JPH01298142A - Hot dip aluminized steel sheet for vessel, production thereof and can - Google Patents

Hot dip aluminized steel sheet for vessel, production thereof and can

Info

Publication number
JPH01298142A
JPH01298142A JP63128199A JP12819988A JPH01298142A JP H01298142 A JPH01298142 A JP H01298142A JP 63128199 A JP63128199 A JP 63128199A JP 12819988 A JP12819988 A JP 12819988A JP H01298142 A JPH01298142 A JP H01298142A
Authority
JP
Japan
Prior art keywords
aluminum
film
iron
alloy layer
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63128199A
Other languages
Japanese (ja)
Other versions
JP2625499B2 (en
Inventor
Yashichi Oyagi
大八木 八七
Koji Tanimura
谷村 宏治
Takashi Baba
尚 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP12819988A priority Critical patent/JP2625499B2/en
Publication of JPH01298142A publication Critical patent/JPH01298142A/en
Application granted granted Critical
Publication of JP2625499B2 publication Critical patent/JP2625499B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Containers Having Bodies Formed In One Piece (AREA)
  • Laminated Bodies (AREA)
  • Coating With Molten Metal (AREA)

Abstract

PURPOSE:To improve the workability and corrosion resistance of a hot dip aluminized steel sheet by successively forming an Fe-Al alloy layer and an Al (alloy) film on the surface of a steel sheet and cold rolling the steel sheet at a specified rolling reduction to break the alloy layer and to bring the alloy layer and the Al film into metallic bond. CONSTITUTION:An Fe-Al alloy layer and an Al (alloy) film of >=10mum thickness are successively formed on the surface of a steel sheet. This hot dip aluminized steel sheet is cold rolled at <50% rolling reduction to partially break the Fe-Al alloy layer and to bring Fe and >=10% of the Al alloy film into metallic bond. The resulting hot dip aluminized steel sheet has superior adhesion and workability, so it is fit for drawing-ironing(DI) or drawing A can made of the steel sheet has higher corrosion resistance than a commercially available Al can.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は加工性、耐食性の優れた容器用溶融アルミニウ
ムめっき鋼板およびその鋼板により成形された缶体さら
にほその鋼板の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a hot-dip aluminized steel sheet for containers having excellent workability and corrosion resistance, and a method for manufacturing can bodies and other steel sheets formed from the steel sheet.

従来の技術 ビール、炭酸飲料等の飲料缶にほ、アルミニウム板、あ
るいは鋼板に錫めっきを施したぶりきが使用されている
。昭和40年代までは、半田付けあるいは接着による製
缶が主体であったが、絞りとしごき加工による缶(以下
業界の慣例に従いDI缶と呼称する)が開発されて以来
、使用される素材はアルミとぶりきの2者となった。こ
れは、DI缶の製造にほ、缶外面における高度な加工潤
滑性と缶内面における優れた耐食性が必要とされるため
である。
BACKGROUND OF THE INVENTION BACKGROUND OF THE INVENTION Beverage cans for beer, carbonated beverages, etc. are made from aluminum plates or tin plated steel plates. Until the 1960s, cans were mainly made by soldering or gluing, but since the development of cans by drawing and ironing (hereinafter referred to as DI cans according to industry convention), the material used has been aluminum. They became the two most excited players. This is because manufacturing DI cans requires high processing lubricity on the outer surface of the can and excellent corrosion resistance on the inner surface of the can.

発明が解決しようとする課題 アルミニウムは優れた加工性と耐食性を有するため、D
I前加工て、ビール、炭酸飲料缶用途等に好んで使用さ
れている状況にある。一方、鋼板を素材としだぶりきの
場合、缶外面における加工部滑性にほ優れた特性を発揮
するが、缶内面においては、DI成形後に施される内面
塗装が完壁でない場合、塗膜の欠陥部より鉄溶出が起こ
り、味、フレーバーの低下をもたらす問題がある。
Problems to be Solved by the Invention Aluminum has excellent workability and corrosion resistance, so D
After pre-processing, it is now being used favorably for cans of beer and carbonated beverages. On the other hand, when using a steel plate as the material, it exhibits excellent smoothness in the processed parts on the outside of the can, but on the inside of the can, if the inner surface coating applied after DI forming is not completely finished, the coating film may deteriorate. There is a problem that iron elution occurs from the defective parts, resulting in a decrease in taste and flavor.

従って、DI成形後に行なわれる缶内面塗装として、ア
ルミ缶は1回の塗装ですまされるのに対し、ぶきり缶の
場合、2回の缶内面塗装が必要とされている。
Therefore, aluminum cans are coated with one coat of can interior after DI molding, whereas tin cans require two coats of can interior coating.

しかし、鋼板そのものは強度が高いため薄いものが使用
出来る、缶体にへこみ傷が入りにくい、磁力による搬送
が可能、コスト的に安い等の幾多の利点を有している。
However, the steel plate itself has many advantages, such as being strong, allowing the use of thinner sheets, preventing dents and scratches on the can body, being able to be conveyed by magnetic force, and being inexpensive.

従って、鋼板の良さとアルミニウムの優れた対内容物特
性の両者を併せ有する材料の開発が望まれていた。
Therefore, it has been desired to develop a material that has both the advantages of steel plate and the excellent content resistance properties of aluminum.

一方、アルミめっき鋼板は、耐熱性、耐食性が優れてお
り、従来から溶融めっき法によって製造されている。従
来の溶融アルミニウムめっき鋼板は、溶融アルミと素地
である鉄とが反応して、かなり厚い合金層が生成してお
り、厳しい加工に曝された場合2合金層よりアルミニウ
ム皮膜が剥離するため、容器用材料としては使用されな
かった6合金層は、光学顕微鏡程度の倍率(X 500
)で十分観察できる程の厚さに発達しており、完全に鉄
面を合金層で被覆してしまっている。
On the other hand, aluminized steel sheets have excellent heat resistance and corrosion resistance, and have traditionally been manufactured by hot-dip plating. In conventional hot-dip aluminized steel sheets, the molten aluminum reacts with the base iron to form a fairly thick alloy layer, and when exposed to severe processing, the aluminum film peels off from the two alloy layers, making the container difficult to use. The 6 alloy layer, which was not used as a material for
) has developed to a thickness that is sufficiently observable, and the iron surface is completely covered with an alloy layer.

