JPH01299240A - Production of 2-ethyl-1,3-hexanediol - Google Patents

Production of 2-ethyl-1,3-hexanediol

Info

Publication number
JPH01299240A
JPH01299240A JP12799788A JP12799788A JPH01299240A JP H01299240 A JPH01299240 A JP H01299240A JP 12799788 A JP12799788 A JP 12799788A JP 12799788 A JP12799788 A JP 12799788A JP H01299240 A JPH01299240 A JP H01299240A
Authority
JP
Japan
Prior art keywords
ethyl
reaction
compound
catalyst
hexanediol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12799788A
Other languages
Japanese (ja)
Other versions
JP2525868B2 (en
Inventor
Kazuya Sato
一哉 佐藤
Kenji Muto
武藤 健治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KH Neochem Co Ltd
Original Assignee
Kyowa Yuka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Yuka Co Ltd filed Critical Kyowa Yuka Co Ltd
Priority to JP63127997A priority Critical patent/JP2525868B2/en
Publication of JPH01299240A publication Critical patent/JPH01299240A/en
Application granted granted Critical
Publication of JP2525868B2 publication Critical patent/JP2525868B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To advantageously the title compound useful as a raw material for a polymer, organic compound, metallic compound, etc., and having high ratio of threo configuration, by subjecting butylaldehyde to aldol condensation using an alkali metal alcolate and further to reduction reaction. CONSTITUTION:Butylaldehyde is subjected to aldol condensation in the presence of an alkali metal alcolate, especially preferably sodium methylate, sodium ethylate, etc., at 0-100 deg.C, especially 10-80 deg.C. The resultant 2-ethyl-3- hydroxyhexanal is preferably catalycally reduced to provide the aimed compound. As the catalytic reduction catalyst, a conventional reduction catalyst for carbonyl group such as a Ni based or Ru based catalyst is used. The reaction temperature is ambient temperature to 300 deg.C, preferably 5-200 deg.C and hydrogen pressure is 1-300 atomic pressure, preferably 5-200 atomic pressure. The alkali metal alcolate is preferably used at an amount of 0.1-2mol% based on butyl aldehyde.

