JPH01298058A - Production of zirconia ceramic - Google Patents

Production of zirconia ceramic

Info

Publication number
JPH01298058A
JPH01298058A JP63130792A JP13079288A JPH01298058A JP H01298058 A JPH01298058 A JP H01298058A JP 63130792 A JP63130792 A JP 63130792A JP 13079288 A JP13079288 A JP 13079288A JP H01298058 A JPH01298058 A JP H01298058A
Authority
JP
Japan
Prior art keywords
powder
mgo
zirconia
ceo2
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63130792A
Other languages
Japanese (ja)
Inventor
Kazuo Horinouchi
堀ノ内 和夫
Isao Kameda
亀田 績
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP63130792A priority Critical patent/JPH01298058A/en
Publication of JPH01298058A publication Critical patent/JPH01298058A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase mechanical strength, hardness and toughness by molding raw material powder so as to contain CeO2 and MgO in a fixed amt. by sintering and thereafter by heat-treating. CONSTITUTION:A hydrated material is obtd. by coprecipitation method by mixing water-soluble salts of Ce and Mg, and basic salt of Zr, and thereafter dried to obtain a powder. The powder is mixed so as to obtain a desired molar ratio, calcined to powder having >=1m<2>/g BET specific surface area and thereafter, furthermore crushed to obtain zirconia (A) powder having <=1mum mean particle size. Then, the (A) powder is molded and sintered at 1300-1650 deg.C to obtain CeO2-MgO-TSZ(tetragonal stabilized zirconia) sintered compact (B) having >=90% relative density to the theoretical density. Then, the sintered compact (B) is heat-treated at 800-1200 deg.C for 5-20hr to produce zirconia ceramic consisting of 4-12mol% CeO2, 2-7mol% MgO and the remainder ZrO2.

Description

【発明の詳細な説明】 〈産業上の利用分野ン 本発明は機械的強度、硬度及び靭性に優れたジルコニア
セラミックスの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Field of Application> The present invention relates to a method for producing zirconia ceramics having excellent mechanical strength, hardness and toughness.

更に詳細には安定化剤として酸化セリウム(以下CeO
□と記す場合がある。)と酸化マグネシウム(以下Mg
oと記す場合がある。)を使用した機械構造材料用とし
て特に適した機械的強度、硬度及び靭性に優れたジルコ
ニアセラミックスの製造方法に関するものである。
More specifically, cerium oxide (hereinafter CeO
It may be written as □. ) and magnesium oxide (hereinafter referred to as Mg
It may be written as o. The present invention relates to a method for producing zirconia ceramics having excellent mechanical strength, hardness, and toughness and particularly suitable for use as mechanical structural materials.

〈従来の技術〉 従来より、酸化ジルコニウム(以下Z r O2と記す
場合がある。)の安定化剤としてCe01やMgOを用
いる事は良く知られている。
<Prior Art> It has been well known that Ce01 and MgO are used as stabilizers for zirconium oxide (hereinafter sometimes referred to as Z r O2).

例えばZrO□に対してCeO,を20モル%以上含有
する場合には正方品及び立方晶よりなるジルコニアセラ
ミックスを得ることができ、CeO□を16〜20モル
%含有する場合には正方晶よりなる完全安定化ジルコニ
ア質セラミックスを得ることができ、16モル%未満の
場合には常温で単斜晶のみよりなる非安定化ジルコニア
質セラミックスを得ることができる が、〔例えばジャ
ーナル オブ マテリアルズ サイエンス(Journ
al  of  Materials  5cienc
e)17 (1982)第265頁第1図参照〕いずれ
の場合にも靭性は高いものの、機械的強度や硬度が十分
でない。
For example, if 20 mol% or more of CeO is contained relative to ZrO□, zirconia ceramics consisting of tetragonal and cubic crystals can be obtained, and if 16 to 20 mol% of CeO□ is contained, it is composed of tetragonal crystals. Completely stabilized zirconia ceramics can be obtained, and if the amount is less than 16 mol%, unstabilized zirconia ceramics consisting only of monoclinic crystals can be obtained at room temperature.
al of Materials 5cienc
e) 17 (1982), p. 265, Fig. 1] In either case, although the toughness is high, the mechanical strength and hardness are insufficient.