合金層成長の抑制方法として、アルミニウムにシリコン
をlO%程度添加して加工性を向上させる方法がある。
As a method of suppressing alloy layer growth, there is a method of adding silicon to aluminum in an amount of approximately 10% to improve workability.

また、溶融めっきを行なう前に予備めっきを行ない、鋼
板とアルミニウムめっき層との間に形成される合金層醍
を低減させる方法として、例えば特開昭57−7131
78号公報、特開昭57−140884号公報、特開昭
58−33483号公報、特開昭57−114850号
公報、特開昭57−70288号公報等に記載の方法が
提案されている。
In addition, as a method for reducing the alloy layer formed between the steel sheet and the aluminum plating layer by pre-plating before hot-dip plating, for example, Japanese Patent Application Laid-Open No. 57-7131
The methods described in JP-A No. 78, JP-A-57-140884, JP-A-58-33483, JP-A-57-114850, JP-A-57-70288, etc. have been proposed.

しかし、これらの方法ではいずれも合金層の低減は不十
分であり、厚さが薄くとも、未だ完全に鉄面を合金層に
て被覆してしまっているため、加工性の良好な鋼板を得
ることは困難であり、容器用として適用された例はない
However, in all of these methods, the reduction of the alloy layer is insufficient, and even if the thickness is thin, the steel surface is still completely covered with the alloy layer, so it is difficult to obtain a steel plate with good workability. It is difficult to do so, and there are no examples of it being applied to containers.

本発明の目的は、従来のアルミニウムめっき鋼板の欠点
を解消して、加工性、耐食性の優れた容器用溶融アルミ
ニウムめっき鋼板とその製造方法及び前記鋼板を用いて
製造した耐食性の優れた缶体を提供することにある。
The purpose of the present invention is to eliminate the drawbacks of conventional aluminized steel sheets and provide a hot-dip aluminum-plated steel sheet for containers with excellent workability and corrosion resistance, a method for manufacturing the same, and a can body with excellent corrosion resistance manufactured using the steel sheet. It is about providing.

課題を解決するための手段 本発明は前記の目的を達成するために、従来のアルミニ
ウムめっき鋼板の鉄−アルミニウム合金層が鋼板表面を
完全に被覆している点を改良して鉄−アルミニウム合金
層を部分的に破断し、その破断部において鋼板素地とめ
っき皮膜であるアルミニウムまたはアルミニウム合金を
直接金属結合させた缶用鋼板とその製造方法、及びこの
ような缶用鋼板を用いて製造された缶体を提供するもの
である。すなわち、本発明は、 1.6Ji鋼板の表面に鉄−アルミニウム合金層と、そ
の表面にアルミニウム皮膜またはアルミニウム合金皮膜
を有し、且つ前記鉄−アルミニウム合金層にほ破断部を
有し、該破断部を介して鉄とアルミニウム皮膜若しくは
アルミニウム合金皮膜が10%以上金属結合しているこ
とを特徴とする容器用溶融アルミニウムめっき鋼板、 2、薄鋼板の表面に鉄−アルミニウム合金層と、その表
面に10pm以上のアルミニウム皮膜またはアルミニウ
ム合金皮膜を有する溶融めっき鋼板を用い、圧下率が5
0%未満で、且つ前記の鉄−アルミニウム合金層を部分
的に破断して鉄とアルミニウム皮膜若しくはアルミニウ
ム合金flがlO%以上金属結合する圧下率で冷間圧延
することを特徴とする容器用溶融アルミニウムめっき鋼
板の製造方法、 3.薄鋼板を基材とする缶の両面に鉄−アルミニウム合
金層と、その表面にアルミニウム皮膜若しくはアルミニ
ウム合金皮膜を有し、且つ前記の鉄−アルミニウム合金
層は破断部を有し、該破断部を介して鉄とアルミニウム
若しくはアルミニウム合金皮膜が金属結合した層からな
り1缶内面においてはさらにその表面に少なくとも最表
層にクロム化合物を有する皮膜若しくは燐酸塩皮膜と、
塗料皮膜を順次有することを特徴とする缶体、である。
Means for Solving the Problems In order to achieve the above object, the present invention improves the point that the iron-aluminum alloy layer of the conventional aluminized steel sheet completely covers the surface of the steel sheet. A steel plate for cans in which a steel plate is partially fractured and a steel plate substrate and an aluminum or aluminum alloy as a plating film are directly metal bonded at the fractured part, a method for manufacturing the same, and a can manufactured using such a steel plate for cans. It provides the body. That is, the present invention has an iron-aluminum alloy layer on the surface of a 1.6Ji steel plate, an aluminum film or an aluminum alloy film on the surface, and a broken part in the iron-aluminum alloy layer, and the broken part. 2. Hot-dip aluminum plated steel sheet for containers, characterized in that iron and aluminum film or aluminum alloy film are metallically bonded by 10% or more through parts. 2. An iron-aluminum alloy layer on the surface of the thin steel sheet and an iron-aluminum alloy layer on the surface. A hot-dip galvanized steel sheet with an aluminum film or an aluminum alloy film of 10 pm or more is used, and the rolling reduction is 5.
Melting for containers characterized by cold rolling at a reduction rate of less than 0% and at which the iron-aluminum alloy layer is partially broken and the iron and aluminum film or aluminum alloy fl are metallically bonded by 10% or more. Method for manufacturing aluminum plated steel sheet, 3. A can based on a thin steel plate has an iron-aluminum alloy layer on both sides, and an aluminum film or an aluminum alloy film on the surface thereof, and the iron-aluminum alloy layer has a broken part, and the broken part is A layer consisting of a metallic bond between iron and aluminum or an aluminum alloy film, and on the inner surface of the can, a film or a phosphate film having at least the outermost layer of a chromium compound on the surface;
A can body characterized in that it has sequential paint films.