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は2−エチル−1,3−ヘキサンジオールの製法
に関する。本発明方法によって得られるトレオ体比率の
高い2−エチル−1,3−ヘキサンジオールは、ポリマ
ー、有機化合物、金属化合物等の原料として有用である
。 従来の技術 従来、2−エチル−1,3−ヘキサンジオールは次の方
法で得られることが知られている。 例えば、−船には、ブチルアルデヒドを水酸化アルカリ
(例えば、水酸化す) IIつll、水酸化カリウl、
等)の存在下にアルドール縮合をさせ、ついで該γルド
ール縮合物を還元する方法が用いられている。 また、ヘキサメチルホスホリックトリアミド中、2.4
.6−)リメチルフェノキシマグネシウムブロミド触媒
下にブチルアルデヒドを反応さ、せ、次いで加水分解す
ることにより得ることが知られている〔シンセシス(S
ynthesis)、1975. 164 ] o M
g−へl混合ブチラード存在下のブチルアルデヒド自己
縮合により得られることが知られている〔ケミカル・ア
ブストラクト(Chemical^bstracLs)
。 53.6145i ]。 発明が解決しようとする課題 従来のアルドール縮合の際に、触媒として水酸化アルカ
リを用いる方法では、2−エチル−1,3−ヘキサンジ
オールのエリトロ体が有利に生成し、トレオ体の仕率の
高いもの−は得られない。 又、他の方法においても、トレオ体比率の?“6い2−
エチル−1,3−ヘキサンジオールが得られるというこ
とは報告されていない。 トレオ体比率の高い2−エチル−1,3−ヘキサンジオ
ールを得る方法が求められている。 課題を解決するための手段 本発明方法によると、ブチルアルデヒドをアルカリ金属
アルコラートの存在下にアルドール縮合させ、2−エチ
ル−3−ヒト
INDUSTRIAL APPLICATION FIELD OF THE INVENTION The present invention relates to a process for producing 2-ethyl-1,3-hexanediol. 2-ethyl-1,3-hexanediol with a high threo isomer ratio obtained by the method of the present invention is useful as a raw material for polymers, organic compounds, metal compounds, etc. BACKGROUND ART Conventionally, it has been known that 2-ethyl-1,3-hexanediol can be obtained by the following method. For example, - butyraldehyde can be converted into alkali hydroxides (e.g. hydroxides), potassium hydroxides,
A method is used in which aldol condensation is carried out in the presence of a γ-aldole condensate, etc.), and then the γ-aldole condensate is reduced. Also, in hexamethylphosphoric triamide, 2.4
.. 6-) It is known that it can be obtained by reacting butyraldehyde under a trimethylphenoxymagnesium bromide catalyst, followed by hydrolysis [synthesis (S
Synthesis), 1975. 164 ] o M
It is known that it can be obtained by self-condensation of butyraldehyde in the presence of g-to-l mixed butyral [Chemical Abstracts (Chemical^bstracLs)]
. 53.6145i]. Problems to be Solved by the Invention In the conventional method of using alkali hydroxide as a catalyst during aldol condensation, the erythro form of 2-ethyl-1,3-hexanediol is advantageously produced, and the proportion of threo form is reduced. You can't get anything expensive. Also, in other methods, the threo body ratio? “6i2-
It has not been reported that ethyl-1,3-hexanediol can be obtained. There is a need for a method for obtaining 2-ethyl-1,3-hexanediol with a high proportion of threo isomers. Means for Solving the Problems According to the method of the present invention, butyraldehyde is subjected to aldol condensation in the presence of an alkali metal alcoholate to form 2-ethyl-3-human

