JPH01299562A - Composite implant member - Google Patents

Composite implant member

Info

Publication number
JPH01299562A
JPH01299562A JP63130824A JP13082488A JPH01299562A JP H01299562 A JPH01299562 A JP H01299562A JP 63130824 A JP63130824 A JP 63130824A JP 13082488 A JP13082488 A JP 13082488A JP H01299562 A JPH01299562 A JP H01299562A
Authority
JP
Japan
Prior art keywords
glass
composition
cao
implant member
spattering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63130824A
Other languages
Japanese (ja)
Inventor
Yasuo Manabe
康夫 真鍋
Yoshio Masuda
喜男 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP63130824A priority Critical patent/JPH01299562A/en
Publication of JPH01299562A publication Critical patent/JPH01299562A/en
Pending legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)

Abstract

PURPOSE:To provide an implant member which improves mechanical performance, affinity for an organism, and safety and bas excellent rapid tendency of sticking to a bone tissue, by a method wherein spattering is made on a specified composition form forming a glass serving as a target to form a glass- covered layer on a metallic base material surface. CONSTITUTION:In an implant member, spattering is effected a composition for forming a glass, serving as a target for spattering, in which a composition (100% in total) consisting of 42-53% CaO, 22-41% P2O2, and 10-27% P2O5 amounts for at least 90% of a total component. After an amorphous glass- covered layer is formed on a metallic material surface, an apatite phase [Ca10(PO4)6O] and a wollastonite phase (CaO.SiO2) are deposited in a well balanced manner in a crystallized glass-covered layer by heat treatment. In this case, it is desirable that heat treatment is effected at 900-1200 deg.C.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、人工骨9人工間節0人工歯根等に幅広く利用
することのできる複合インプラント部材に関し、詳細に
は高い機械的性能を有すると共に有害物質の溶出がなく
、しかも生体組織との親和性殊に骨組織との結合性に優
れた複合インプラント部材に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a composite implant member that can be widely used for artificial bones, 9 artificial interstices, 0 artificial tooth roots, etc., and specifically, has high mechanical performance and The present invention relates to a composite implant member that does not elute harmful substances and has excellent affinity with living tissue, particularly bonding with bone tissue.

[従来の技術] 複雑骨折あるいは骨腫瘍やりュクマチ等の疾患等により
損傷乃至欠損した歯や関節、骨等を補綴しあるいは代替
するものとして、人工骨、人工関節、人工歯根等のイン
プラント部材が実用化されている。この様なインプラン
ト部材としてはコバルト−クロム合金、ステンレス鋼、
チタン、チタン合金、タンタル等の金属材料、アルミナ
やアパタイト等のセラミックス材料、あるいは高密度ポ
リエチレン等の高分子材料等が汎用されてきた。
[Prior Art] Implant members such as artificial bones, artificial joints, and artificial tooth roots are in practical use as prosthetics or replacements for teeth, joints, bones, etc. that are damaged or missing due to complex fractures or diseases such as bone tumors or hypoxia. has been made into Such implant materials include cobalt-chromium alloy, stainless steel,
Metal materials such as titanium, titanium alloys, and tantalum, ceramic materials such as alumina and apatite, and polymer materials such as high-density polyethylene have been widely used.

ところが金属材料は靭性や耐衝撃強度等において非常に
優れたものである反面、生体組織との親和性が乏しく、
また人体内へ長期間埋込んでおくと微量の金属イオンが
徐々に溶出して生体組織に悪影響を及ぼす恐れがある。
However, while metal materials have excellent toughness and impact resistance, they have poor compatibility with living tissues.
Furthermore, if it is implanted into the human body for a long period of time, trace amounts of metal ions may gradually elute and have an adverse effect on living tissue.