作用 以下、本発明について詳細に説明する。action The present invention will be explained in detail below.

本発明は、缶用鋼板としてアルミニウム系の溶融めっき
鋼板を用いて、素地である鉄とめっき金属であるアルミ
ニウムまたはアルミニウム合金との結合形態を変えてい
る。前述した如く、従来の溶融アルミニウムめっき鋼板
では、必ず鉄素地は合金層に覆われており、その厚みに
より加工性に若干の差は存在するが、強度の絞りとしご
き加工により成形されるDI缶にほ適用出来ない、DI
缶等の高度な加工に耐えうる鉄とめっき金属の結合形態
につき種々検討を重ねた結果、本発明に至ったものであ
る。
The present invention uses an aluminum-based hot-dip plated steel plate as a steel plate for cans, and changes the bonding form between the base iron and the plated metal, aluminum or aluminum alloy. As mentioned above, in conventional hot-dip aluminized steel sheets, the iron base is always covered with an alloy layer, and although there are slight differences in workability depending on the thickness, DI cans are formed by intense drawing and ironing. Cannot be applied to Japan, DI
The present invention was developed as a result of various studies on the form of bonding between iron and plated metal that can withstand high-level processing of cans and the like.

本発明は、めっき金属の加工密着性を得るため、素地鋼
板とめっき金属間に10%以上の金属間結合を確保する
。ここでいう金属間結合とは、鉄とめっき金属との界面
に実質的に合金層が存在しない状態を示すものであり、
例えば、電気めっきによって金属をめっきした場合の鉄
とめっき金属との界面に類似したものである。
The present invention secures an intermetallic bond of 10% or more between the base steel sheet and the plated metal in order to obtain processing adhesion of the plated metal. The intermetallic bond here refers to a state in which there is substantially no alloy layer at the interface between iron and plated metal,
For example, it is similar to the interface between iron and plated metal when metal is plated by electroplating.

本発明における前記の金属間結合の割合は、溶融アルミ
ニウムめっき鋼板の断面を顕微鏡で観察して、線状に観
察される合金層部分の全長(観察視野全長)に対する破
線部(合金層が破壊されている部分)の長さの合計の百
分率をもって表す。
The ratio of the above-mentioned intermetallic bond in the present invention can be determined by observing the cross section of a hot-dip aluminized steel plate under a microscope, and determining the ratio of the broken line portion (where the alloy layer is broken) to the total length of the linearly observed alloy layer portion (the total length of the observation field). It is expressed as a percentage of the total length of the

従来の溶融アルミニウムめっき鋼板のように鉄とめっき
金属との界面が完全に合金層に覆われた材料では、DI
加工時、特にアイアニング成形時に合金層が破壊し、ア
ルミめっき層の剥離が生じる。更に激しい場合にほ、絞
り成形の段階にてアルミめっき層の剥離が生じることも
ある。溶融めっき法においては、合金層の形成は避けえ
ないものであるため、密着性改善の方策を講じることな
しにほ1缶用材としては適用が困難である。
In materials where the interface between iron and plated metal is completely covered with an alloy layer, such as conventional hot-dip aluminized steel sheets, DI
During processing, especially during ironing, the alloy layer is destroyed and the aluminum plating layer peels off. In more severe cases, the aluminum plating layer may peel off during the drawing process. In the hot-dip plating method, since the formation of an alloy layer is unavoidable, it is difficult to apply it as a material for just one can without taking measures to improve adhesion.

本発明は、めっき層を剥離させることなく部分的に合金
層を破壊し、105以上の金属間結合を持たせることに
より、DI加工にも酎えうる溶融アルミめっき鋼板を見
出したものである。めっき層を剥離させることなく合金
層を破壊する方法としては冷間圧延法が最適である。こ
の場合余り強度の加工を行なうと母材の機械的性質を劣
化させ、鋼板そのもののDI加工性に問題を生じる。め
っき皮膜の密着性は、冷間圧延の圧下率が大きくなると
ともに向上するが、母材の機械的性質は劣化するため適
度の圧下率が設定されなければならない、冷間圧延のか
け方としては、多パス圧延を行なう場合、前段にて高圧
下率を採用するほうが良好な密着性を得ることが出来る
The present invention has discovered a hot-dip aluminized steel sheet that can be used in DI processing by partially destroying the alloy layer without peeling off the plating layer and creating an intermetallic bond of 105 or more. Cold rolling is the most suitable method for destroying the alloy layer without peeling off the plating layer. In this case, excessively strong processing will deteriorate the mechanical properties of the base material, causing problems in the DI processability of the steel sheet itself. The adhesion of the plating film improves as the reduction rate during cold rolling increases, but the mechanical properties of the base material deteriorate, so an appropriate reduction rate must be set. When performing multi-pass rolling, better adhesion can be obtained by employing a high rolling reduction in the first stage.

また、アルミめっき時に形成される合金層の量と質も重
要である0合金層の量が少ない時(l〜4ミクロン程度
)にほ、5〜30%程度の圧下率で10%以上の鉄〜ア
ルミ間金属結合が得られ、合金層の量が多い時(4〜1
0ミクロン程度)にほバラツキが大きくなるが、20〜
70%程度の圧下率が必要である。但し、50%以上の
圧下率で圧延した場合、素材の機械的性質の劣化が激し
いため、DI成形時のフランジ成形性等に問題が生じる
ため好ましくない。
The quantity and quality of the alloy layer formed during aluminum plating is also important. When the amount of the zero alloy layer is small (about 1 to 4 microns), it is possible to reduce the amount of iron by more than 10% at a reduction rate of about 5 to 30%. ~When a metallic bond between aluminum is obtained and the amount of alloy layer is large (4 to 1
(about 0 micron), the variation becomes large, but from 20 to
A rolling reduction rate of about 70% is required. However, rolling at a reduction rate of 50% or more is not preferred because the mechanical properties of the material deteriorate significantly, causing problems in flange formability during DI molding, etc.