またZrO□中にMgOを含有するジルコニアセラミッ
クスも知られているが、この場合1240℃〜1400
°Cで析出した正方品が冷却中に単斜晶とMgOに分解
してしまう。
Zirconia ceramics containing MgO in ZrO□ are also known, but in this case, the temperature
The tetragonal product precipitated at °C decomposes into monoclinic crystals and MgO during cooling.

それ故、マグネシア部分安定化ジルコニウムでは立方晶
固溶体領域で焼成し、適当な冷却速度で急冷し、正方晶
を立方晶マトリクス中に析出させる方法が採られている
。〔例えばジャーナル オブ アメリカン セラミック
 ソサエティ (Journal   of  Ame
ricanCeramic  5ociety)第50
巻第6号(1967)第288頁〜290頁〕しかしな
がら、この場合には得られるセラミックスの立方晶粒径
が約10〜100μmと大きく機械的強度に優れたジル
コニア質セラミックスは得られない。
Therefore, for magnesia partially stabilized zirconium, a method is adopted in which the zirconium is fired in a cubic solid solution region, rapidly cooled at an appropriate cooling rate, and tetragonal crystals are precipitated in a cubic matrix. [For example, Journal of American Ceramic Society
ricanCeramic 5ociety) No. 50
Vol. 6, No. 6 (1967), pp. 288-290] However, in this case, the resulting ceramic has a large cubic grain size of about 10 to 100 μm, and a zirconia ceramic with excellent mechanical strength cannot be obtained.

また、CeO,及びMgOを安定化剤として併用したジ
ルコニアセラミックス力<M、V、Swain〔オース
トセラム86.1986.8月、プロシーデイグltU
sTcERAM 86.^ug、1986.PROCE
EI)INGS p371〜378) )等により報告
されており、これによれば1μm以下の焼結体の結晶粒
径でMax 700 Mflaの強度、8 MNio+
−”の靭性値を有する焼結密度95%以下のスポンジ状
焼結体があ記載されている。
In addition, the strength of zirconia ceramics using CeO and MgO in combination as stabilizers <M, V, Swain [Aust Ceram 86. August 1986, Procedaig ltU
sTcERAM 86. ^ug, 1986. PROCE
EI) INGS p371-378) etc., and according to this, the crystal grain size of a sintered body of 1 μm or less has a strength of Max 700 Mfla, and a strength of 8 MNio+
A sponge-like sintered body with a sintered density of 95% or less and a toughness value of "-" is described.

この方法は安定化剤であるCe0z及びMgOがY、O
,に比較し廉価であるとの利点を有するものの、開示事
項より得られるセラミックスは、機械構造材料として要
求される強度、靭性、硬度等に優れた、バランスのとれ
た特性をかかる事情下に鑑み本発明者らはY2O,より
も廉価なCentとMgOを用い機械的強度や硬度、更
には靭性に優れたジルコニアセラミックスを得るべく鋭
意検討した結果、Ce0zとMgOを特定割合で併用し
、かつ焼結後の成形体を特定条件下で熱処理する場合に
は上記物性を満足し得る焼結体が得られることを見出し
すなわち、本発明方法は原料粉末を成形、焼結後、加熱
処理することを特徴とする酸化セリウム4〜12モル%
、酸化マグネシウム2〜7モル%を含有してなるジルコ
ニアセラミックスの製造方法を提供するにある。
This method uses stabilizers CeOz and MgO as Y, O
Although it has the advantage of being cheaper than ceramics, the ceramics obtained from the disclosed items have excellent strength, toughness, hardness, etc. required as mechanical structural materials, and have well-balanced properties. The present inventors conducted intensive studies to obtain zirconia ceramics with excellent mechanical strength, hardness, and toughness using Cent and MgO, which are cheaper than Y2O. It was discovered that a sintered body that satisfies the above physical properties can be obtained if the compacted body after sintering is heat-treated under specific conditions.That is, the method of the present invention involves heat-treating the raw material powder after shaping and sintering. Features Cerium oxide 4-12 mol%
The present invention provides a method for producing zirconia ceramics containing 2 to 7 mol% of magnesium oxide.

以下、本発明方法を更に詳細に説明する。The method of the present invention will be explained in more detail below.