またセラミックス材料のうちアルミナは比較的源れた機
械的強度を有しているものの生体組織との親和性が乏し
く、逆にアパタイトは生体組織との親和性は良好である
ものの機械的強度が低いという問題が指摘されている。
Furthermore, among ceramic materials, alumina has a relatively high mechanical strength but has poor affinity with living tissues, and conversely, apatite has good affinity with living tissues but has low mechanical strength. This problem has been pointed out.

更に高分子材料は生体に対し有害作用を及ぼすごとはな
いが機械的強度の点で問題が残る。
Furthermore, although polymeric materials do not seem to have any harmful effects on living organisms, problems remain in terms of mechanical strength.

この様に従来のインプラント部材には一長一短があり、
機械的強度、生体組織との親和性、生体に対し悪影響を
及ぼさない、といった要求性能のすべてを満たすものと
は言えず、汎用化を進めていくうえで大きな隘路となっ
ていた。
In this way, conventional implant materials have advantages and disadvantages.
It cannot be said that it satisfies all of the performance requirements such as mechanical strength, compatibility with living tissue, and no adverse effects on living organisms, and this has been a major bottleneck in promoting generalization.

一方上記要求特性の全てを充足する様な単一材料は見出
されていない。その為既知材料の複合化によってこれら
要求特性を満足させる方向で色々な研究が行なわれてお
り、例えば機械的強度の優れた金属基材の表面に、生体
組織との親和性の優れたセラミックス(アパタイト類)
を被覆する技術が提案されている(特開昭58−190
49゜特公昭58−39533等)。
On the other hand, no single material has been found that satisfies all of the above required properties. Therefore, various studies are being conducted in the direction of satisfying these required properties by combining known materials.For example, ceramics (which have excellent affinity with living tissues) are added to the surface of a metal base material with excellent mechanical strength. apatites)
A technique has been proposed to cover the
49° Special Publication No. 58-39533, etc.).

[発明が解決しようとする課題] しかるに、上述の技術で得られる複合インブライト部材
では、アパタイト類と骨組織の固着が完了するまでに4
〜8週間もの長期間を要するという欠点がある。その為
治療に際しては上記固着の完了に至るまでの間インプラ
ント部材を固定し続けておく必要があり、患者の安静期
間が長く、患者に大きな苦痛を与えることになる。
[Problems to be Solved by the Invention] However, in the composite imbrite member obtained by the above-mentioned technique, it takes 4 hours to complete the fixation of the apatites and bone tissue.
The drawback is that it requires a long period of time, up to 8 weeks. Therefore, during treatment, it is necessary to keep the implant member fixed until the above-mentioned fixation is completed, resulting in a long resting period for the patient and causing great pain to the patient.

本発明はこうした事情に着目してなされたものであって
、機械的性能、生体親和性、安全性等がいずれも良好で
あるだけでなく、骨組織との迅速固着性にも優れたイン
プラント部材を提供することを目的とするものである。
The present invention has been made with attention to these circumstances, and is an implant member that not only has good mechanical performance, biocompatibility, safety, etc., but also has excellent quick fixation with bone tissue. The purpose is to provide the following.

[課題を解決するための手段] しかして上記目的を達成した本発明インプラント部材は
、CaO:42〜53%、5i02:22〜41%、P
2O5:10〜27%からなる組成(合計で100%)
が全成分の90%以上を占めるガラス形成用組成物をス
パッタリング用ターゲットとし、スパッタリングを行な
い、金属基材表面にガラス被覆層を形成してなる点に要
旨を有するものである。
[Means for Solving the Problems] The implant member of the present invention that achieves the above objects contains CaO: 42-53%, 5i02: 22-41%, P
2O5: Composition consisting of 10-27% (100% in total)
The gist of this method is that a glass-forming composition having 90% or more of the total components is used as a sputtering target, and sputtering is performed to form a glass coating layer on the surface of a metal substrate.