以上の如く、本発明の効果を充分に発揮するためにほ、
優れた機械的性質を期待できるめっ!!原板と少ない合
金層量、脆く砕は易い性質の合金層が好ましい。
As mentioned above, in order to fully exhibit the effects of the present invention,
You can expect excellent mechanical properties! ! An alloy layer with a small amount of alloy layer and a brittle and easily crushed alloy layer is preferable.

次に、めっき層の厚さについては合金層量と非合金化ア
ルミニウムまたはアルミニウム合金の比率は比較的重要
な要因であり、溶融めっき時点にて非合金化アルミニウ
ムまたはアルミニウム合金は合金層の2倍以上存在する
ことが望ましい、−方、合金化していないアルミニウム
またはアルミニウム合金は10Bm以上存在することが
必要である。なぜなら、金属結合量の増大により、めっ
き密n性は向トしているが、硬い合金層の存在を緩和す
るためにほ、軟らかい金属層の存在が重要である。DI
加工時の缶外面表面傷の発生を防止するためにほ、合金
層の2倍以上の非合金化アルミニウムまたはアルミニウ
ム合金の存在が必要であるや 本発明でいうアルミニウム合金とは、シリコン、マンガ
ン、マグネシウム、鉄等をアルミニウムに配合して合金
化させたものをいう。
Next, regarding the thickness of the plating layer, the amount of alloy layer and the ratio of unalloyed aluminum or aluminum alloy are relatively important factors. On the other hand, unalloyed aluminum or aluminum alloy needs to exist in an amount of 10 Bm or more. This is because, although the plating density is improved by increasing the amount of metal bonding, the presence of a soft metal layer is important in order to alleviate the presence of a hard alloy layer. D.I.
In order to prevent scratches on the outer surface of the can during processing, it is necessary to have at least twice as much unalloyed aluminum or aluminum alloy as the alloy layer.Aluminum alloy in the present invention refers to silicon, manganese, An alloy made by blending magnesium, iron, etc. with aluminum.

このような方法で製造された10%以上の金属結合を有
するアルミニウム系溶融めっき鋼板はめっき密着性と加
工性が優れているので、DI加工または絞り加工に適し
、それによって製品化された缶体は市販のアルミニウム
缶に匹敵する優れた耐食性が得られる。
Aluminum-based hot-dipped steel sheets with a metal bond of 10% or more manufactured by this method have excellent plating adhesion and workability, so they are suitable for DI processing or drawing processing, and cans that are manufactured by this process. provides excellent corrosion resistance comparable to commercially available aluminum cans.

DI缶の場合、DI加工後に脱脂を行い、クロメート処
理等により少くとも最表層にクロム化合物を有する皮膜
を形成するか、燐酸塩皮膜を形成した後、内面塗装、外
面印刷が行なわれる。本発明鋼板の場合、加工後の缶体
においても表面は完全にアルミニウムまたはアルミニウ
ム合金に被覆されているため、塗装もアルミ化と同様の
1回で済ますことが可能である。耐食性は、アルミ化と
同等、更にほ鉄の強度を利用して耐食性の良い純アルミ
皮膜を使用することにより、市販のアルミ化より優れた
耐食性を得ることが出来る。
In the case of DI cans, after DI processing, the cans are degreased, a film containing a chromium compound is formed on at least the outermost layer by chromate treatment, or a phosphate film is formed, and then the inner surface is painted and the outer surface is printed. In the case of the steel plate of the present invention, since the surface of the can body after processing is completely coated with aluminum or aluminum alloy, painting can be completed in one time, similar to aluminization. Corrosion resistance is equivalent to that of aluminum, and by utilizing the strength of steel and using a pure aluminum film with good corrosion resistance, it is possible to obtain corrosion resistance that is superior to commercially available aluminum.

なぜなら、市販のアルミ化の場合、缶強度を出すため、
耐食性を犠牲にしても合金化アルミ先使用せざるをえな
い状況にあるためである0本発明の鋼板で製造した缶は
、アルミの良好な耐食性。
This is because, in the case of commercially available aluminum, in order to increase the strength of the can,
This is because the situation necessitates the use of alloyed aluminum tips even at the expense of corrosion resistance.The cans manufactured using the steel sheet of the present invention have the good corrosion resistance of aluminum.

鉄に対する犠牲防食能等により、ビール、炭酸飲料に対
して鉄が内容物中に溶出することなく、味、フレーバー
の低下が起ることなく、ぶりき缶に比べて、極めて優れ
た耐食性をうることが出来る。
Due to sacrificial corrosion protection against iron, iron does not dissolve into the contents of beer and carbonated beverages, and the taste and flavor do not deteriorate, resulting in extremely superior corrosion resistance compared to tin cans. I can do it.

また、DRD缶(2〜3回絞りにより成形される缶)の
場合にほ缶用鋼板を脱脂、酸洗等の表面調整後、少くと
も最表層にクロム化合物を有する皮膜の形成処理、燐酸
塩処理等の下地処理を施し、塗装した後に絞り加工を行
い缶体に仕丑げる。この場合にも前記DI缶と同様に極
めて優れた耐食性を得ることができる。
In addition, in the case of DRD cans (cans formed by drawing 2 to 3 times), the steel plate for cans is subjected to surface conditioning such as degreasing and pickling, followed by treatment to form a film containing a chromium compound on at least the outermost layer, and phosphate treatment. After applying surface treatment and painting, it is drawn into a can body. In this case as well, extremely excellent corrosion resistance can be obtained as in the case of the DI can.

