JPH01298275A - Method for treating surface of high elastic modulus carbon fiber - Google Patents

Method for treating surface of high elastic modulus carbon fiber

Info

Publication number
JPH01298275A
JPH01298275A JP63124279A JP12427988A JPH01298275A JP H01298275 A JPH01298275 A JP H01298275A JP 63124279 A JP63124279 A JP 63124279A JP 12427988 A JP12427988 A JP 12427988A JP H01298275 A JPH01298275 A JP H01298275A
Authority
JP
Japan
Prior art keywords
carbon fibers
fibers
feeding
elastic modulus
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63124279A
Other languages
Japanese (ja)
Inventor
Makoto Saito
誠 斉藤
Makoto Miyazaki
誠 宮崎
Hiroshi Inoue
寛 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Corp filed Critical Tonen Corp
Priority to JP63124279A priority Critical patent/JPH01298275A/en
Publication of JPH01298275A publication Critical patent/JPH01298275A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable the surface treatment of high elastic modulus carbon fibers wherein the surfaces of inactive sites of the carbon fibers are also sufficiently treated and the adhesivity of the carbon fibers to matrix resins is sufficiently improved by subjecting the surfaces of the carbon fibers to an electrolytic oxidation treatment at a specific application voltage and under a specific pulse supplying condition. CONSTITUTION:An electrolytic oxidation treatment is applied to the surfaces of many high elastic modulus carbon fibers (e.g., 1000-24000 fibers) under set conditions where the application voltage is >=10V and wherein electric pulse-feeding intervals comprise electricity-feeding periods of <=0.02sec and feeding-stopping periods >=5 times longer than the electricity-feeding periods. The conditions permit the sufficient treatment of the difficultly oxidized inactive sites of the carbon fibers, the minimized generation of pitching also on the readily oxidized active sites of the carbon fibers and the effective and excellent treatment of the surfaces of the fibers without causing the lowering of the strength of the carbon fibers. The treated fibers exhibit sufficient adhesively to matrix resins as reinforcing fibers for composite materials and do not cause the lowering of the strength of the composite materials.

Description

【発明の詳細な説明】 L1上二上」ヱ1 未5Z IN+は、−・般には電解酸化処理による炭素
繊維の表面処理法に関するものであり、特に1000〜
24000本といった多数本のフィラメントから成る高
弾性率の、つまり弾性率50ton/mm’以上の炭素
!a雄をパルス給電による電解酸化処理によって表面処
理する方法に関するものである。炭素繊維として1オピ
ツチ系、PAN系、レーヨン系等の炭素ia維を使用可
能である。
DETAILED DESCRIPTION OF THE INVENTION L1 Kami Nijo" E1 MI5Z IN+ generally relates to a method for surface treatment of carbon fibers by electrolytic oxidation treatment, and in particular,
Carbon with a high elastic modulus consisting of a large number of filaments such as 24,000, that is, an elastic modulus of over 50 ton/mm'! This invention relates to a method of surface treating a male by electrolytic oxidation treatment using pulsed power supply. As the carbon fiber, carbon ia fibers such as 1-optic type, PAN type, and rayon type can be used.

【久立丑j f&、近、高強度、高弾性率の炭素繊維強化複合材の需
安が増大している。斯る高強度、高弾性率の炭、i■強
化複合材を製造するに当り最も重りなことの一つはマト
リクス樹脂と炭素繊維との間の接着性を改善することで
ある。マトリクス樹脂と)^素H&雄との間の接着性は
14素繊維の表面を酸化処理することによって飛躍的に
向ヒすることが従来より知られており1種々の表面処理
法が提案されている。
[Kurachi Ushij f&, near, demand for carbon fiber reinforced composite materials with high strength and high modulus of elasticity is increasing. One of the most important considerations in producing such high strength, high modulus carbon, i- reinforced composites is to improve the adhesion between the matrix resin and the carbon fibers. It has long been known that the adhesion between the matrix resin and )^ element H & male can be dramatically improved by oxidizing the surface of the 14 element fibers, and various surface treatment methods have been proposed. There is.

炭素繊維を′a続的に、しかも効率良く表面処理し得る
方法として電解酸化処理に基づく表面処理方法がある0
本出願人は、特願昭60−182618号にて、パルス
給電することにより電解酸化処理を行ない炭素繊維の表
面処理を行なう炭素繊維の表面処理法奢提案した。
There is a surface treatment method based on electrolytic oxidation treatment that can continuously and efficiently surface-treat carbon fibers.
In Japanese Patent Application No. 60-182618, the present applicant proposed a surface treatment method for carbon fibers in which the surface of carbon fibers is treated by electrolytic oxidation treatment by pulsed power supply.