[作用] アパタイト類がせっかく優れた生体親和性を有している
にもかかわらず生体組織殊に骨組織との固着速度が遅い
理由については、生体液中におけるアパタイト類の溶出
が予想以上に遅延するからであると考えられている。
[Effect] The reason why apatites have a slow rate of fixation with living tissue, especially bone tissue, despite their excellent biocompatibility, is that the elution of apatites from biological fluids is delayed more than expected. It is believed that this is because

そこで本発明者等は、骨組織との固着速度がより早く、
しかも固着完了後の固着強度が高い被覆用物質について
種々検討を重ねた結果、前記構成に示されるCaO:4
2〜53%、5i02:22〜41%、P2O5:10
〜27%からなる組成物が成分の90%以上を占める組
成物を見出した。即ち該組成物は、生体液中での溶出速
度が早く、溶出物質が組成物表面に生体アパタイト層を
形成し骨組織と早期に固着するものである。
Therefore, the present inventors discovered that the fixation speed with bone tissue is faster,
Moreover, as a result of various studies on coating materials with high adhesion strength after completion of adhesion, we found that CaO: 4
2-53%, 5i02:22-41%, P2O5:10
We have found a composition in which the composition consisting of ~27% accounts for more than 90% of the components. That is, the composition has a high elution rate in biological fluids, and the eluted substance forms a biological apatite layer on the surface of the composition, which quickly adheres to bone tissue.

本発明インプラント材においては、金属基材の表面に上
記組成物のガラス被覆層が形成されるが、形成手段につ
いては特に制限するものではない。もっともインプラン
ト材における表面強度として自ずから高度なものが要求
されるので、本発明においては非晶質ガラス層でもよい
が上記組成物を結晶化ガラスとすることが望まれる。そ
して結晶化ガラスを形成する為の手段として本発明では
スパッタリング後、熱処理する手法が推奨される。即ち
本発明において、結晶化ガラスを被覆したインプラント
材を形成するに当たっては、前記組成からなる被覆用組
成物をスパッタリング用ターゲットとし、スパッタリン
グ法を通用して金属基材表面に上記組成からなる非晶質
ガラス被覆層を形成した後、さらに熱処理を施して結晶
化ガラス層とすればよく、金属基材の表面に高強度のコ
ーティング層が形成されているので、優れた機械的性能
が得られると共に、生体液中への溶出速度が早く、前記
成分組成の被覆層が速やかに且つ良好な結合強度をもっ
て骨組織と固着する。
In the implant material of the present invention, a glass coating layer of the above-mentioned composition is formed on the surface of the metal base material, but the means for forming the layer is not particularly limited. However, since a high level of surface strength is naturally required for the implant material, it is desirable that the composition be made of crystallized glass, although an amorphous glass layer may be used in the present invention. In the present invention, a method of heat treatment after sputtering is recommended as a means for forming crystallized glass. That is, in the present invention, when forming an implant material coated with crystallized glass, a coating composition having the above composition is used as a sputtering target, and an amorphous coating composition having the above composition is applied to the surface of a metal base material through a sputtering method. After forming the crystallized glass coating layer, heat treatment can be performed to form a crystallized glass layer. Since a high-strength coating layer is formed on the surface of the metal base material, excellent mechanical performance can be obtained. The rate of elution into biological fluids is fast, and the coating layer having the above-mentioned component composition is quickly fixed to bone tissue with good bonding strength.

従って骨組織の補綴や代替治療を迅速に実施することが
できる。尚スパッタリング後の熱処理によって結晶化ガ
ラス被覆層中にアパタイト相[cato(po4)6o
]とウオラスナイト相(CaO・5i02)をバランス
良く析出させることができ、900〜1200℃で熱処
理することが望まれる。
Therefore, bone tissue prosthesis or alternative treatment can be performed quickly. In addition, an apatite phase [cato(po4)6o] is formed in the crystallized glass coating layer by heat treatment after sputtering.
] and the wollastonite phase (CaO.5i02) can be precipitated in a well-balanced manner, and heat treatment at 900 to 1200°C is desirable.