なお、本発明者らの知見した所によれば、前記の少くと
も最表層にクロム化合物を有する皮膜を形成する場合の
例としては、若干の陰イオンを含んだクロム酸溶液中に
て陰極電解処理を行なうことにより、金属クロムと水和
酸化クロム皮膜の2層構造を有する皮膜を電解で形成さ
せる方法、あるいは取りロム酸化合物溶液中にて陰極電
解処理を行なうことにより、水利酸化クロムを主体とす
る皮膜を電解で形成させる方法等が有効であった。
According to the findings of the present inventors, an example of forming a film having a chromium compound at least on the outermost layer is cathodic electrolysis in a chromic acid solution containing some anions. By performing a treatment, a film having a two-layer structure of metallic chromium and a hydrated chromium oxide film is formed by electrolysis, or by cathodic electrolysis treatment in a solution of a chromic acid compound, water-reducing chromium oxide is the main component. Methods such as forming a film by electrolysis were effective.

この際、クロム皮[とじて、クロムに換算して、5+*
g/rrr’未満では有機塗膜の加工密着性および塗装
耐食性に対する効果が弱く、50mg/rn’超では有
効性が飽和すると共にクロム皮膜による着色が起こり好
ましくない、特に望ましいクロム皮膜量としては、15
〜30I1g/rrr′テある。
At this time, chrome skin [closed, converted to chrome, 5 + *
If it is less than 50 mg/rn', the effect on processing adhesion and paint corrosion resistance of the organic coating will be weak, and if it exceeds 50 mg/rn', the effectiveness will be saturated and coloration will occur due to the chromium film, which is undesirable. Particularly desirable amounts of chromium film are as follows: 15
~30I1g/rrr'te.

クロム化合物皮膜の形成法としては、電解法に限定する
ものではなく、化学反応により形成されるクロム化合物
皮膜にても十分な性能を得ることが出来る0例えば、ク
ロム酸、リン酸およびフッ酸を主成分どする処理液中に
て、リン酸クロム皮膜を5〜50+wg/m’形成させ
る事により、極めて優れた有機塗膜の加工密着性および
塗装耐食性を得る事が出来る。
The method of forming a chromium compound film is not limited to the electrolytic method, but chromium compound films formed by chemical reactions can also provide sufficient performance. By forming a chromium phosphate film of 5 to 50+wg/m' in a treatment solution containing the main components, it is possible to obtain extremely excellent processing adhesion and paint corrosion resistance of an organic coating film.

このようにして得られた缶体はその両面に、薄鋼板を素
地として、その表面に部分的に前述した金属結合部を有
する鉄−アルミニウム合金層と、さらにその表面にアル
ミニウム皮膜若しくはアルミニウム合金皮膜を有し、缶
内面部はさらに少くとも最表層にクロム化合物を有する
皮膜若しくは燐酸塩皮膜と、その表面に塗料膜を被覆し
た皮膜構成からなる。一方、缶外面部は用途により異り
、アルミニウム皮膜若しくはアルミニウム合金皮膜の表
面にそのまま、あるいは下地処理皮膜を介して、印刷若
しくは塗装した皮膜構成として缶製品とする。
The can body thus obtained has on both sides a thin steel plate as a base material, an iron-aluminum alloy layer partially having the above-mentioned metal joints on the surface, and an aluminum film or an aluminum alloy film on the surface. The inner surface of the can further comprises a film having a chromium compound or a phosphate film on the outermost layer, and a paint film coated on the surface thereof. On the other hand, the outer surface of the can differs depending on the purpose, and can products are produced by printing or painting on the surface of the aluminum film or aluminum alloy film as it is, or with a surface treatment film interposed therebetween.

実施例1 板厚0.35mmの冷間圧延後の薄鋼板を、連続溶融ア
ルミニウムめっきラインに通板し、シリコンを10%含
む溶融アルミニウムめっきを行なった。その際、合金層
の厚さは1.5ミクロン、金屈アルミめっきの厚さは2
0ミクロンに調整された。めっき後、全板厚0.311
+u+の鋼板は、2スタンドの冷間圧延ミルにて30%
の圧下率(1段目20%、2段目10%)にて0.27
3mmにまで圧延された。この鋼板の断面を光学顕微鏡
にて観察したところ、合金層が破壊され鉄〜アルミニウ
ム間金属結合が生じている部分の比率は約35%であっ
た。
Example 1 A cold-rolled thin steel plate having a thickness of 0.35 mm was passed through a continuous hot-dip aluminum plating line to perform hot-dip aluminum plating containing 10% silicon. At that time, the thickness of the alloy layer was 1.5 microns, and the thickness of the Kinku aluminum plating was 2 microns.
Adjusted to 0 microns. After plating, total plate thickness 0.311
+u+ steel plates are rolled at 30% in a two-stand cold rolling mill.
0.27 at rolling reduction rate (20% in 1st stage, 10% in 2nd stage)
It was rolled to 3mm. When the cross section of this steel plate was observed with an optical microscope, the ratio of the portion where the alloy layer was destroyed and metal bonding between iron and aluminum had occurred was about 35%.

圧延後約15ミクロンのアルミ皮膜を有する鋼板は、ブ
ランク径139mmより2回の絞り加工により内径85
mmのカップに成形された。その後、3段に及ぶしごき
加工により1缶高さ約130薦!になるような成形に使
用された。最終製品における最も厚みの薄い部分は0.
085m腸であり、トリミング後のフランジ部分の厚さ
はO,+50mmであった。
A steel plate with an aluminum film of approximately 15 microns after rolling was drawn twice from a blank diameter of 139 mm to an inner diameter of 85 mm.
It was molded into a mm cup. After that, one can is approximately 130cm tall after 3 stages of ironing! It was used for molding. The thinnest part of the final product is 0.
The length of the intestine was 085 mm, and the thickness of the flange portion after trimming was O, +50 mm.

DI成形後の缶は、脱脂・洗節参燐酸塩処理が施された
のち、外面印刷中内面塗装され、」、ックドインφフラ
ンジ成形された。ネックドイン加工としては、トリプル
ネックドイン方式により、蓋巻き締め後の外形がBo■
になるように成形された。
After the DI molding, the cans were degreased and treated with phosphoric acid, the outside was printed, the inside was painted, and the can was molded into a φ flange. As for the neck-in processing, the triple neck-in method is used to make the external shape after the lid is rolled up.
was formed to become.