該方法によると1例えば1000〜24000本のフィ
ラメントから成る炭素繊維の中心部まで0H−イオンを
供給することができ、該OH−イオンが電子を放出して
水と共に生成される発生期の酸素によって炭素#&雄は
中心部まで均一に酸化され、良好な炭素繊維の表面処理
をなし得るものであった。
According to this method, OH- ions can be supplied to the center of carbon fibers consisting of, for example, 1,000 to 24,000 filaments, and the OH- ions release electrons and are oxidized by the nascent oxygen produced together with water. Carbon #&male was uniformly oxidized to the center, and good carbon fiber surface treatment could be achieved.

−1が  しよう  る 本発明者等の、上記パルス給電方式による電解酸化処理
を利用した炭素繊維の表面処理法の研究を引続き行なっ
たところ、特に、弾性率50t。
As a result of continued research by the present inventors on a surface treatment method for carbon fibers using electrolytic oxidation treatment using the above-mentioned pulsed power supply method, the elastic modulus was found to be 50t.

n / m rn’以−ヒといった高弾性の炭素繊維は
1通常の弾性率50ton/mrn’以下の炭素繊維と
同じパルス給電条件による電解酸化処理では均一な表面
処理をなすことができず、マトリクス樹脂に対する十分
な接着性を達成し丹ず、場合によっては強度低下を起す
ということを見い出した。
Carbon fibers with high elasticity such as n/mrn' or less cannot be uniformly surface treated by electrolytic oxidation treatment under the same pulse power supply conditions as normal carbon fibers with an elastic modulus of 50 ton/mrn' or less, and the matrix It has been found that sufficient adhesion to the resin cannot be achieved and, in some cases, strength may be reduced.

本発明者等は、その原因を究明すべく多くの研究実験を
行なった結果、高弾性の炭素繊維においてはその表面は
グラファイト配向の角度の違い、乱れ等により必ずしも
均一になっておらず、表面処理(酸化)され難い不活性
サイトと、酸化され易い活性サイトとが存在し5通常の
弾性率50ton/mm’以下の比較的表面が均一とさ
れている炭素繊維を処理するのと同じパルス給電条件に
よる゛電解酸化処理を行なった場合には、酸化され易い
活性サイトのみが集中的に酸化され、もし十分に接着性
を示すまで表面処理を行なったときには酸化され易い活
性サイトでは酸化が急速に進行しピッチングが発生し、
表面欠陥を生じ、結果的に炭素繊維の強度低下をきたす
ということが分かった。このとき、ピッチングの発生を
防止するために給電時間に対する給電停止時間を大とし
た場合には特に不活性サイトでの十分な表面処理が行な
われず、マトリクス樹脂に対する十分な接着性が得られ
ないという問題が生じた。
The present inventors conducted many research experiments to investigate the cause of this problem, and found that the surface of highly elastic carbon fibers is not necessarily uniform due to differences in graphite orientation angles, disturbances, etc. This is the same pulsed power supply used to process carbon fibers, which have inert sites that are difficult to process (oxidize) and active sites that are easily oxidized, and which have a relatively uniform surface with a normal elastic modulus of 50 ton/mm' or less. Depending on the conditions: If electrolytic oxidation treatment is performed, only the active sites that are easily oxidized will be intensively oxidized, and if the surface is treated until it shows sufficient adhesion, the active sites that are easy to oxidize will be rapidly oxidized. As pitching progresses, pitching occurs,
It was found that surface defects occur, resulting in a decrease in the strength of the carbon fiber. At this time, if the power supply stop time is increased compared to the power supply time in order to prevent pitting, sufficient surface treatment is not performed particularly at inert sites, and sufficient adhesion to the matrix resin cannot be obtained. A problem arose.

本発明者等は、多くの研究実験の結果、斯る問題は、印
加電圧を10v以Eとし、且つパルス給電間隔を給゛屯
時間が0.02秒以下、給電停止時間が給電時間の5倍
以上となるように設定することにより電解酸化処理を行
なえば、酸化され難い不活性サイトも十分に処理され、
且つ酸化され易い活性サイトもピッチングの発生を最小
限度に抑え、炭素la雄の強度の低下を抑制し得て良好
な表面処理をなし得、従って複合材の強化amとして使
用した場合にもマトリクス樹脂との十分な接着性が賦与
されることを見出した。
As a result of many research experiments, the present inventors have found that this problem can be solved by setting the applied voltage to 10 V or more, setting the pulse feeding interval to 0.02 seconds or less, and setting the power feeding stop time to 50% of the feeding time. If the electrolytic oxidation treatment is performed by setting the amount to be more than double, the inert sites that are difficult to oxidize will be sufficiently treated.
In addition, the active sites that are easily oxidized can minimize the occurrence of pitting, suppress the decrease in the strength of carbon la, and achieve good surface treatment. It has been found that sufficient adhesion is imparted to the film.