本発明インプラント材の被覆層形成用組成物の90%以
上を占める組成物(以下特に主成分組成物という)の組
成(該主成分組成物中に占める割合として示す)を説明
すると、まずCaO量については42〜53%としなけ
ればならず、CaO量が42%未満では生体親和性に優
れたアパタイト相と強度向上に有効なウオラストナイト
相を効率良く析出させることができない。一方CaO量
が53%より多くなると、組成物の融点が高くなり過ぎ
て冷却過程で結晶化が進み過ぎる為ガラス体を得ること
が難しくなる。又5i02量は22〜41%、P2O,
量は10〜27%とする必要があ゛す、夫々下限より少
ない場合には被覆膜の強度を高める上で重要なウオラス
ナイト結晶相を効率良く析出させることができない。一
方上限を超える場合には、結晶化過程で生体親和性向上
に有効なアパタイト相を効率良(析出させることが難し
くなる。
To explain the composition (expressed as a proportion in the main component composition) of the composition (hereinafter particularly referred to as the main component composition) that accounts for 90% or more of the composition for forming the coating layer of the implant material of the present invention, first, the amount of CaO If the amount of CaO is less than 42%, an apatite phase having excellent biocompatibility and a wollastonite phase effective for improving strength cannot be efficiently precipitated. On the other hand, if the amount of CaO exceeds 53%, the melting point of the composition becomes too high and crystallization progresses too much during the cooling process, making it difficult to obtain a glass body. In addition, the amount of 5i02 is 22 to 41%, P2O,
The amount needs to be 10 to 27%; if the amount is less than the respective lower limit, the wollastonite crystal phase, which is important for increasing the strength of the coating film, cannot be efficiently precipitated. On the other hand, if the upper limit is exceeded, it becomes difficult to efficiently (precipitate) an apatite phase that is effective for improving biocompatibility during the crystallization process.

尚上記主成分組成物以外の成分としては、アルカリ金属
酸化物、アルカリ土類金属酸化物。
Components other than the above main component composition include alkali metal oxides and alkaline earth metal oxides.

A1203 、ZrO2等が例示され、これらの含有量
は全成分の10%未満に抑える必要がある。
A1203, ZrO2, etc. are exemplified, and the content thereof needs to be suppressed to less than 10% of the total components.

又本発明における金属基材としては特に制限を設けるも
のではないが、Co−Cr合金、ステンレス鋼、Ti、
Ti合金、Ta等の金属素材を例示することができる。
Further, the metal base material in the present invention is not particularly limited, but may include Co-Cr alloy, stainless steel, Ti,
Examples include metal materials such as Ti alloy and Ta.

本発明の基本構成は上記の通りであるが、本発明におい
てスパッタリングに用いるターゲツト材の調製方法とし
ては、例えば前記組成のガラス形成用組成物を混合・溶
融し、十分にガス分を除去した後、溶融状態のまま型に
注入し、板状とする方法や上記溶融物を一度急冷してガ
ラス化した後、所定の粒度に粉砕し、これを焼結用の原
料とし、成形バインダーを加えて混合し、成形後、焼結
してターゲツト材とする方法を挙げることができる。
The basic structure of the present invention is as described above, but the method for preparing the target material used for sputtering in the present invention is, for example, by mixing and melting the glass forming composition having the above composition, sufficiently removing the gas component, and then Alternatively, the molten material may be injected into a mold to form a plate, or the molten material may be rapidly cooled and vitrified, and then ground to a specified particle size, which is used as a raw material for sintering, and a molding binder is added. Examples include a method of mixing, molding, and sintering to obtain a target material.