このような一連の成形加工段階において、溶融アルミニ
ウムめっき皮膜は全く剥離することなく成形に耐え、最
終製品において鉄に対する被覆性は完全なものであった
During this series of forming steps, the hot-dip aluminum plating film withstood the forming without peeling off at all, and the final product had perfect coverage of the iron.

缶内面塗装としては、1缶出たり40邦のエポキシ系塗
料をスプレー塗装、焼付は後、ビールを内容物として充
填し、室温にて6ケ月経過後のM、Feの溶出量を測定
した所、0.14ppmのM溶出が分析されたが、Fe
については分析の検出限界以下(< 0.01ppm)
であり、実用的に極めて優れた耐食性を有することが確
認された。
The inner surface of each can was spray-painted with 40 epoxy paints, and after baking, the cans were filled with beer and the amount of M and Fe eluted was measured after 6 months at room temperature. , 0.14 ppm M elution was analyzed, but Fe
Below the analytical detection limit (< 0.01ppm)
It was confirmed that this material has extremely excellent corrosion resistance in practical terms.

実施例2 板厚0.43mmの冷間圧延後の鋼板を、溶融アルミニ
ウムめっきラインにおいて、少量の不純物を含む純アル
ミニウムめっきを70ミクロン(両面合計)の厚さで行
なった。この場合、形成された合金層の平均厚みは、片
面当たり約4.7ミクロンであった。
Example 2 A cold-rolled steel plate having a thickness of 0.43 mm was plated with pure aluminum containing a small amount of impurities to a thickness of 70 microns (both sides total) in a hot-dip aluminum plating line. In this case, the average thickness of the alloy layer formed was about 4.7 microns per side.

めっき後0.50++nの板厚を有する鋼板は、45−
496の圧下率で板厚0.273mmにまで圧延されD
I成形に供された。この鋼板の断面を光学顕微鏡にて観
察したところ、合金層が破壊され鉄〜アルミ間金属結合
が生じている部分の比率は約75%であった。
A steel plate with a plate thickness of 0.50++n after plating is 45-
Rolled to a plate thickness of 0.273mm at a reduction rate of 496D
It was subjected to I molding. When the cross section of this steel plate was observed with an optical microscope, the ratio of the portion where the alloy layer was destroyed and metal bonding between iron and aluminum had occurred was approximately 75%.

DI成形条件としては実施例1と同様の条件にて行なわ
れ、脱脂、洗浄、燐酸塩処理後の缶体表面における溶融
アルミニウムめっき皮膜の密着性をテープ剥離試験によ
り判定したが、全く剥離は認められず良好な性鮨を有す
るものであった。
DI molding was carried out under the same conditions as in Example 1, and the adhesion of the hot-dip aluminum plating film on the can surface after degreasing, cleaning, and phosphate treatment was determined by a tape peeling test, but no peeling was observed. The sushi was of good quality.

この缶体内面に1缶出たり65mmgのエポキシ系塗料
をスプレー塗装、焼付は後、市販のコーラ系飲料を内容
物とする実缶試験を行なった。室温にて12ケ月経過後
のM、Feの溶出量を測定した所、4.3ppmのM溶
出および0.3ppmのFe溶出を検出したが1缶内面
にほ特に目立った腐食箇所はなく、味、フレーバー共に
問題なく良好なレベルにあった。
The inner surface of the can body was spray-coated with 65 mmg of epoxy paint per can, and after baking, an actual can test was conducted using a commercially available cola drink as the content. When we measured the elution amount of M and Fe after 12 months at room temperature, we detected 4.3 ppm of M elution and 0.3 ppm of Fe elution, but there was no particularly noticeable corrosion on the inner surface of the can, and the taste was poor. Both flavors were at a good level with no problems.

実施例3 板厚0.255mの鋼板に両面合計30ミクロンの純ア
ルミニウムめっきを行なった。合金層厚さはモ均3.5
ミクロンであり、約35%の圧下率で板厚0.I88回
にまで圧延された。この鋼板の鉄〜アルミ金属間結合の
比率は約40%であった。
Example 3 A steel plate with a thickness of 0.255 m was plated with pure aluminum to a total thickness of 30 microns on both sides. Alloy layer thickness is 3.5 mm
micron, and the plate thickness is 0.0mm at a reduction rate of about 35%. It was rolled up to 88 times. The iron-to-aluminum intermetallic bond ratio of this steel plate was about 40%.

圧延後、電解脱脂・酸洗による表面調整を行ない、フッ
素イオンを含むクロム酸中にて電解クロメートにて32
■g/rn’のクロメート皮膜を形成させた。
After rolling, the surface is adjusted by electrolytic degreasing and pickling, and then electrolytically chromated in chromic acid containing fluorine ions for 32 hours.
■A chromate film of g/rn' was formed.

この鋼板の片面(缶内面相当面)に塩ビオルガノゾル系
の塗料を約13ミクロン塗布し、缶外面相当面にほエポ
キシ系の塗装を約5ミクロン施した。その後、ブランク
寸法173mmより缶径65■纏缶高さ 115mmの
缶を合計3回の絞り加工により行なった。
Approximately 13 microns of vinyl chloride organosol paint was applied to one side of the steel plate (the surface corresponding to the inner surface of the can), and approximately 5 microns of epoxy paint was applied to the surface equivalent to the outer surface of the can. Thereafter, from a blank size of 173 mm, a can with a diameter of 65 mm and a height of 115 mm was drawn a total of three times.

絞り加工後の缶内外面の皮膜を詳細に観察した結果、溶
融アルミニウムめっき皮膜は全く剥離することなく成形
に耐え、最終製品において鉄に対する被覆性は完全なも
のであった。また、加工後の右m塗膜の被覆性も従来製
品と大差なく良好であった。
A detailed observation of the coatings on the inner and outer surfaces of the can after drawing revealed that the hot-dip aluminum plating coating withstood the forming without any peeling, and the final product had perfect coverage of the iron. Furthermore, the coverage of the right m coating after processing was also good and not much different from that of conventional products.