【フキシヘキサナールを還元することによ
りトレオ体比率の高い(即らトレオ/エリトロ=60/
40〜TO/30)2−エチル−1,3−ヘキサンジオ
ールを得ることができる。 以下に本発明の詳細な説明する。 ブチルアルデヒドをアルドール縮合させ、次いで該縮合
生成物、2−エチル−3−ヒドロキシヘキサナール(以
下、化合物■と略すことがある)のカルボニル基を還元
して2−エチル−1,3−ヘキサンジオール(以下、化
合物■と略すことがある)を製造する方法は次の反応式
で示される。 川1 化合物1 化合物■ *印は不斉炭素原子を表わす。 また、不斉炭素原子の立体構造を区別すると化合物1及
び■は次の様に表わされる(いずれもエナンチオマー片
方のみを示す)。 トレオ体    エリト【1体 トレオ体    エリトロ体 化合物■から化合物■への還元段階では2個の不斉炭素
原子はいずれも立体構造が保持されるので、化合物■の
トレオ/エリトロの比率は化合物1の生成段階で決まる
。 次に本発明の方法をアルドール縮合及び還元反応の2段
階に゛分けて説明する。 (A)アルドール縮合 本発明で使用されるアルドール縮合触媒のアルカリ金属
アルコラートとしてはナトリウムアル:】ラード、カリ
ウムアルコラート等があげられ、特にナトリウムメチラ
ート、ナトリウムエチラート等のナトリウム低級アルコ
ラートが取扱い易さ。 価格等から有利である。 触媒量、反応温度及び反応時間の範囲は互いの条件によ
り異なってくるが、−船釣に触媒量はブチルアルデヒド
に対して0.05〜5モル%、特に0.1〜2モル%が
、反応温度は0〜100℃、特に10〜80℃が、反応
時間は1時間以下、通常30分以下が好ましい。 触媒の添加は、触媒が反応液中で局部的に高濃度になる
ことを防ぐ為に、粉末での添加よりも適当な有機溶媒で
希釈して添加する方が好ましい。 触媒の希釈剤として用いられる有機溶媒としては、触媒
を溶解し、かつ触媒やブチルアルデヒドと反応しない溶
媒であればいずれも用いられるが、例えば、メタノール
、エタノール、プτ1パノール。 ブタノール等の低級アルコールが好適である。 反応はバッチ方式または連続方式のいずれでも可能であ
るが、工業的には連続方式の方が効率的である。反応終
了後は塩基性条件による副反応(化合物■の脱水による
2−エチル−2−ヘキセナールの生成)を防止する為に
、反応液をギ酸。 酪酸等の有機酸または塩酸、硫酸、リン酸等の無機酸で
中和するのが好ましい。反応液を中和後、化合物Iを単
離して次段階の還元反応に供してもよいが、化合物■は
不安定であるので、中和した反応液を直接または簡単な
後処理(例えば、水洗。 p過等による°rデルリ金属塩の除去等)のみを行って
から以下の方法により還元するのが好ましい。 (I3)還元反応 化合物1から還元反応により化合物11を得るには、接
触還元の他、L1^β111、Nan1l<等の金属水
素酪化合物による還元でも構わないが、工業的には接触
還元が好ましい。接触還元触媒としてはNi系、 Pt
系、 Ru系、 Cu系等、通常のカルボニル基の還元
触媒が用いられる。好適な反応温度や水素圧は触媒の種
顛、量等により異なるが、一般に反応温度は室温〜30
0℃、好ましくは50〜2001:、水素圧は1〜30
0気圧、好ましくは5〜200気圧である。反応液を濾
過、抽出、濃縮、蒸留等の通常の方法で処理して、トレ
オ比率の高い(即し、トレオ/エリトロ−60/40〜
70/30)2−エチル−1,3−ヘキサンジオールを
得る。 以下に実施例及び参考例を示す。 実施例1 ブチルアルデヒド導入用、触媒溶液導入用及び反応液抜
出し液相の3木の管と温度S]を備え付けた容量50m
1の3つロフラスコにブタノール25m1を加えた。次
に定量ポンプを用いて、ブチルアルデヒド及びナトリウ
ムメチラートのブタノール溶液(6,12g/l)を各
々2.72m1/分の割合で加えながら担拌し、同時に
定量ポンプで反応液を5.44m1/分の割合で抜出し
た。この抜出液を酢酸の50%ブタノール溶液で中和し
た。反応中フラスコ内温度を30±2℃に保ち、随時中
和液をガスクロマトグラフで分析した。 組成が平衡に達した後の分析値は下記の通りであった。 2−エチル−3−ヒドロキシヘキサナール45.8面接
%(以下、%は面積%を表わす)2−エチル−2−ヘキ
セナール 4.9%未反応ブチルアルデヒド   45
.7%次に上記中和液100m1を200m1オートク
レーブを用いて8.6gのラネーN1存在下、水素圧5
0気圧、100℃、1時間で接触還元を行った。この反
応液をガスクロマトグラフで分析したところ、生成した
2−エチル−1,3−ヘキサンジオールのトレオンエリ
トロ比は64/36であった。 実施例2 内径2關、外径3fiI11及び長さ8mのSO5製コ
イルの人口側にブチルアルデヒド供給用及び触媒溶液f
Jt給用の2本の管を接続した反応装置のコイルm5を
水浴中に浸漬した。浴温を30℃に保って、ブチルアル
デヒド及びナトリウムメチラートのブタノール溶液(6
,12g/f)を定量ポンプにより各々2.72m1/
分の割合で供給した。出]コより排出される反応液を酢
酸の50%ブタノール溶液で中和した。この中和液を随
時ガスクロマトグラフで分析した。組成が・ド衡に達し
た後の分析値は次の通りであった。 2−エチル−3−ヒドロキシヘキサナール54.2% 2−エチル−2−ヘキセナール 4.9%未反応ブチル
アルデヒド   35.2%次に上記中和液を実施例1
と同条件で還元したところ、生成した2−エチル−1,
3−ヘキサンジオールのトレオ/エリト[J比は64/
:16であった。 実施例3 実施例2においてナトリウムメチラートのブタノール溶
液の濃度を3.06g/fに、浴温を40℃に変える以
外は実施例2と同様にして反応を行った。アルドール縮
合反応液及び接触還元反応液の分析値は次の通りであっ
た。 2−エチル−3−ヒドロキシヘキサナール52.6% 2−エチル−2−ヘキセナール 8.5%未反応ブチル
アルデヒド   34.5%トレオ/エリトロ比   
   G 8/32実施例4 実施例2においてナトリウムメチラートのブタノール溶
液の濃度を12.24g/j!に、浴温を22℃に変え
る以外は実施例2と同様にして反応を行った。アルドー
ル縮合反応液及び接触還元反応液の分析値は次の通りで
あった。 2−エチル−3−ヒト【]キシヘキサナール52.6% 2−エチル−2−ヘキセナール 5.3%未反゛応ブチ
ルアルデヒド   38.8%トレオ/エリトロ比  
    65/35参考例1 実施例1と同様の装置を用い、フラスコ内のブタノール
仕込量を50m1に、ナトリウ!、メチラートのブタノ
ール溶液の代わりに水酸化ナトリウ!・水溶液(4,5
3g/Il)を用いる以外は実施例1と同様の方法で反
応を行った。アルドール縮合反応液及び接触還元反応液
の分析値は次の通りであった0 2−エチル−2−ヘキセナール 5.0%末反応ブチル
アルデヒド   54.3%トレオ/エリトロ比   
  45155発明の効果 本発明方法によりトレオ体比率の高い2−エチル−1,