[実施例] 主成分組成物       93  %M g O4,
3% A120.        ・     2  %Ca
F、          ・     0.4  %不
可避不純物   :   残部 からなる組成原料を1500℃で溶融した。そして溶融
体を水中へ投下してガラス−キャレットを作製した。該
キャレットをアルミナボール中で粉砕し、粒径を30μ
m以下に調整した。得られた粉末にPVAを3%加え、
プレス成形して直径125mff1.高さ10mmの成
形体を製作した。大気罪囲気下でPVAを加熱除去した
後、100℃/hrの割合で昇温させ、1100℃で4
時間保持することにより焼結させてターゲットを製作し
た。
[Example] Main component composition 93% M g O4,
3% A120.・2%Ca
F, 0.4% unavoidable impurities: The remaining composition raw materials were melted at 1500°C. The melt was then dropped into water to produce a glass caret. The caret was ground in an alumina ball to a particle size of 30μ.
Adjusted to below m. Add 3% PVA to the obtained powder,
Press molded to a diameter of 125mff1. A molded body with a height of 10 mm was manufactured. After removing PVA by heating under atmospheric pressure, the temperature was increased at a rate of 100°C/hr, and the temperature was increased to 1100°C for 4 hours.
A target was manufactured by sintering by holding for a period of time.

焼結後、直径100mm、高さ3amに加工し、銅製の
冷却基材にInを介して固着した。
After sintering, it was processed to have a diameter of 100 mm and a height of 3 am, and was fixed to a cooling base material made of copper via In.

インプラント金属基材として純Ti及びTi−6AI−
4V合板の丸棒を使用し、上記ターゲットによるスパッ
タリングを行なった。尚スパッタ条件は、高周波電源を
用いて出力300W、Arガス圧5 X 10−3To
rr、スパッタ速度200 A/minとし、スパッタ
リング時間は約3時間とした。
Pure Ti and Ti-6AI- as implant metal substrates
Sputtering was performed using the above target using a round bar made of 4V plywood. The sputtering conditions are: high frequency power source, output 300W, Ar gas pressure 5 x 10-3To
rr, sputtering speed was 200 A/min, and sputtering time was about 3 hours.

得られたスパッタリング被覆膜をX線光電子分光法(E
SCA)によって成分分析したところ、ターゲツト材と
ほぼ同様の分析結果が得られた。
The resulting sputtered coating was subjected to X-ray photoelectron spectroscopy (E
When the components were analyzed by SCA), almost the same analysis results as the target material were obtained.

また薄膜X線分析によって結晶相を同定したところ、第
2図に示す様にガラス状態であることが確認された。一
方上記スバッタリングにょフて得られた試料を1200
tで2時間熱処理し、得られた試料表面の被覆層をX線
回折すると、第1図に示すようにアパタイト、ウォラス
ナイト及びβ−TCPの顕著なピークが認められた。熱
処理により、結晶化が進行して膜強度が一層向上し、長
時間の使用に耐えるインプラント材を得ることができた
Further, when the crystal phase was identified by thin film X-ray analysis, it was confirmed that it was in a glass state as shown in FIG. On the other hand, the sample obtained by the above sputtering process was
When the coating layer on the surface of the sample was subjected to X-ray diffraction after heat treatment at t for 2 hours, remarkable peaks of apatite, wallasnite and β-TCP were observed as shown in FIG. The heat treatment progressed crystallization and further improved the membrane strength, making it possible to obtain an implant material that could withstand long-term use.

以上の方法によって製作した直径3mm 、長さ5no
nの試料をうさぎの大腿骨に埋め込み、2週間後、骨と
試料の固着状況を調べたところ、うさぎは歩行自由な状
態にあり、且つうさぎの生体骨とコーテイング膜の間に
は隙間が見られず良好な固着状態を確認することができ
た。
Diameter 3mm, length 5no manufactured by the above method
When the sample n was implanted into the rabbit's femur bone and the adhesion between the bone and the sample was examined two weeks later, the rabbit was able to walk freely and there was a gap between the rabbit's living bone and the coating film. It was possible to confirm a good adhesion condition without any problems.