本発明は斯る新規な知見に基ずくものである。The present invention is based on this new knowledge.

従って、本発明の目的は、電解酸化処理によって、酸化
され難い不活性サイトも十分に表面処理を行ない、几つ
酸化され易い活性サイトではピッチングの発生を最小限
度に抑えて良好な表面処理を行ない、炭素繊維複合材の
強化amとして使用した場合のマトリクス樹脂との十分
な接着性を有し、しかも炭素繊維の強度の低下を抑制し
た高弾性の炭素繊維を得ることのできる高弾性炭素繊維
の表面処理法を提供することである。
Therefore, an object of the present invention is to perform electrolytic oxidation treatment to sufficiently treat the surface of inert sites that are difficult to oxidize, and to minimize the occurrence of pitting on active sites that are easily oxidized, thereby achieving good surface treatment. , a high modulus carbon fiber that has sufficient adhesion with a matrix resin when used as a reinforced am of a carbon fiber composite material, and can obtain a high modulus carbon fiber that suppresses a decrease in the strength of the carbon fiber. An object of the present invention is to provide a surface treatment method.

j     する− 上記目的は本発明に係る高弾性炭素m#Iの表面処理法
にて達成される。要約すれば本発明は、印加電圧を10
7以上とし、パルス給電間隔を給電時間が0.02秒以
下、M電停止時間が給電時間の5倍以−Lとなるように
設定して電解酸化処理を行なうことを特徴とする多数本
のフィラメントから成る高弾性炭素繊維の表面処理法で
ある。
j - The above object is achieved by the method for surface treatment of high modulus carbon m#I according to the present invention. In summary, the present invention reduces the applied voltage to 10
7 or more, the electrolytic oxidation treatment is performed by setting the pulse power feeding interval so that the power feeding time is 0.02 seconds or less, and the M current stop time is 5 times or more the power feeding time -L. This is a surface treatment method for high modulus carbon fibers made of filaments.

更に詳しく説明すれば、本発明に従うと、電解槽中へと
供給され5表面処理される複数本の、例えば1000〜
24000本のフィラメントから成る炭素繊維には間欠
的にパルス給電がなされる。即ち、本発明の方法では、
炭素繊維の中心部へのOH−イオンの補給(無通電)と
電解酸化(通′Tr1)とが交Vに行なわれ、パルスと
パルスの間の無通電間に炭素繊維の中心部までOH−イ
オンを拡散させ補給し、続いて一定期間通電して電解酸
化がなされる。これにより炭素繊維の中心部にも十分に
OH−イオンが存在するため、炭素繊維の中心部でも酸
化反応が起こり、均一な表面処理を得ることができる。
More specifically, according to the present invention, a plurality of, e.g.
The carbon fiber, which consists of 24,000 filaments, is intermittently supplied with pulse power. That is, in the method of the present invention,
Replenishment of OH- ions to the center of the carbon fiber (no current applied) and electrolytic oxidation (continuous Tr1) are performed at alternating voltages, and OH- ions are supplied to the center of the carbon fiber during the non-current application between pulses. Ions are diffused and replenished, and then electricity is applied for a certain period of time to perform electrolytic oxidation. As a result, OH- ions are sufficiently present in the center of the carbon fiber, so that an oxidation reaction occurs also in the center of the carbon fiber, making it possible to obtain a uniform surface treatment.

炭素繊維内部のOH−イオンが消費された時点で、通電
が停止され再びOH−イオンの拡散、補給が行なわれる
。このようなサイクルを連続的に行なうことにより、均
一でしかも効率のよい炭素繊維の表面処理が可能となる
When the OH- ions inside the carbon fibers are consumed, the current supply is stopped and the OH- ions are diffused and replenished again. By continuously performing such cycles, it becomes possible to uniformly and efficiently surface treat the carbon fibers.

