a temperature higher than the set intake air temperature. The present invention provides an intake air cooling device.

以下に本発明を図示した実施例に基づいて詳細
に説明する。
The present invention will be described in detail below based on illustrated embodiments.

図において、機関1にはターボ過給機2が搭載
され、エアクリーナ3からエアフロメータ4を介
して導入された吸気は前記ターボ過給機2の吸気
コンプレツサ2Aによつて加圧された後、吸気ダ
クト5、吸気マニホルド6内の絞り弁7を経て電
磁式の燃料噴射弁8から間欠的に噴射された燃料
と混合し、混合気となつて吸気弁9からシリンダ
10内に供給される。
In the figure, an engine 1 is equipped with a turbocharger 2, and intake air introduced from an air cleaner 3 via an air flow meter 4 is pressurized by an intake compressor 2A of the turbocharger 2. It mixes with fuel intermittently injected from an electromagnetic fuel injection valve 8 through a throttle valve 7 in a duct 5 and an intake manifold 6, and is supplied into a cylinder 10 from an intake valve 9 as an air-fuel mixture.

前記燃料噴射弁8の開弁パルス幅によつて決定
される燃料供給量はエアフロメータ4、機関回転
速度センサ、排気中の酸素濃度を検出するO2
ンサ11、絞り弁開度センサ12からの信号等を
受けたコンピユータ13によつて制御され、これ
によつて適正混合気が生成される。
The fuel supply amount determined by the valve opening pulse width of the fuel injection valve 8 is determined by the amount of fuel supplied from the air flow meter 4, the engine rotation speed sensor, the O 2 sensor 11 that detects the oxygen concentration in the exhaust, and the throttle valve opening sensor 12. It is controlled by the computer 13 which receives signals and the like, thereby generating a proper air-fuel mixture.

一方、シリンダ10からの排気は図示しない排
気弁を介して排気マニホルド14へ排出され、タ
ーボ過給機2の排気タービン2Bを経て過給機2
を回転駆動させた後3元触媒コンバータ15、マ
フラ16を介して大気へ放出される。
On the other hand, the exhaust gas from the cylinder 10 is discharged to the exhaust manifold 14 via an exhaust valve (not shown), passes through the exhaust turbine 2B of the turbocharger 2, and then passes through the exhaust turbine 2B of the turbocharger 2.
After being driven to rotate, it is discharged into the atmosphere via a three-way catalytic converter 15 and a muffler 16.

ここに本発明では吸気マニホルド6の吸気通路
壁外側にインタクーラとしての吸気冷却水路17
を一体成形し、該吸気マニホルド6を断熱材料か
らなるガスケツト18を介して機関1の吸気ポー
トと接続し、機関1と断熱する。さらに、前記吸
気冷却水路17の出入口にはウオータポンプ19
及びラジエータ20を介装した冷却水通路21を
接続し、前記ウオータポンプ19として電動式の
ものを使用し、その駆動回路をコンピユータ13
に接続する。そして、吸気冷却水路17に取り付
けた水温センサ22からの信号を受けたコンピユ
ータ13からの出力により吸気冷却水温度が設定
値(例えば50℃)以下の時には前記ウオータポン
プ19の駆動を停止させ、設定値を超えた時には
ウオータポンプ19を通電して駆動させる構成と
する。
Here, in the present invention, an intake cooling water channel 17 as an intercooler is provided on the outside of the intake passage wall of the intake manifold 6.
The intake manifold 6 is connected to the intake port of the engine 1 via a gasket 18 made of a heat insulating material to insulate it from the engine 1. Furthermore, a water pump 19 is installed at the entrance and exit of the intake air cooling waterway 17.
A cooling water passage 21 with a radiator 20 interposed therebetween is connected, an electric type is used as the water pump 19, and its drive circuit is connected to the computer 13.
Connect to. Then, when the intake cooling water temperature is below a set value (for example, 50°C), the drive of the water pump 19 is stopped based on the output from the computer 13 that receives a signal from the water temperature sensor 22 attached to the intake cooling water channel 17. When the value exceeds the value, the water pump 19 is energized and driven.

次にかかる本発明構成の作用を説明する。 Next, the operation of the configuration of the present invention will be explained.

前記したように、吸気冷却水温度が設定値以下
のときにはウオータポンプ19の駆動が停止され
るため、吸気冷却水路17内の吸気冷却水はラジ
エータ20に循環されず放熱が行なわれないので
吸気の過冷却を防止でき、燃料霧化や機関駆動さ
れるオルタネータの電力消費を改善できる。
As mentioned above, when the intake air cooling water temperature is below the set value, the driving of the water pump 19 is stopped, so the intake air cooling water in the intake air cooling water passage 17 is not circulated to the radiator 20 and heat is not radiated, so that the intake air is cooled. Overcooling can be prevented and fuel atomization and power consumption of the engine-driven alternator can be improved.