本発明方法におけるジルコニアセラミックスはCent
約4〜約12モル%、好ましくは約6〜約10モル%、
MgO約2〜約7モル%、好ましくは約3〜約6モル%
で残部が主としてZrO□より構成される。
The zirconia ceramics used in the method of the present invention are Cent
about 4 to about 12 mol%, preferably about 6 to about 10 mol%,
About 2 to about 7 mol% MgO, preferably about 3 to about 6 mol%
The remainder is mainly composed of ZrO□.

Ce01が上記範囲外の場合には正方晶の安定化効果は
小さくなり充分な機械的強度を有するセラミックスは得
られず、MgOが上記範囲以外の場合にも所望とする物
性のジルコニアセラミックスは得られない。
If Ce01 is outside the above range, the stabilizing effect of the tetragonal crystal will be small and a ceramic with sufficient mechanical strength will not be obtained, and even if MgO is outside the above range, zirconia ceramics with desired physical properties will not be obtained. do not have.

また本発明方法におけるジルコニアセラミックスは焼結
体を構成する結晶粒子の約50重量%以上が正方晶、1
0重量%以下が単斜晶で、かつ正方晶と立方晶の和が9
0重量%以上でありその平均結晶粒子が約1〜約5μm
より構成される。
In addition, in the zirconia ceramic according to the method of the present invention, about 50% by weight or more of the crystal grains constituting the sintered body are tetragonal, 1
0% by weight or less is monoclinic, and the sum of tetragonal and cubic is 9
0% by weight or more and its average crystal grain is about 1 to about 5 μm
It consists of

セラミックスの平均結晶粒子が上記範囲外の場合には成
形体を焼結後、加熱処理しても靭性の改良効果が少ない
If the average crystal grains of the ceramic are outside the above range, even if the molded body is heat-treated after sintering, the effect of improving toughness will be small.

本発明のジルコニアセラミックスの製造方法としては、
Ce Ox  M g OT S Z (正方品安定化
ジルコニア)焼結体の理論密度に対する相対密度が90
%以上(即ち気孔率を10%以下)、好ましくは約95
%を超えるように原料粒子径、粒度分布、更には焼結条
件等を調整し焼結後、得られた焼結体を熱処理すること
を必須とする。
The method for producing zirconia ceramics of the present invention includes:
Ce Ox M g OT S Z (square stabilized zirconia) The relative density to the theoretical density of the sintered body is 90
% or more (i.e., the porosity is 10% or less), preferably about 95
It is essential to adjust the raw material particle size, particle size distribution, and further sintering conditions so that the sintered body exceeds %, and after sintering, heat-treat the obtained sintered body.

上記具体的製造条件は適用する原料の入手方法、仮焼条
件、粉砕条件、解砕条件、更にはCeQ、とMgOの混
合条件等により一義的には決定できないが、低温での焼
結を容易にするために、原料ジルコニア粉末の平均粒子
径も約1μm以下、好ましくは約0.5μm以下のもの
を用いればよい。
The above specific manufacturing conditions cannot be determined unambiguously depending on the method of obtaining raw materials, calcination conditions, pulverization conditions, crushing conditions, and mixing conditions of CeQ and MgO, etc., but it facilitates sintering at low temperatures. In order to achieve this, the raw zirconia powder may have an average particle size of about 1 μm or less, preferably about 0.5 μm or less.

より具体的にはセリウム、マグネシウムの水溶性塩およ
びジルコニウムの塩基性塩から共沈法等により得られた
水和物、或は水和物を乾燥して得られた粉末を所望のモ
ル比となる様に各成分を均一に混合し、次いで仮焼して
BET比表面積が約1m2/g以上、好ましくは約10
m”/g〜約50m”/gの範囲にある粉末とし、更に
振動ミル等により粉砕して平均粒子径が約1μm以下の
ジルコニア粉末を得る。
More specifically, a hydrate obtained from water-soluble salts of cerium and magnesium and a basic salt of zirconium by a coprecipitation method, or a powder obtained by drying the hydrate, is mixed with a desired molar ratio. The components are mixed uniformly and then calcined to give a BET specific surface area of about 1 m2/g or more, preferably about 10 m2/g.
m"/g to about 50 m"/g, and further pulverized with a vibration mill or the like to obtain zirconia powder with an average particle diameter of about 1 μm or less.