特に本発明に従えば、電解酸化処理時のパルス給電条件
が、印加電圧は107以上とされ、パルス給゛If間隔
は給電時間が0.02秒以下、給電停止時間が給電時間
の5倍以上とされる0表面がグラファイト配向の角度の
違い、乱れ等により必ずしも均一になっておらず1表面
処理(酸化)され難い不活性サイトと、酸化され易い活
性サイトとが存在していると考えられる弾性率が50t
on/mrrr’以りの高弾性の炭素繊維であっても、
斯るパルス給電条件にて電解酸化処理を行なうことによ
り、酸化され難い不活性サイトも十分に処理され、往つ
酸化され易い活性サイトもピッチングの発生を最小限度
に抑え、炭素amの強度の低下を抑制し得て、仕つ良好
な表面処理をなし得、従って複合材の強化1m雄として
使用した場合にもマトリクス樹脂との十分な接着性が付
与される。
In particular, according to the present invention, the pulse power supply conditions during electrolytic oxidation treatment are such that the applied voltage is 107 or more, the pulse supply interval is 0.02 seconds or less for the power supply time, and the power supply stop time is at least 5 times the power supply time. The 0 surface, which is assumed to be Elastic modulus is 50t
Even if carbon fiber has a high elasticity of on/mrrr',
By performing electrolytic oxidation treatment under such pulsed power supply conditions, inert sites that are difficult to oxidize are sufficiently treated, active sites that are often easily oxidized are also minimized from pitting, and the strength of carbon am is reduced. It is possible to suppress this and achieve a good surface treatment, and therefore, even when used as a reinforced 1m male of a composite material, sufficient adhesion with the matrix resin is imparted.

つまり、本発明者等の研究実験の結果によると、高弾性
率の炭素繊維においては、酸化され難い不活性サイトを
酸化するためには印加電圧(荷’lf圧)はlOv以ヒ
、一般にはlOV〜1ooVが必要とされ、IOV未満
では活性サイトの酸化は行なわれるが不活性サイトの酸
化が行なわれず、炭素m維の表面処理は不完全であり、
複合材に使用した場合のマトリクス樹脂との十分な接着
性を得ることができない。
In other words, according to the results of research experiments conducted by the present inventors, in order to oxidize inactive sites that are difficult to oxidize in carbon fibers with a high elastic modulus, the applied voltage (load pressure) is generally 1Ov or more. 1OV to 1ooV is required; below IOV, active sites are oxidized but inactive sites are not oxidized, and the surface treatment of carbon fibers is incomplete;
When used in composite materials, sufficient adhesion with matrix resin cannot be obtained.

パルス給電間隔は、給電時間が0.02秒以下、好まし
くは0.01秒以下であることが重要である。即ち、上
述のように、本発明では印加電圧が107以上といった
厳しい条件が採用されるために、0.02秒より長く連
続してv′、電されると炭素uA維の活性サイトでの酸
化が進み過ぎ、炭素繊維表〔mにピッチングが生じ、炭
素m雄の強tλ低下を引き起こすこととなる。
It is important that the pulse feeding interval is such that the feeding time is 0.02 seconds or less, preferably 0.01 seconds or less. That is, as mentioned above, in the present invention, the severe conditions such as an applied voltage of 107 or more are adopted, so if the voltage is continuously applied for more than 0.02 seconds, oxidation occurs at the active sites of the carbon uA fibers. If the carbon fiber surface [m] advances too much, pitching will occur on the carbon fiber surface [m], causing a strong decrease in tλ of the carbon m male.

又、給電停止ト時間は、上述のように給電時間が0.0
2秒以下とされる場合には、給電時間の5倍以上とされ
ることが必要であり、このような給電停止時間を設ける
ことによりパルス給電による表面処理の効果、即ち、炭
素繊維の中心部まで十分にOH−イオンを補給し炭素繊
維の中心部をも十分に酸化させ均一な表面処理を得るこ
とができるという効果、をより効率的に発揮し得るもの
である。
In addition, the power supply stop time is 0.0 as described above.
If it is 2 seconds or less, it must be at least 5 times the power supply time, and by providing such a power supply stop time, the effect of surface treatment by pulse power supply, that is, the center of the carbon fiber. It is possible to more efficiently exhibit the effect of being able to sufficiently replenish OH- ions and oxidize even the center of the carbon fiber to obtain a uniform surface treatment.

本発明に使用されるパルス波形は特に限定されるもので
はなく、矩形波、三角波、正弦波等が使用できる。
The pulse waveform used in the present invention is not particularly limited, and rectangular waves, triangular waves, sine waves, etc. can be used.

又、給電方法、電解液等は公知のものを使用できる。Also, known methods of power supply, electrolyte, etc. can be used.

一例を挙げれば、給電方法としては、一般には英国特許
1326736に示される如くロール電極や水銀電極を
介して炭素繊維に給電する方法が採用されるが、特公昭
47−29942或いは米国特許423439Bに開示
されるように炭素繊維の損傷を軽減するためにロールを
用いない非接触式の給電を用いることもできる。
For example, as a power supply method, a method of supplying power to carbon fibers through a roll electrode or a mercury electrode is generally adopted as shown in British Patent No. 1326736, but the method disclosed in Japanese Patent Publication No. 47-29942 or U.S. Patent No. 423439B is adopted. A non-contact power supply that does not use rolls can also be used to reduce damage to carbon fibers, as shown in Figure 3.