一方、吸気冷却水温度が前記設定値を超える暖
機完了後等にはコンピユータ13からの出力によ
りウオータポンプ19が駆動されるため吸気冷却
水は10/min〜40/minの割合で吸気冷却水路
17及び冷却水通路21を循環し、ラジエータ2
0によつて放熱され、該放熱された冷却水によつ
て吸気を適正温度に冷却しノツキングの発生を防
止できると共に充填効率が向上して高出力が得ら
れる。
On the other hand, when the intake cooling water temperature exceeds the set value and the water pump 19 is driven by the output from the computer 13, the intake cooling water flows into the intake cooling channel at a rate of 10/min to 40/min. 17 and the cooling water passage 21, and the radiator 2
The heat is radiated by the cooling water, and the radiated cooling water cools the intake air to an appropriate temperature, thereby preventing the occurrence of knocking and improving the filling efficiency to obtain high output.

又、吸気冷却水路17が吸気マニホルド6の壁
部に沿つて一体に鋳造成形されているため従来の
接続用ダクトや固定手段が不要となり吸気系をコ
ンパクト化できると共に組立工程を減少でき低コ
スト化にもつながる。尚、吸気マニホルド6を熱
伝導の良いアルミ合金等で鋳造する場合吸気冷却
水路17は鋳造時鋳砂を除去することにより一体
成形でき生産性向上が図れるが、予めアルミ等熱
伝導性の高い材料で形成した水路をマニホルド本
体に鋳込んでもよい。
In addition, since the intake air cooling channel 17 is integrally cast along the wall of the intake manifold 6, conventional connection ducts and fixing means are not required, making the intake system more compact and reducing the assembly process, resulting in lower costs. It also leads to Note that when the intake manifold 6 is cast from a material such as an aluminum alloy with good thermal conductivity, the intake cooling water channel 17 can be integrally molded by removing casting sand during casting, thereby improving productivity. The water channels formed in the above may be cast into the manifold body.

さらに、吸気冷却水路17を機関冷却水路とは
画成して形成し、かつ機関本体と吸気マニホルド
6とを断熱性ガスケツト18を介して接続して機
関本体から吸気冷却水への熱伝達を極力抑制した
断熱性の高い構造であるため吸気冷却水の昇温を
抑制でき冷却効率が向上する。
Furthermore, the intake cooling water channel 17 is formed to be separated from the engine cooling water channel, and the engine body and the intake manifold 6 are connected via a heat insulating gasket 18 to minimize heat transfer from the engine body to the intake air cooling water. The structure has high thermal insulation properties, which suppresses the temperature rise of the intake cooling water and improves cooling efficiency.

又、燃料噴射弁8を絞り弁7の下流で吸気マニ
ホルド6の上流部に配置しているので噴射燃料に
よる気化熱と吸気冷却水による冷却との相乗作用
により、この面でも過給吸気の冷却効率を高めら
れる。
In addition, since the fuel injection valve 8 is arranged downstream of the throttle valve 7 and upstream of the intake manifold 6, the synergistic effect of the vaporization heat of the injected fuel and the cooling of the intake air cooling water cools the supercharged intake air. Increase efficiency.

尚、水温センサ22は吸気冷却水路17に設け
たが、過給吸気温度を検知できるところならどこ
でもよく、又、ウオータポンプ19はコンピユー
タ13を介さず電源と設定温度で作動するON―
OFF式のスイツチに直結する構成としてもよい。
Although the water temperature sensor 22 is installed in the intake air cooling channel 17, it may be installed anywhere as long as it can detect the supercharged intake air temperature, and the water pump 19 can be operated at a power supply and a set temperature without going through the computer 13.
It may also be configured to be directly connected to an OFF type switch.

以上説明したように、本発明によればインタク
ーラとしての吸気冷却水路を機関冷却水路とは画
成して吸気マニホルドの壁部に沿つて一体成形し
かつ、断熱性ガスケツトを介して機関本体に接続
した構成としたので、吸気冷却効率を大幅に改善
できると共に、吸気系のコンパクト化、部品点数
減少に伴なう生産性向上、低コスト化を図れる。
As explained above, according to the present invention, the intake air cooling channel as an intercooler is separated from the engine cooling channel, is integrally molded along the wall of the intake manifold, and is connected to the engine body via a heat insulating gasket. With this configuration, the intake air cooling efficiency can be greatly improved, and the intake system can be made more compact, productivity can be improved by reducing the number of parts, and costs can be reduced.

又、機関冷間時は吸気冷却水を循環させない構
成としたから吸気の過冷を防止でき、燃料霧化の
改善やバツテリ及びオルタネータの電力消費を抑
制して燃費改善を図れる。
Furthermore, since the intake air cooling water is not circulated when the engine is cold, overcooling of the intake air can be prevented, and fuel atomization can be improved and power consumption of the battery and alternator can be suppressed to improve fuel efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の一実施例を示す全体構成図であ
る。 1…機関、2…ターボ過給機、6…吸気マニホ
ルド、13…コンピユータ、17…吸気冷却水
路、18…ガスケツト、19…ウオータポンプ、
20…ラジエータ、21…冷却水通路、22…水
温センサ。
The figure is an overall configuration diagram showing an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Engine, 2... Turbo supercharger, 6... Intake manifold, 13... Computer, 17... Intake cooling waterway, 18... Gasket, 19... Water pump,
20...Radiator, 21...Cooling water passage, 22...Water temperature sensor.