次いでこの粉末を金型成形、ラバープレス、押出成形法
、射出成形法等の公知の成形方法、或はこれらの成形法
のいくつかを併用して成形した後、加熱炉中にて130
0〜1650℃まで昇温しで、その後数時間、例えば1
時間〜5時間焼結し、特定条件で加熱処理することによ
り得ることができる。
Next, this powder is molded by known molding methods such as mold molding, rubber press, extrusion molding, and injection molding, or by using some of these molding methods in combination, and then heated in a heating furnace for 130 min.
Raise the temperature to 0 to 1650°C and then heat it for several hours, e.g.
It can be obtained by sintering for 5 hours and heat-treating under specific conditions.

加熱処理は上記成形体を1300〜1650℃で焼結し
たのち、1250℃以下の温度、好ましくは800〜1
200℃で1時間以上、好ましくは5〜20時間炉内で
保持すればよい。
The heat treatment is performed by sintering the above molded body at a temperature of 1,300 to 1,650°C, and then at a temperature of 1,250°C or less, preferably 800 to 1,000°C.
What is necessary is just to hold|maintain in a furnace at 200 degreeC for 1 hour or more, Preferably 5 to 20 hours.

焼結および加熱処理時の雰囲気は特に制限されないが、
著しい還元雰囲気ではセラミックスからの脱ガスが生じ
るため、空気中、或いは窒素、アルゴンの非酸化雰囲気
、さらには空気中で焼成した後非酸化雰囲気で行うなど
目的に応じ適宜選択することが出来る。
The atmosphere during sintering and heat treatment is not particularly limited, but
Since degassing occurs from the ceramic in a significantly reducing atmosphere, firing can be performed in air, in a non-oxidizing atmosphere of nitrogen or argon, or in a non-oxidizing atmosphere after firing in air, depending on the purpose.

このようにして得られた本発明方法におけるジルコニア
セラミックスは、通常曲げ強度70Kg/mm1以上、
破壊靭性値10MNm−”以上、ビッカース硬度100
0 Kg/mm2以上の物性を有する極めて機械的特性
に優れたものである。
The zirconia ceramic thus obtained in the method of the present invention usually has a bending strength of 70 kg/mm or more,
Fracture toughness value 10MNm-” or more, Vickers hardness 100
It has extremely excellent mechanical properties with physical properties of 0 Kg/mm2 or more.

また本発明方法により得られたジルコニアセラミックス
は、通常酸化イツトリウムを3モル%安定化剤として含
有する正方品結晶構造を有するジルコニアセラミックス
が100〜300℃の空気中で正方晶から単斜晶に自発
転移してi械的強度が低下するとの致命的欠陥を有する
のに対し、100〜300“Cで1000時間放置して
も正方晶から単斜晶への変態は見られず熱安定性に優れ
る。
Furthermore, the zirconia ceramics obtained by the method of the present invention, which normally contain 3 mol% yttrium oxide as a stabilizer and have a tetragonal crystal structure, spontaneously change from tetragonal to monoclinic in air at 100 to 300°C. Although it has a fatal defect that mechanical strength decreases due to transformation, it does not undergo any transformation from tetragonal to monoclinic even after being left at 100 to 300"C for 1000 hours, and has excellent thermal stability. .

本発明のジルコニアセラミックスが焼結体の熱処理によ
り何故高靭性化するか、その理由は詳らかではないが、
X線回折法によれば、本発明方法により得られたジルコ
ニアセラミ・ノクスは、熱処理により熱処理前のセラミ
ックスに比較し微量の単斜晶及び/または立方晶の低減
が観察されることが多いことより、正方晶から単斜晶へ
の転移がより容易におこり、その際の体積膨張により破
壊エネルギーが吸収され、クラック伝播を防止する機能
が増大するためと推察される。
Although it is not clear why the zirconia ceramics of the present invention becomes highly tough due to heat treatment of the sintered body,
According to the X-ray diffraction method, the zirconia ceramic NOX obtained by the method of the present invention is often observed to have a small amount of monoclinic and/or cubic crystals reduced by heat treatment compared to the ceramic before heat treatment. This is presumed to be because the transition from tetragonal to monoclinic occurs more easily, and the volume expansion at that time absorbs fracture energy, increasing the ability to prevent crack propagation.