電解液としては1次亜塩素酸塩、濃硫酸、濃硫酸+Cr
  イオン、過マンガン酸塩といった酸化剤水溶液或い
は強酸性溶液;水酸化ナトリウムの如き強塩基性溶液;
硫酸塩、硝酸塩の如き中性塩水溶液;カルボン酸塩、陽
酸塩の如き弱塩基性水溶液:又は炭酸ナトリウムの如き
弱塩基性水溶液を使用し得る。本発明においても、掻く
一般的な電解液である水酸化ナトリウム水溶液、硝酸ナ
トリウム水溶液を使用し得る外に、−上述の炭酸ナトリ
ウム水溶液及び硫酸ナトリウム水溶液等をも好適に使用
し得る。
The electrolyte is primary chlorite, concentrated sulfuric acid, concentrated sulfuric acid + Cr
Aqueous or strongly acidic solutions of oxidizing agents such as ions, permanganate; Strongly basic solutions such as sodium hydroxide;
Aqueous solutions of neutral salts such as sulfates and nitrates; weakly basic aqueous solutions such as carboxylates and cationic salts; or weakly basic aqueous solutions such as sodium carbonate may be used. In the present invention, in addition to the common electrolytic solutions such as sodium hydroxide aqueous solution and sodium nitrate aqueous solution, the above-mentioned sodium carbonate aqueous solution and sodium sulfate aqueous solution can also be suitably used.

次に、第1図を参照して、本発明に係る表面処理方法を
好適に実施し得る電解酸化表面処理装置の一実施例を説
明する。
Next, an embodiment of an electrolytic oxidation surface treatment apparatus that can suitably carry out the surface treatment method according to the present invention will be described with reference to FIG.

未実施例にて電解酸化表面処理装置lは電解液2を収容
した電解槽4を有する。電解槽4内には互いに平行に所
定の距離だけ離間して2つの下部ロール6.8が回転自
在に配置される。又、電解槽4のL部一端部には電解液
2に浸漬されない位lに入口陽極ロールlOが、ヌ他端
側には出口陽極ロール12が回転自在に配置される。
In a non-embodiment, the electrolytic oxidation surface treatment apparatus 1 has an electrolytic bath 4 containing an electrolytic solution 2. Two lower rolls 6.8 are rotatably arranged in the electrolytic cell 4 parallel to each other and spaced apart from each other by a predetermined distance. An inlet anode roll lO is rotatably disposed at one end of the L portion of the electrolytic cell 4 so as not to be immersed in the electrolytic solution 2, and an outlet anode roll 12 is rotatably disposed at the other end.

上記構成にて、14素繊維はリール(図示せず)により
取り出され、入口陽極ロールlOから下部ロール6.8
へと張設されて電解液2中へと浸漬され、次いで出口陽
極ロール12を通って電解槽外へと導かれ洗浄、乾燥工
程を経て巻取リール(図示せず)にて巻取られる。この
とき、電解槽4内には下部ロール6.8にて張設された
炭素繊維に対抗するように陰極板14が配設され、該陰
極板14と、前記入口及び出口陽極ロール10.12と
にはパルス電源発生装置16の正側(+)及び負側(−
)がそれぞれ接続される。
In the above configuration, the 14 element fibers are taken out by a reel (not shown) and are taken out from the inlet anode roll IO to the lower roll 6.8.
The electrolytic solution 2 is stretched over the membrane and immersed in the electrolytic solution 2, and then led out of the electrolytic cell through the outlet anode roll 12, subjected to a cleaning and drying process, and then wound up on a take-up reel (not shown). At this time, a cathode plate 14 is disposed in the electrolytic cell 4 so as to oppose the carbon fiber stretched by the lower roll 6.8, and the cathode plate 14 and the inlet and outlet anode rolls 10.12 The positive side (+) and negative side (-
) are connected respectively.

更に具体的に説明すれば、入口、出口陽極ロール10.
12は例えばグラファイトで作製される直径40mmの
ロールとすることができ、下部ロール6.8は例えばテ
フロンで作製される直径40mmのロールとすることが
できる。下部ロール6.8は互いに800mmM隔して
配力され、入口及び出口陽極ロール10.12に対して
は140mm以ha間される。又、陰極板14は下部ロ
ール6.8間に張設される炭素繊維に対して50mm程
度離間するように配置される。該陰極板14は通常ステ
ンレス鋼板にて作製される。
More specifically, the inlet and outlet anode rolls 10.
12 can be a 40 mm diameter roll made of graphite, for example, and the lower roll 6.8 can be a 40 mm diameter roll made of Teflon, for example. The lower rolls 6.8 are spaced apart from each other by 800 mm and are separated by more than 140 mm ha for the inlet and outlet anode rolls 10.12. Further, the cathode plate 14 is arranged at a distance of about 50 mm from the carbon fiber stretched between the lower rolls 6.8. The cathode plate 14 is usually made of stainless steel plate.