3−ヘキサンジオールを安価に製造することができる。 手続補正書(方式) 1、事件の表示 昭和63年特許願第127997号 2、発明の名称 2−エチル−1,3−ヘキサンジオールの製法 3、補正をする者 事件との関係  特許出願人 郵便番号 100 住 所 東京都千代田区大手町−丁目6番1号昭和63
年8月3日(発送臼=63年8月30日)5、補正の対
象 明細書の発明の詳細な説明の欄 H 化合物■ H 化合物■ *印は不斉炭素原子を表わす。 また、不斉炭素原子の立体構造を区別すると化合物I及
び■は次の様に表わされる(いずれもエナンチオマー片
方のみを示す)。 トレオ体    エリトロ体 トレオ体    エリトロ体
[Threo isomer ratio is high by reducing fuxihexanal (i.e. threo/erythro = 60/
40~TO/30) 2-ethyl-1,3-hexanediol can be obtained. The present invention will be explained in detail below. Butyraldehyde is subjected to aldol condensation, and then the carbonyl group of the condensation product, 2-ethyl-3-hydroxyhexanal (hereinafter sometimes abbreviated as compound Ⅰ), is reduced to 2-ethyl-1,3-hexanediol ( The method for producing compound (hereinafter sometimes abbreviated as compound (1)) is shown by the following reaction formula. River 1 Compound 1 Compound ■ *mark represents an asymmetric carbon atom. Furthermore, when distinguishing the three-dimensional structure of the asymmetric carbon atom, compounds 1 and (2) are expressed as follows (each shows only one enantiomer). Threo body Erytho [1 body Threo body Erythro body In the reduction step from compound ■ to compound ■, the steric structure of both two asymmetric carbon atoms is maintained, so the threo/erythro ratio of compound ■ is the same as that of compound 1. Determined at the generation stage. Next, the method of the present invention will be explained in two steps: aldol condensation and reduction reaction. (A) Aldol condensation Examples of the alkali metal alcoholates of the aldol condensation catalyst used in the present invention include sodium alcolate, potassium alcoholate, etc., and sodium lower alcoholates such as sodium methylate and sodium ethylate are particularly easy to handle. . It is advantageous in terms of price etc. Although the range of catalyst amount, reaction temperature and reaction time differs depending on each other conditions, - For boat fishing, the catalyst amount is 0.05 to 5 mol%, especially 0.1 to 2 mol%, based on butyraldehyde. The reaction temperature is preferably 0 to 100°C, particularly 10 to 80°C, and the reaction time is preferably 1 hour or less, usually 30 minutes or less. In order to prevent the catalyst from becoming locally high in concentration in the reaction solution, it is preferable to add the catalyst after diluting it with an appropriate organic solvent rather than adding it in the form of a powder. As the organic solvent used as a diluent for the catalyst, any solvent can be used as long as it dissolves the catalyst and does not react with the catalyst or butyraldehyde, such as methanol, ethanol, and propanol. Lower alcohols such as butanol are preferred. Although the reaction can be carried out either batchwise or continuously, the continuous mode is industrially more efficient. After the reaction was completed, the reaction solution was diluted with formic acid in order to prevent side reactions (formation of 2-ethyl-2-hexenal due to dehydration of compound (1)) due to basic