[発明の効果コ 本発明は以上の様に構成されており、機械的強度、生体
親和性、安全性(有害物質の溶出がない)に優れ、且つ
骨組織との固着速度及び固着強度の高い複合インプラン
ト材を得ることができた。
[Effects of the Invention] The present invention is constructed as described above, and has excellent mechanical strength, biocompatibility, and safety (no elution of harmful substances), and has high fixation speed and fixation strength with bone tissue. A composite implant material could be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はスパッタリング後、熱処理した被覆膜の薄膜X
線回折結果を示すグラフ、第2図は実施例におけるスパ
ッタリング被覆膜の薄膜X線回折結果を示すグラフであ
る。
Figure 1 shows the thin film X of the heat-treated coating film after sputtering.
Graph showing the results of line diffraction. FIG. 2 is a graph showing the results of thin film X-ray diffraction of the sputtered coating film in the example.

Claims (1)

【特許請求の範囲】[Claims]  CaO:42〜53%(重量%の意味、以下同じ),
SiO_2:22〜41%,P_2O_5:10〜27
%からなる組成(合計で100%)が全成分の90%以
上を占めるガラス形成用組成物をスパッタリング用ター
ゲットとし、スパッタリングを行ない、金属基材表面に
ガラス被覆層を形成してなることを特徴とする複合イン
プラント部材。
CaO: 42 to 53% (meaning of weight %, same below),
SiO_2: 22-41%, P_2O_5: 10-27
% (total 100%) accounts for 90% or more of the total components as a sputtering target, and sputtering is performed to form a glass coating layer on the surface of the metal substrate. Composite implant component.
JP63130824A 1988-05-27 1988-05-27 Composite implant member Pending JPH01299562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63130824A JPH01299562A (en) 1988-05-27 1988-05-27 Composite implant member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63130824A JPH01299562A (en) 1988-05-27 1988-05-27 Composite implant member

Publications (1)

Publication Number Publication Date
JPH01299562A true JPH01299562A (en) 1989-12-04

Family

ID=15043571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63130824A Pending JPH01299562A (en) 1988-05-27 1988-05-27 Composite implant member

Country Status (1)

Country Link
JP (1) JPH01299562A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2682968A1 (en) * 1991-10-28 1993-04-30 Icmc Process for producing a bone implant, device allowing the process to be used and implant thus produced

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2682968A1 (en) * 1991-10-28 1993-04-30 Icmc Process for producing a bone implant, device allowing the process to be used and implant thus produced

Similar Documents

Publication Publication Date Title
US5344456A (en) Materials for living hard tissue replacements
NO310060B1 (en) Material for bone replacement and manufacture thereof
JPS6272540A (en) Alkaliless crystallized glass for organism and its production
JPH067425A (en) Manufacture of biological compatibility complex
JPH0155204B2 (en)
JP4477377B2 (en) Bioactive rennite glass ceramic
FR2842187A1 (en) BIOLOGICALLY ACTIVE GLASS BASED ON CAO-SIO2 AND CALCUIM FRITTE PHOSPHATE GLASS USING THE SAME
JPS6210939B2 (en)
JP2664029B2 (en) Calcium phosphate coated titanium material
JPS61205637A (en) Crystallized glass and production thereof
JPH01299562A (en) Composite implant member
Vlasov et al. Ceramics and medicine
JPS59146658A (en) Biologically reactive material
JPS61236632A (en) Crystallized glass for organism
Gross et al. Calcium phosphate bioceramics research in Latvia
JPS62187142A (en) Composite material for organism
JPS6350344A (en) Glass ceramic composition
KR100465984B1 (en) Bioactive Ceramics, Metallic Replacement Coated With Bioactive Ceramics And Method Thereof
JPS61226053A (en) Production of living body material
JPH04332562A (en) Bioactive composite implant material and production thereof
JPS63182228A (en) Method for strengthening calcium phosphate-base crystallizing glass
KR960006856B1 (en) High strength biomaterial for implant, and the manufacturing method
JPH0373157A (en) Composite product for medical treatment exhibiting bioactivity
JPH09238965A (en) Bone repair material and bone repair material with apatite film and manufacture thereof
JPS63218591A (en) Implant in vivo and manufacture