この缶体を用い、魚肉(鮪フレーク味付け)を内容物と
する実缶試験を行なった。55℃にて6ケ月貯蔵後1缶
内面の腐食状態を観察した。外観的にほ全く異常は認め
られず、内面塗膜を溶剤にて剥離後、鋼板表面を観察し
た所、数点の腐食点が観察されたが、その腐食はM層の
みでFe素地に達するものではなく、実用的に優れた耐
食性を有するものであった。
Using this can, an actual can test was conducted using fish meat (seasoned with tuna flakes) as the content. After storage at 55°C for 6 months, the state of corrosion on the inner surface of each can was observed. Almost no abnormality was observed in the appearance, and when the steel plate surface was observed after removing the inner coating film with a solvent, several corrosion points were observed, but the corrosion reached the Fe base only in the M layer. However, it had practically excellent corrosion resistance.

比較例1 板厚0.261■の鋼板に両面合計25ミクロンの10
%シリコンを含む溶融アルミニウムめっきを行なった0
合金層厚さは平均1.4ミクロンと比較的薄いものであ
り、 1.5%の調質圧延後(鉄−アルミ金属間結合は
1tA)、この鋼板を実施例1と同様の方法でDI成形
に供したところ、2段面の絞り成形後に若干の肌荒れが
発生し、2〜3段目のアイアニングにてアルミ皮膜の剥
離が認められた0缶内面においても、テーピングテスト
にてアルミ皮膜の剥離が認められた。
Comparative Example 1 A steel plate with a thickness of 0.261 mm and a total of 25 microns on both sides.
Hot-dip aluminum plating containing % silicon
The alloy layer thickness was relatively thin at an average of 1.4 microns, and after 1.5% temper rolling (iron-aluminum metal bond was 1 tA), this steel plate was subjected to DI in the same manner as in Example 1. When subjected to molding, some surface roughness occurred after drawing on the second-stage surface, and peeling of the aluminum film was observed during the second and third stages of ironing. Peeling was observed.

比較例2 板厚0.32層−の鋼板に両面合計30ミクロンの溶融
アルミニウムめっきを行なった0合金層厚さは平均7,
4ミクロンであり、20%の圧下率で板厚0.280m
mにまで圧延された。この鋼板の鉄〜アルミ金属間結合
の比率は約7%であった。この鋼板を実施例1と同様の
方法でDI成形に供したところ、2段目の絞り成形まで
は良好であったが、2〜3段目のアイアニングにてアル
ミ皮膜の剥離が認められた。
Comparative Example 2 A steel plate with a thickness of 0.32 layers was coated with hot-dip aluminum to a total of 30 microns on both sides.The average thickness of the 0 alloy layer was 7.
4 microns, plate thickness 0.280 m at 20% reduction rate
It was rolled to m. The iron-to-aluminum intermetallic bond ratio of this steel plate was about 7%. When this steel plate was subjected to DI forming in the same manner as in Example 1, it was good up to the second drawing stage, but peeling of the aluminum film was observed in the second and third stages of ironing.

比較例3 板厚0.80m5の鋼板に両面合計50ミクロンの溶融
アルミニウムめっきを行なった0合金層厚さは平均5.
3ミクロンであり、57%の圧下率で板厚0.280m
mにまで圧延された。この鋼板の鉄〜アルミ金属間結合
の比率は約85%であった。この鋼板を実施例1と同様
の方法でDI成形に供したところ、アイアニング成形ま
ではアルミ皮膜の剥離は全くなく優れた特性を示したが
、塗装・印刷後のフランジ成形時にクラックが発生し、
正常な缶体を得ることが出来なかった。
Comparative Example 3 A steel plate with a thickness of 0.80 m5 was coated with hot-dip aluminum to a total thickness of 50 microns on both sides.The average thickness of the zero alloy layer was 5.
3 microns, plate thickness 0.280 m at a reduction rate of 57%
It was rolled to m. The iron-aluminum intermetallic bond ratio of this steel plate was about 85%. When this steel plate was subjected to DI forming in the same manner as in Example 1, it showed excellent properties with no peeling of the aluminum film at all until ironing, but cracks occurred during flange forming after painting and printing.
A normal can body could not be obtained.

比較例4 板厚0.32鳳■の鋼板に両面合計18ミクロンの溶融
アルミニウムめっきを行なった0合金層厚さは平均2.
8ミクロンであり、17%の圧下率で板厚0.280m
−にまで圧延された。この鋼板の鉄〜アルミ金属間結合
の比率は約13%であった。この鋼板を実施例1と同様
の方法でDI成形に供したところ、アイアニング成形に
おけるアルミ皮膜の剥離は発生しなかったが、缶外面に
無数のかじり傷が発生し、正常な缶体を得ることが出来
なかった。
Comparative Example 4 A steel plate with a thickness of 0.32mm was coated with hot-dip aluminum to a total thickness of 18 microns on both sides.The average thickness of the 0 alloy layer was 2.
8 microns, plate thickness 0.280 m at a reduction rate of 17%
- It was rolled to -. The iron-to-aluminum intermetallic bond ratio of this steel plate was about 13%. When this steel plate was subjected to DI forming in the same manner as in Example 1, the aluminum film did not peel off during ironing, but numerous scratches occurred on the outer surface of the can, making it difficult to obtain a normal can body. I couldn't do it.

発明の詳細 な説明したように、本発明は加工性、耐食性の優れた容
器用溶融アルミニウム系めっき鋼板、鋼板により成形さ
れた缶体、鋼板の製造方法であり有用な発明である。
As described in detail, the present invention provides a hot-dip aluminum plated steel sheet for containers with excellent workability and corrosion resistance, a can body formed from the steel sheet, and a method for manufacturing the steel sheet, and is a useful invention.