Claims (1)

【特許請求の範囲】[Claims] 1 吸気過給機下流の吸気マニホルドの壁部に沿
つて吸気冷却水路を一体に形成し、ウオータポン
プ、ラジエータ、および該吸気冷却水路を冷却水
路で連通した吸気冷却装置を、機関冷却水路と画
成して設けると共に、該吸気マニホルドを機関本
体に断熱ガスケツトを介して接続し、かつ、過給
吸気温度又はこれに関連した温度を検出し該検出
温度の設定値以上で前記ウオータポンプを駆動さ
せるポンプ駆動制御手段を設けたことを特徴とす
る吸気過給機付内燃機関の吸気冷却装置。
1. An intake air cooling channel is integrally formed along the wall of the intake manifold downstream of the intake supercharger, and the water pump, radiator, and intake air cooling device that communicates the intake air cooling channel with the cooling channel are separated from the engine cooling channel. At the same time, the intake manifold is connected to the engine body via an insulating gasket, and the supercharged intake air temperature or a temperature related thereto is detected and the water pump is driven at a temperature equal to or higher than a set value of the detected temperature. An intake air cooling device for an internal combustion engine with an intake supercharger, characterized in that a pump drive control means is provided.
JP15757180A 1980-11-11 1980-11-11 Intake air cooling system of internal combustion engine having intake air supercharger Granted JPS5781118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15757180A JPS5781118A (en) 1980-11-11 1980-11-11 Intake air cooling system of internal combustion engine having intake air supercharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15757180A JPS5781118A (en) 1980-11-11 1980-11-11 Intake air cooling system of internal combustion engine having intake air supercharger

Publications (2)

Publication Number Publication Date
JPS5781118A JPS5781118A (en) 1982-05-21
JPH0129972B2 true JPH0129972B2 (en) 1989-06-15

Family

ID=15652591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15757180A Granted JPS5781118A (en) 1980-11-11 1980-11-11 Intake air cooling system of internal combustion engine having intake air supercharger

Country Status (1)

Country Link
JP (1) JPS5781118A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60164627U (en) * 1984-04-09 1985-11-01 阪神エレクトリツク株式会社 Intercooler control device in turbocharger
JPH0484722U (en) * 1990-11-29 1992-07-23
JP5445284B2 (en) * 2010-04-01 2014-03-19 株式会社デンソー Intake air temperature control device for internal combustion engine
DE102011116310A1 (en) * 2011-10-18 2013-04-18 Daimler Ag Arrangement of an air supply device on a cylinder head for an internal combustion engine
JP6222167B2 (en) 2015-05-25 2017-11-01 トヨタ自動車株式会社 Internal combustion engine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4840246A (en) * 1971-09-21 1973-06-13

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5822972Y2 (en) * 1977-01-19 1983-05-17 ヤンマーディーゼル株式会社 Air supply system for supercharged multi-cylinder engines

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4840246A (en) * 1971-09-21 1973-06-13

Also Published As

Publication number Publication date
JPS5781118A (en) 1982-05-21

Similar Documents

Publication Publication Date Title
ES457664A1 (en) Marine engine manifold
JPH02215918A (en) Water cooling system for marine two-cycle internal combustion engine
US9359976B2 (en) Engine with pulse-suppressed dedicated exhaust gas recirculation
KR101534701B1 (en) Engine system having aluminum turbine housing
US20160281582A1 (en) Engine with a turbocharger cooling module
JPH0129972B2 (en)
JPS5638516A (en) Cooler of supercharged engine
JPS5650215A (en) Method and apparatus for controlling temperature in cooling device for supercharged engine
GB1287245A (en) Air cooled internal combustion engine
JPH10331621A (en) Breather passage structure for internal combustion engine
JPH01136668U (en)
JPH1182185A (en) Engine
JP2560310B2 (en) Exhaust manifold cooling system
JPH0510116A (en) Engine having water injection device
US8408189B2 (en) Petrol engine having a low-pressure EGR circuit
JPS59138717A (en) Cooling device of internal-combustion engine with turbo- charger equipped with water-cooling type inter-cooler
JPH07110636B2 (en) Outboard turbo engine
JPH0212270Y2 (en)
JP3867464B2 (en) EGR device for engine
JPH06229328A (en) Cooling device of engine
JPS6315552Y2 (en)
JPS6228038U (en)
JPH0133789Y2 (en)
JPS5820924A (en) Intake device for engine with supercharger
JPS5813075Y2 (en) Charge air heating device for internal combustion engine with supercharger