conditions. It is preferable to neutralize with an organic acid such as butyric acid or an inorganic acid such as hydrochloric acid, sulfuric acid, or phosphoric acid. After neutralizing the reaction solution, Compound I may be isolated and subjected to the next step of reduction reaction. However, since Compound (I) is unstable, the neutralized reaction solution may be directly or simply post-treated (for example, washed with water). It is preferable to carry out only the removal of the Deltri metal salt by filtration, etc.) and then reduce it by the following method. (I3) Reduction reaction In order to obtain compound 11 from compound 1 by reduction reaction, in addition to catalytic reduction, reduction with metal hydrogen butyric compounds such as L1^β111, Nan1l< etc. may be used, but catalytic reduction is preferred industrially. . Catalytic reduction catalysts include Ni-based, Pt
Conventional carbonyl group reduction catalysts such as those based on carbonyl, Ru, Cu, etc. are used. Suitable reaction temperatures and hydrogen pressures vary depending on the type and amount of catalyst, but generally reaction temperatures range from room temperature to 30℃.
0°C, preferably 50-2001:, hydrogen pressure 1-30
The pressure is 0 atm, preferably 5 to 200 atm. The reaction solution is treated with conventional methods such as filtration, extraction, concentration, and distillation to obtain a product with a high threo ratio (i.e., threo/erythro-60/40~
70/30) 2-ethyl-1,3-hexanediol is obtained. Examples and reference examples are shown below. Example 1 Capacity 50 m equipped with three wooden pipes for introducing butyraldehyde, introducing catalyst solution, and liquid phase for removing reaction liquid and temperature S]
25 ml of butanol was added to the three-bottle flask. Next, using a metering pump, butyraldehyde and sodium methylate butanol solutions (6.12 g/l) were added and stirred at a rate of 2.72 ml/min, and at the same time, 5.44 ml of the reaction solution was added using a metering pump. /min. This extract was neutralized with a 50% butanol solution of acetic acid. During the reaction, the temperature inside the flask was maintained at 30±2° C., and the neutralized liquid was analyzed by gas chromatography from time to time. The analytical values after the composition reached equilibrium were as follows. 2-ethyl-3-hydroxyhexenal 45.8% by area (hereinafter, % represents area%) 2-ethyl-2-hexenal 4.9% unreacted butyraldehyde 45
.. Next, 100 ml of the above neutralized solution was heated to 5% hydrogen pressure in the presence of 8.6 g of Raney N1 using a 200 ml autoclave.
Catalytic reduction was performed at 0 atm, 100° C., and for 1 hour. When this reaction solution was analyzed by gas chromatography, the threonerythro ratio of the produced 2-ethyl-1,3-hexanediol was 64/36. Example 2 Butyraldehyde supply and catalyst solution f were placed on the artificial side of an SO5 coil with an inner diameter of 2 mm, an outer diameter of 3 fi I, and a length of 8 m.