次に、上記第1図に図示した連続通糸電解酸化表面処理
袋ご1を使用して高弾性炭素繊維を本発明に従って表面
処理を行なった各実施例について説明する。
Next, examples will be described in which high modulus carbon fibers were surface treated according to the present invention using the continuous threading electrolytic oxidation surface treated bag 1 shown in FIG. 1 above.

丈]L鮭」二二下 使用した炭素Ha維は糸径1077m(フィラメント数
6000木)のピッチ系炭素m雄であり1表面処理を行
なわない状態での弾性率は50ton/mm’、引張強
度は328kg/mm’、ILSS(層間剪断強度)は
3.5kg/mrn’であった。
The carbon fiber used is pitch-based carbon fiber with a thread diameter of 1077 m (6000 filaments), and has an elastic modulus of 50 ton/mm' and tensile strength without surface treatment. was 328 kg/mm', and ILSS (interlaminar shear strength) was 3.5 kg/mrn'.

炭素ta維は、5重f%NaOH水溶液(温度25℃)
を収容した電解槽4中を速度in/分で通糸され、浸漬
部での滞留時間は60秒であった。
Carbon ta fibers were prepared using a 5% NaOH aqueous solution (temperature 25°C).
The thread was threaded through the electrolytic cell 4 containing the material at a speed of in/min, and the residence time in the immersion section was 60 seconds.

各実施例の印加電圧及びパルス給電条件は表1に示す通
りであり、パルス波形は矩形波であった。
The applied voltage and pulse power supply conditions for each example are as shown in Table 1, and the pulse waveform was a rectangular wave.

電解酸化処理を行なった後の炭素繊維の弾性率及び引張
強度は表1に示す通りであった。
The elastic modulus and tensile strength of the carbon fibers after electrolytic oxidation treatment were as shown in Table 1.

該表面処理後の炭素繊維を使用してILSS膓定用の炭
素繊維強化複合材試験片を作製し、ショートビーム法に
よってILSS@l定した。結果が表1に示される。
A carbon fiber reinforced composite material test piece for ILSS determination was prepared using the surface-treated carbon fibers, and ILSS@l was determined by the short beam method. The results are shown in Table 1.

炭素繊維強化複合材試験片は次のようにして作製した。A carbon fiber reinforced composite material test piece was prepared as follows.

マトリクス樹脂は、エポキシ樹脂(商品名、エピクロン
850;大日本インキ化学工業社製)100屯量部、硬
化剤(商品名、)IN−5500゜日立化成社製)84
重醍部及び硬化促進剤(エチルメチルイミダゾール、四
国化成社製)1屯量部を混合して調製した。
The matrix resin was 100 parts by volume of epoxy resin (trade name, Epicron 850; manufactured by Dainippon Ink and Chemicals, Ltd.), curing agent (trade name, IN-5500, manufactured by Hitachi Chemical Co., Ltd.) 84
It was prepared by mixing 1 tonne part of a heavy base and a curing accelerator (ethylmethylimidazole, manufactured by Shikoku Kasei Co., Ltd.).

このようにして7A製されたマトリクス樹脂を。The matrix resin made in this way is 7A.

金型にセットされた炭素繊維に、炭素繊維の容積率が6
0%となるように注入し、加熱プレスにより成形した。
The carbon fiber set in the mold has a carbon fiber volume ratio of 6.
It was injected so that it was 0% and molded by hot pressing.

該成形品は、!a雄力方向14mmの長さを有し、横断
面が6mmX2mmの矩形とされ、炭素繊維強化複合材
試験片が作製された。
The molded product is! A carbon fiber-reinforced composite specimen was prepared, having a length of 14 mm in the male force direction and a rectangular cross section of 6 mm x 2 mm.

皿斐亘↓:」 実施例1〜6と同じ炭素繊維及び装置を使用し、表1に
示す印加電圧及びパルス給電条件にて表面処理を行なっ
た。ただ、比較例1はパルス給電ではなく連続給電とさ
れた。
Wataru Sarahi ↓: Using the same carbon fibers and equipment as in Examples 1 to 6, surface treatment was performed under the applied voltage and pulse power supply conditions shown in Table 1. However, in Comparative Example 1, continuous power supply was used instead of pulse power supply.