Claims (1)

【特許請求の範囲】 1、薄鋼板の表面に鉄−アルミニウム合金層と、その表
面にアルミニウム皮膜またはアルミニウム合金皮膜を有
し、且つ前記鉄−アルミニウム合金層にほ破断部を有し
、該破断部を介して鉄とアルミニウム皮膜若しくはアル
ミニウム合金皮膜が10%以上金属結合していることを
特徴とする容器用溶融アルミニウムめっき鋼板。 2、薄鋼板の表面に鉄−アルミニウム合金層と、その表
面に10μm以上のアルミニウム皮膜またはアルミニウ
ム合金皮膜を有する溶融めっき鋼板を用い、圧下率が5
0%未満で、且つ前記の鉄−アルミニウム合金層を部分
的に破断して鉄とアルミニウム皮膜若しくはアルミニウ
ム合金皮膜が10%以上金属結合する圧下率で冷間圧延
することを特徴とする容器用溶融アルミニウムめっき鋼
板の製造方法。 3、薄鋼板を基材とする缶の両面に鉄−アルミニウム合
金層と、その表面にアルミニウム皮膜若しくはアルミニ
ウム合金皮膜を有し、且つ前記の鉄−アルミニウム合金
層は破断部を有し、該破断部を介して鉄とアルミニウム
皮膜若しくはアルミニウム合金皮膜が金属結合した層か
らなり、缶内面においてはさらにその表面に少くとも最
表層にクロム化合物を有する皮膜若しくは燐酸塩皮膜と
、塗料皮膜を順次有することを特徴とする缶体。
[Scope of Claims] 1. An iron-aluminum alloy layer on the surface of a thin steel plate, an aluminum film or an aluminum alloy film on the surface, and a broken part in the iron-aluminum alloy layer, and the broken part 1. A hot-dip aluminum-plated steel sheet for containers, characterized in that 10% or more of iron and aluminum coating or aluminum alloy coating are metallically bonded to each other through portions. 2. Using a hot-dip galvanized steel plate with an iron-aluminum alloy layer on the surface of the thin steel plate and an aluminum film or aluminum alloy film of 10 μm or more on the surface, the reduction ratio is 5.
Melting for containers characterized by cold rolling at a reduction rate of less than 0% and at a reduction rate that partially breaks the iron-aluminum alloy layer and metallurgically bonds the iron and aluminum film or aluminum alloy film by 10% or more. A method for manufacturing aluminum plated steel sheets. 3. A can based on a thin steel plate has an iron-aluminum alloy layer on both sides, and an aluminum film or an aluminum alloy film on the surface thereof, and the iron-aluminum alloy layer has a broken part, and the broken part It consists of a layer in which iron and aluminum film or aluminum alloy film are metallically bonded through a part, and the inner surface of the can further has a film or phosphate film containing a chromium compound in the outermost layer at least on the surface, and a paint film in that order. A can body featuring
JP12819988A 1988-05-27 1988-05-27 Hot-dip aluminized steel sheet for container, manufacturing method and can body Expired - Lifetime JP2625499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12819988A JP2625499B2 (en) 1988-05-27 1988-05-27 Hot-dip aluminized steel sheet for container, manufacturing method and can body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12819988A JP2625499B2 (en) 1988-05-27 1988-05-27 Hot-dip aluminized steel sheet for container, manufacturing method and can body

Publications (2)

Publication Number Publication Date
JPH01298142A true JPH01298142A (en) 1989-12-01
JP2625499B2 JP2625499B2 (en) 1997-07-02

Family

ID=14978915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12819988A Expired - Lifetime JP2625499B2 (en) 1988-05-27 1988-05-27 Hot-dip aluminized steel sheet for container, manufacturing method and can body

Country Status (1)

Country Link
JP (1) JP2625499B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013159844A (en) * 2012-02-08 2013-08-19 Nippon Steel & Sumitomo Metal Corp Alumited aluminum-plated steel plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013159844A (en) * 2012-02-08 2013-08-19 Nippon Steel & Sumitomo Metal Corp Alumited aluminum-plated steel plate

Also Published As

Publication number Publication date
JP2625499B2 (en) 1997-07-02

Similar Documents

Publication Publication Date Title
JP5214437B2 (en) Steel plate for containers
JPS63290292A (en) Production of thinly tinned steel sheet having superior rust resistance and weldability
RU2729669C1 (en) Coated metal substrate and method of making
JPH01298142A (en) Hot dip aluminized steel sheet for vessel, production thereof and can
JP3742533B2 (en) Steel sheet for laminated containers with excellent can-making processability
EP3858495A1 (en) Method for production of corrosion-resistant steel strip
JPS60211096A (en) Surface treated steel sheet having high corrosion resistance
JPS616293A (en) Production of sn-plated steel sheet having high corrosion resistance
US5795662A (en) Zincate-treated article of Al-Mg-Si base alloy and method of manufacturing the same
JPH05287488A (en) Hot dip aluminum plated steel sheet excellent in workability and its production
JPS63186860A (en) Manufacture of surface-treated steel sheet excellent in rust resistance and weldability
US4842958A (en) Chromate surface treated steel sheet
JP4083661B2 (en) Manufacturing method of aluminum alloy strip for deep drawing ironing can
JPH0472091A (en) Surface-treated steel sheet for two-piece can and production thereof
JP2640057B2 (en) Single side coated steel sheet for DI can
JPH02270951A (en) Hot dip aluminized steel sheet for vessel having high corrosion resistance
JPH06277701A (en) Production of hot dip aluminized steel sheet for container excellent in workability
JP2625498B2 (en) Hot-dip aluminized steel sheet for can lid with excellent corrosion resistance
JPH0230526A (en) Steel sheet for can and can lid, can body and can lid
JPS6217199A (en) Sn coated steel sheet for vessel having superior paintability and corrosion resistance and its manufacture
JP2726008B2 (en) High performance Sn-based multi-layer plated steel sheet with excellent corrosion resistance, weldability and paint adhesion
JPH02225652A (en) Manufacture of high image clarity steel sheet
JPH0241594B2 (en)
JPH03210902A (en) Surface treated steel sheet which is excellent in weldability and its manufacture
JP3909030B2 (en) Steel plate for laminated containers with excellent rust resistance