Coil m5 of the reactor, connected to two tubes for Jt supply, was immersed in a water bath. Keeping the bath temperature at 30°C, a butanol solution of butyraldehyde and sodium methylate (6
, 12g/f) to 2.72ml/f each using a metering pump.
Supplied at a rate of 1/2. The reaction solution discharged from the outlet was neutralized with a 50% butanol solution of acetic acid. This neutralized solution was analyzed by gas chromatography at any time. The analytical values after the composition reached equilibrium were as follows. 2-ethyl-3-hydroxyhexanal 54.2% 2-ethyl-2-hexenal 4.9% Unreacted butyraldehyde 35.2% Next, the above neutralized solution was added to Example 1
When reduced under the same conditions as 2-ethyl-1,
3-hexanediol threo/erith [J ratio is 64/
:16. Example 3 A reaction was carried out in the same manner as in Example 2 except that the concentration of the butanol solution of sodium methylate was changed to 3.06 g/f and the bath temperature was changed to 40°C. The analytical values of the aldol condensation reaction liquid and the catalytic reduction reaction liquid were as follows. 2-ethyl-3-hydroxyhexanal 52.6% 2-ethyl-2-hexenal 8.5% unreacted butyraldehyde 34.5% threo/erythro ratio
G 8/32 Example 4 In Example 2, the concentration of the butanol solution of sodium methylate was 12.24 g/j! Next, a reaction was carried out in the same manner as in Example 2 except that the bath temperature was changed to 22°C. The analytical values of the aldol condensation reaction liquid and the catalytic reduction reaction liquid were as follows. 2-ethyl-3-human[]xyhexanal 52.6% 2-ethyl-2-hexenal 5.3% unreacted butyraldehyde 38.8% threo/erythro ratio
65/35 Reference Example 1 Using the same apparatus as in Example 1, the amount of butanol in the flask was adjusted to 50 ml, and Natriu! , sodium hydroxide instead of a butanol solution of methylate!・Aqueous solution (4,5
The reaction was carried out in the same manner as in Example 1 except that 3 g/Il) was used. The analytical values of the aldol condensation reaction solution and the catalytic reduction reaction solution were as follows: 0 2-ethyl-2-hexenal 5.0% final reaction butyraldehyde 54.3% threo/erythro ratio
45155 Effects of the invention By the method of the invention, 2-ethyl-1, which has a high threo isomer ratio,
3-Hexanediol can be produced at low cost. Procedural amendment (method) 1. Indication of the case Patent Application No. 127997 of 1988 2. Name of the invention 2. Process for producing ethyl-1,3-hexanediol 3. Person making the amendment Relationship with the case Patent applicant's mail Number 100 Address 6-1 Otemachi-chome, Chiyoda-ku, Tokyo 1986
August 3, 1963 (Delivery date: August 30, 1963) 5. Column for detailed explanation of the invention in the specification subject to amendment H Compound ■ H Compound ■ The * mark represents an asymmetric carbon atom. Furthermore, when distinguishing the three-dimensional structure of the asymmetric carbon atom, compounds I and (2) are represented as follows (each shows only one enantiomer). Threo body Erythro body Threo body Erythro body