実施例1〜6と同じ方法にて、弾性率及び引張強度、更
にはILSSを測定した。結果が表1に示される。
The elastic modulus, tensile strength, and ILSS were measured in the same manner as in Examples 1 to 6. The results are shown in Table 1.

表1から1本発明を示す実施例1〜6においては1表面
処理後においても弾性率、引張強度の低下がなく、しか
もILSSが向上しており、比較例1〜6においてはI
LSSが表面処理前より向」二している場合は引張強度
が低下し、引張強度が表面処理前と同じ程度の場合には
ILSSが低下していることが分かる。
From Table 1, in Examples 1 to 6 showing the present invention, there was no decrease in elastic modulus and tensile strength even after one surface treatment, and ILSS was improved, and in Comparative Examples 1 to 6, I
It can be seen that when the LSS is higher than before the surface treatment, the tensile strength is decreased, and when the tensile strength is about the same as before the surface treatment, the ILSS is decreased.

見見九り二」」 使用した炭素繊維は糸径1077m(フィラメント数6
000本)のピッチ系炭素繊維であり1表面処理を行な
わない状態での弾性率は70ton/ m m’、引張
強度は345kg/mrn’、ILSS(層間剪断強度
)は2.5kg/mrn’であった。
The carbon fiber used has a thread diameter of 1077 m (number of filaments: 6).
000 pieces) of pitch-based carbon fibers without surface treatment, the elastic modulus is 70 ton/m m', the tensile strength is 345 kg/mrn', and the ILSS (interlaminar shear strength) is 2.5 kg/mrn'. there were.

炭素繊維は、5重砥%NaOH水溶液(温度25℃)を
収容した電解槽4中を速度in/分で通糸され、1−2
債部での滞留時間は60秒であった。
The carbon fiber was threaded through an electrolytic bath 4 containing a 5-layer abrasive % NaOH aqueous solution (temperature 25°C) at a speed of 1-2 in/min.
The residence time in the bond section was 60 seconds.

各実施例の印加電圧及びパルス給電条件は表2に示す通
りであり、パルス波形は矩形波であった。
The applied voltage and pulse power supply conditions for each example are as shown in Table 2, and the pulse waveform was a rectangular wave.

電解酸化処理を行なった後の炭素ta維の弾性率及び引
張強度は表2に示す通りであった。
The elastic modulus and tensile strength of the carbon TA fibers after electrolytic oxidation treatment were as shown in Table 2.

該表面処理後の炭素繊維を使用して、実施例1〜6と同
様にしてILSSを測定した。結果が表2に示される。
Using the surface-treated carbon fibers, ILSS was measured in the same manner as in Examples 1 to 6. The results are shown in Table 2.

±m旦二二LA 実施例7〜12と同じ炭素繊維及び装置を使用し、表2
に示す印加電圧及びパルス給電条件にて表面処理を行な
った。ただ、比較例6はパルス給電ではなく連続給電と
された。
±m × 22 LA Using the same carbon fibers and equipment as Examples 7 to 12, Table 2
Surface treatment was performed under the applied voltage and pulse power supply conditions shown below. However, in Comparative Example 6, continuous power supply was used instead of pulse power supply.

実施例7〜12と同じ方法にて、弾性率及び引張強度、
更にはILSSを測定した。結果が表2に示される。
In the same manner as Examples 7 to 12, elastic modulus and tensile strength,
Furthermore, ILSS was measured. The results are shown in Table 2.

表2から1本発明を示す実施例7〜12においては、表
面処理後においても弾性率、引張強度の低下がなく、し
かもI LSSが向上しており、比較例6〜10におい
てはILSSは表面処理前より向上しているものの本発
明に比較すれば劣っており、又引張強度は表面処理前よ
り低下していることが理解されるであろう。
From Table 2, in Examples 7 to 12 showing the present invention, there was no decrease in elastic modulus and tensile strength even after surface treatment, and ILSS was improved, and in Comparative Examples 6 to 10, ILSS was It will be understood that although it is improved compared to before the treatment, it is still inferior when compared to the present invention, and the tensile strength is lower than before the surface treatment.