〈発明の効果〉 以上詳述した如く、本発明方法は安定化剤としてY2O
,よりも廉価なCeO□及びMgOを特定割合で併用し
これにより得られた焼結体を特定条件下で加熱処理する
ことにより、市販のジルコニアセラミックスと比較し、
機械的強度は勿論のこと硬度、靭性に於いても優れたジ
ルコニアセラミックスを提供し、また同一組成範囲の安
定化剤を用い得られたセラミ・ノクスと比較しても加熱
処理したものは他の物性を低下せしめることなく、著し
く靭性値が改良されたセラミックスを提供し得るもので
、切断・切削工具、押出・線引ダイス、エンジン部品、
ベアリング用ボール、ボールペン用ポール、メカニカル
シール、シャフト、ノズル、ピストン等の機械構造材、
酸素センサー等の固体電解質材料等として極めて有用で
あり、その工業的価値は頗る大なるものである。
<Effects of the Invention> As detailed above, the method of the present invention uses Y2O as a stabilizer.
By using CeO□ and MgO, which are cheaper than , in a specific proportion, and heat-treating the resulting sintered body under specific conditions, compared with commercially available zirconia ceramics,
We provide zirconia ceramics that are excellent not only in mechanical strength but also in hardness and toughness, and compared to ceramic nox obtained using a stabilizer in the same composition range, the heat-treated one is superior to other ceramics. It can provide ceramics with significantly improved toughness without deteriorating physical properties, and can be used for cutting/cutting tools, extrusion/drawing dies, engine parts,
Machine structural materials such as bearing balls, ballpoint pen poles, mechanical seals, shafts, nozzles, pistons, etc.
It is extremely useful as a solid electrolyte material for oxygen sensors, etc., and its industrial value is enormous.

尚、本発明のジルコニアセラミックスの製法例に於いて
使用する原料としてはジルコニア粉末と安定化剤のみに
ついて記載したが、これはあくまで主成分であって、ほ
かに本発明の効果を損ねない範囲でシリカ、アルミナ、
チタニアカオリン、ムライト等の当該分野において公知
の焼結促進剤、粒成長抑制剤を使用することは勿論可能
である。
Although only zirconia powder and a stabilizer have been described as the raw materials used in the example of the method for producing zirconia ceramics of the present invention, these are just the main ingredients, and other materials may be used as long as they do not impair the effects of the present invention. silica, alumina,
It is of course possible to use sintering accelerators and grain growth inhibitors known in the art, such as titania kaolin and mullite.

〈実施例〉 以下実施例により本発明を更に詳細に説明するが、該実
施例は本発明を限定するものではない。
<Examples> The present invention will be explained in more detail with reference to Examples below, but these Examples are not intended to limit the present invention.

実施例I Z r OCj! x  ・8 H,Oをアンモニア水
で析出させて得た析出水和物をd&通過後硝酸セリウム
と塩化マグネシウムを焼成後の組成が第1表に示すCe
0z −MgO−ZrOz となるように上記ジルコニ
アの析出水和物に水溶液状で添加、ボールミルで均一に
湿式混合し、濾過、乾燥、解砕し得られた粉末を600
℃2時間仮焼し、更に振動ミルで粉砕し、′BET表面
積20m2/g、平均粒子径0.1μmのセリア、マグ
ネシア含有ジルコニア粉末を得た。
Example I Z r OCj! x ・8 The precipitated hydrate obtained by precipitating H, O with aqueous ammonia was passed through d & cerium nitrate and magnesium chloride, and the composition after firing was as shown in Table 1.
0z -MgO-ZrOz was added to the precipitated hydrate of zirconia in the form of an aqueous solution, wet-mixed uniformly in a ball mill, filtered, dried, and crushed, and the resulting powder was
The mixture was calcined for 2 hours at °C and further pulverized in a vibration mill to obtain ceria- and magnesia-containing zirconia powder with a BET surface area of 20 m2/g and an average particle size of 0.1 μm.

この粉末をラバープレス(IT/cm”)により35X
5X5mmに成形し電気炉にて空気中1650 ’Cの
温度で2時間焼結し、次いで1200℃の温度で10時
間加熱処理した。
This powder was heated at 35X using a rubber press (IT/cm”).
It was molded into a size of 5 x 5 mm, sintered in an electric furnace in air at a temperature of 1650'C for 2 hours, and then heat treated at a temperature of 1200C for 10 hours.