Claims (1)

【特許請求の範囲】[Claims] ブチルアルデヒドをアルカリ金属アルコラートの存在下
にアルドール縮合させ、2−エチル−3−ヒドロキシヘ
キサナールを得、ついで該2−エチル−3−ヒドロキシ
ヘキサナールを還元することを特徴とする2−エチル−
1,3−ヘキサンジオールの製法。
2-ethyl-3-hydroxyhexanal, characterized in that butyraldehyde is subjected to aldol condensation in the presence of an alkali metal alcoholate to obtain 2-ethyl-3-hydroxyhexanal, and then the 2-ethyl-3-hydroxyhexanal is reduced.
Method for producing 1,3-hexanediol.
JP63127997A 1988-05-25 1988-05-25 Method for producing 2-ethyl-1,3-hexanediol Expired - Lifetime JP2525868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63127997A JP2525868B2 (en) 1988-05-25 1988-05-25 Method for producing 2-ethyl-1,3-hexanediol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63127997A JP2525868B2 (en) 1988-05-25 1988-05-25 Method for producing 2-ethyl-1,3-hexanediol

Publications (2)

Publication Number Publication Date
JPH01299240A true JPH01299240A (en) 1989-12-04
JP2525868B2 JP2525868B2 (en) 1996-08-21

Family

ID=14973900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63127997A Expired - Lifetime JP2525868B2 (en) 1988-05-25 1988-05-25 Method for producing 2-ethyl-1,3-hexanediol

Country Status (1)

Country Link
JP (1) JP2525868B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5618985A (en) * 1993-06-28 1997-04-08 Neste Oy Process for the preparation of 2-n-butyl-2-ethyl-1,3-propane diol
JP2001114711A (en) * 1999-10-06 2001-04-24 Basf Ag Method for producing 1,3-diol

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5618985A (en) * 1993-06-28 1997-04-08 Neste Oy Process for the preparation of 2-n-butyl-2-ethyl-1,3-propane diol
JP2001114711A (en) * 1999-10-06 2001-04-24 Basf Ag Method for producing 1,3-diol
US6380443B1 (en) 1999-10-06 2002-04-30 Basf Aktiengesellschaft Preparation of 1,3-diols

Also Published As

Publication number Publication date
JP2525868B2 (en) 1996-08-21

Similar Documents

Publication Publication Date Title
WO2013040311A1 (en) Compounds and methods for the production of long chain hydrocarbons from biological sources
JP2003525876A (en) Method for producing trimethylol alkane
JP2007517882A (en) Process for producing 1,3-butylene glycol
CN105837416A (en) Method for preparing aldehyde or ketone by alcohol selective oxidation under catalysis of copper complex
SA00201006B1 (en) A catalytic hydrogenation method in the liquid phase to convert aldehydes into corresponding alcohols.
JPH01299240A (en) Production of 2-ethyl-1,3-hexanediol
JPS6045621B2 (en) Method for producing butanone derivatives
CN108238875B (en) Synthesis method of bromoisobutenyl methyl ether and application of bromoisobutenyl methyl ether in preparation of C14 aldehyde
JPS58110542A (en) Chlorinated beta-keto ester
JP2829116B2 (en) Process for producing unsaturated ketone from acetone and paraformaldehyde
JPS5935904B2 (en) Method for producing new compounds
US10259766B1 (en) Preparation method for 2,3-pentanedione
JPH11228467A (en) Production of saturated alcohol
US6476279B2 (en) Method of making fluorinated alcohols
JP3795970B2 (en) Method for producing α, β-unsaturated aldehyde
JPH085822B2 (en) Method for producing 2-ethyl-1,3-hexanediol
JP3386596B2 (en) Method for producing 5 (E), 8 (Z), 11 (Z) -tetradecatrien-2-one
JP4117413B2 (en) Process for producing 2,2&#39;-bis (hydroxymethyl) alkanal and 2,2&#39;-bis (hydroxymethyl) alkanoic acid
RU2240301C2 (en) Method for preparing fluorinated compound of benzenedimethanol
JP2000327618A (en) Production of 2-alkyl-2-cyclopentenone
JP2000169400A (en) Production of styrene trimer
TW591012B (en) Process for producing 5-[(4-chlorophenyl)methyl]-2,2-dimethylcyclopentanone
JPS60222437A (en) Production of 1-phenyl-2-alkanone
JP4216248B2 (en) Method for producing jasmonic acid ester derivative and its intermediate
JP3882245B2 (en) Method for producing phyton and isophytol