表1 表2 発」L例」L果 以上説明したように、本発明に係る高弾性炭素maの表
面処理法は、印加電圧及びパルス給電条件を特定するこ
とにより電解酸化処理が行なわれるために、酸化され難
い不活性サイトも十分に表面処理が行なわれ、且つ酸化
され易い活性サイトではピッチングの発生が最小限度に
抑えられる為か良好な表面処理が達成され、炭素m雄視
合材の強化繊維として使用した場合のマトリクス樹脂と
の十分な接着性が得られ、しかも炭素繊維の強度の低下
が抑制されるという特長を有する。
Table 1 Table 2 "Example" L As explained above, in the surface treatment method of high elastic carbon ma according to the present invention, electrolytic oxidation treatment is performed by specifying the applied voltage and pulse power supply conditions. The inert sites that are difficult to oxidize are also sufficiently surface-treated, and the active sites that are easily oxidized are able to have a good surface treatment, perhaps because the occurrence of pitting is kept to a minimum. When used as fibers, it has the advantage of providing sufficient adhesion with matrix resin and suppressing a decrease in the strength of carbon fibers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る表面処理法を実施するだめの装
置の一実施例を示す構成図である。 2二電解液 4:電解槽 6.8:下部ロール 1O112:陽極ロール 14+r!i極板 16、パルス電源発生装置
FIG. 1 is a block diagram showing an embodiment of an apparatus for carrying out the surface treatment method according to the present invention. 22 Electrolyte 4: Electrolytic cell 6.8: Lower roll 1O112: Anode roll 14+r! i-electrode plate 16, pulse power generator

Claims (1)

【特許請求の範囲】[Claims] 1)印加電圧を10V以上とし、パルス給電間隔を給電
時間が0.02秒以下、給電停止時間が給電時間の5倍
以上となるように設定して電解酸化処理を行なうことを
特徴とする多数本のフィラメントから成る高弾性炭素繊
維の表面処理法。
1) A large number of methods characterized in that the electrolytic oxidation treatment is performed by setting the applied voltage to 10 V or more, the pulse feeding interval to the feeding time of 0.02 seconds or less, and the feeding stop time to 5 times or more of the feeding time. Surface treatment method for high modulus carbon fibers made of book filaments.
JP63124279A 1988-05-20 1988-05-20 Method for treating surface of high elastic modulus carbon fiber Pending JPH01298275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63124279A JPH01298275A (en) 1988-05-20 1988-05-20 Method for treating surface of high elastic modulus carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63124279A JPH01298275A (en) 1988-05-20 1988-05-20 Method for treating surface of high elastic modulus carbon fiber

Publications (1)

Publication Number Publication Date
JPH01298275A true JPH01298275A (en) 1989-12-01

Family

ID=14881407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63124279A Pending JPH01298275A (en) 1988-05-20 1988-05-20 Method for treating surface of high elastic modulus carbon fiber

Country Status (1)

Country Link
JP (1) JPH01298275A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6152146A (en) * 1984-08-20 1986-03-14 Matsushita Electric Ind Co Ltd Motor
JPS6176055A (en) * 1984-09-20 1986-04-18 Toshiba Corp Rotor for brushless motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6152146A (en) * 1984-08-20 1986-03-14 Matsushita Electric Ind Co Ltd Motor
JPS6176055A (en) * 1984-09-20 1986-04-18 Toshiba Corp Rotor for brushless motor

Similar Documents

Publication Publication Date Title
US4704196A (en) Process for surface treatment of carbon fiber
JPS6262185B2 (en)
WO1999035326A1 (en) Carbon fibers and process for the production thereof
CN105484012B (en) A kind of polyacrylonitrile carbon fiber surface treatment method and device
US4130465A (en) Treatment of carbon fibers
JPH01298275A (en) Method for treating surface of high elastic modulus carbon fiber
KR890005015B1 (en) Surface treatment method of carbon fiber
EP0409235B1 (en) Process for the surface treatment of carbon fiber strands
US4867852A (en) Electrolytic method for after-treatment of carbon fiber
JPH02269867A (en) Method for carrying out surface electrolytic oxidation of carbon fiber tow having high elasticity
JP3012885B2 (en) Method for producing surface-modified carbon fiber
JPH03130464A (en) Method for treating surface of carbon fiber bundle
CN1103449A (en) Method and apparatus for electrochemical surface treatment of viscose base carbon cloth
KR20190084187A (en) Apparatus and method for treating surface of carbon fiber
JPH05117964A (en) Method for surface treatment of carbon yarn and device therefor
JP2548615B2 (en) Surface treatment method for carbon fiber bundles
JPS63264967A (en) Method for modifying carbon fiber
JPS61231266A (en) Electrolytic surface treatment of carbon fiber
JPH0433907B2 (en)
JP2002038368A (en) Carbon fiber bundle and method for treating surface of carbon fiber bundle
KR20100074836A (en) Method and apparatus for treating surface of carbon fiber
JPS58132168A (en) Improved surface electrolytic treatment of carbon fiber bundle
JPH03193969A (en) Electrolytic treatment of carbon fiber
JPH04281067A (en) Surface treatment of carbon fiber
JP5621253B2 (en) Carbon fiber bundle and method for producing the same