得られたジルコニア譬セラミックスの物性を第1表に併
せ示す。
The physical properties of the obtained zirconia ceramics are also shown in Table 1.

向、実施例において焼結密度はアルキメデス法、結晶構
造はX線回折法、破壊靭性及び硬度は、Evansらに
より提案されたV、  I  (Vickers  I
dentation)法(測定条件を荷重30kgx1
5sec、ヤング率E=1.86x 1015MN/m
” )曲げ強度は3点曲げ試験法(スパン長30mm、
荷重印加速度0.5mm/分)によって測定した。
In the Examples, the sintered density was determined by the Archimedes method, the crystal structure was determined by the X-ray diffraction method, and the fracture toughness and hardness were determined by the V, I (Vickers I) proposed by Evans et al.
dentation) method (measurement conditions: load 30kg x 1
5sec, Young's modulus E=1.86x 1015MN/m
” ) Bending strength was measured using the 3-point bending test method (span length 30 mm,
It was measured using a load application acceleration of 0.5 mm/min).

また、焼結体粒子径は走査電子顕微鏡写真により切片法
で測定した。
Further, the particle size of the sintered body was measured by a section method using scanning electron micrographs.

Claims (1)

【特許請求の範囲】[Claims] (1)原料粉末を成形、焼結後、加熱処理することを特
徴とする酸化セリウム4〜12モル%、酸化マグネシウ
ム2〜7モル%を含有してなるジルコニアセラミックス
の製造方法。
(1) A method for producing zirconia ceramics containing 4 to 12 mol% of cerium oxide and 2 to 7 mol% of magnesium oxide, which comprises molding and sintering raw material powder and then heat-treating it.
JP63130792A 1988-05-27 1988-05-27 Production of zirconia ceramic Pending JPH01298058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63130792A JPH01298058A (en) 1988-05-27 1988-05-27 Production of zirconia ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63130792A JPH01298058A (en) 1988-05-27 1988-05-27 Production of zirconia ceramic

Publications (1)

Publication Number Publication Date
JPH01298058A true JPH01298058A (en) 1989-12-01

Family

ID=15042799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63130792A Pending JPH01298058A (en) 1988-05-27 1988-05-27 Production of zirconia ceramic

Country Status (1)

Country Link
JP (1) JPH01298058A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023232806A1 (en) * 2022-05-31 2023-12-07 Katholieke Universiteit Leuven Zirconia ceramics

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023232806A1 (en) * 2022-05-31 2023-12-07 Katholieke Universiteit Leuven Zirconia ceramics

Similar Documents

Publication Publication Date Title
US4977114A (en) Zirconia ceramics and method for producing same
JP3368090B2 (en) Zirconia-based sintered body, method for producing the same, crushing component material and orthodontic bracket material
US7399722B2 (en) Alumina/zirconia ceramics and method of producing the same
JP5366398B2 (en) Composite ceramics and manufacturing method thereof
JP4470378B2 (en) Zirconia sintered body and manufacturing method thereof
US20070179041A1 (en) Zirconia Ceramic
JPH0352425B2 (en)
JPH10101418A (en) Zirconia-based composite ceramic sintered compact and its production
US20140011661A1 (en) Method of making high toughness high strength zirconia bodies
US4690910A (en) Sintered product of zirconia and method of producing the same
US4975397A (en) Sintered molding, a method for producing it and its use
JPH0553751B2 (en)
JPS6186466A (en) Spinel ceramics
JPH01298058A (en) Production of zirconia ceramic
JPS605067A (en) Manufacture of zirconia sintered body
JP2000095564A (en) Zirconia sintered body, its production and material for pulverizing member
JP2517249B2 (en) High-strength zirconia-based HIP sintered body
JPH0230663A (en) Sintered material of zirconia and production thereof
JPS63103864A (en) Sintered formed body comprising partially stabilized zirconium oxide and manufacture
JP3076682B2 (en) Alumina-based sintered body and method for producing the same
JPH08109065A (en) High-strength zirconia sintered compact and its production and grinding part material
JP2676008B2 (en) Abrasion resistant zirconia sintered body and method for producing the same
JPH01301560A (en) Zirconia ceramic and production thereof
KR101442634B1 (en) Manufacturing method of aluminum titanate having high-temperature strength and manufacturing method of the same
JPH052622B2 (en)