JPH01298036A - Production of quartz glass base material - Google Patents

Production of quartz glass base material

Info

Publication number
JPH01298036A
JPH01298036A JP12578788A JP12578788A JPH01298036A JP H01298036 A JPH01298036 A JP H01298036A JP 12578788 A JP12578788 A JP 12578788A JP 12578788 A JP12578788 A JP 12578788A JP H01298036 A JPH01298036 A JP H01298036A
Authority
JP
Japan
Prior art keywords
glass body
metal oxide
porous glass
raw material
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12578788A
Other languages
Japanese (ja)
Inventor
Suehiro Miyamoto
宮本 末広
Taiichiro Tanaka
大一郎 田中
Noboru Kawakami
川上 登
Katsuyuki Seto
克之 瀬戸
Takeru Fukuda
福田 長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP12578788A priority Critical patent/JPH01298036A/en
Publication of JPH01298036A publication Critical patent/JPH01298036A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To obtain quartz glass base material having uniform concn. of oxide and distribution of refractive index by producing porous glass body consisting of SiO2 in advance by heat-treating in an atmosphere contg. raw material gas for forming metal oxide and oxygen and thereafter by vitrifying to transparent glass. CONSTITUTION:The porous glass body 1 consisting of SiO2, produced by VAD method, etc., is supported in a furnace core tube 2 made of quartz glass in freely rotatable and vertically movable state. Then, the raw material gas for forming metal oxide (e.g., GeCl4), oxygen and helium gas are supplied from a gas supply port 3 and uniformly introduced into the porous glass body 1. Then, the raw material gas for forming metal oxide and oxygen are reacted in the porous glass body 1 by heating with heater 6 to produce the metal oxide. Then, the quartz glass base material contg. oxide, suitable for optical fiber, optical lens, etc., is obtd. by terminating the supply of the raw material gas for forming metal oxide and by vitrifying the porous glass body 1 to transparent glass.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、光ファイバ、光学レンズ、光部品等に好適
な石英系ガラス母材の製造方法に関するもので、屈折率
分布にゆらぎのない均一なものを提供する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for manufacturing a silica-based glass base material suitable for optical fibers, optical lenses, optical components, etc. provide something.

(従来の技術) この種の石英系ガラス母材の製造には、通常VAD法、
外付は法、ゾルグル法等が用いられている。例えばVA
D法においては、酸水素バーナ内に主原料ガスとしての
5iC14と、ドーパントとしてのGeC1,、POC
l3.BCl、等を送込み、火炎加水分解反応もしくは
熱酸化反応させて得られるSiO□とGeO□、 P、
0. 、B、O,等とからなるガラス微粉末を回転する
棒状態の先端に堆積させて多、孔質ガラス体とし、しか
るのもこの多孔質ガラス体を透明ガラス化していた。
(Prior art) This type of quartz-based glass base material is usually manufactured using the VAD method,
For external methods, methods such as the method and the Zorgu method are used. For example, VA
In method D, 5iC14 as the main raw material gas and GeC1, POC as the dopant are placed in the oxyhydrogen burner.
l3. SiO□ and GeO□, P, which are obtained by feeding BCl, etc. and causing a flame hydrolysis reaction or thermal oxidation reaction.
0. , B, O, etc., was deposited on the tip of a rotating rod to form a porous glass body, and this porous glass body was made into transparent glass.

なお得られる透明ガラス体のドーパント濃度の制御は、
酸水素バーナ内に供給されるドーパントガスの主原料ガ
スに対する濃度を制御することで行っていた。
The dopant concentration of the resulting transparent glass body can be controlled by
This was done by controlling the concentration of the dopant gas supplied into the oxyhydrogen burner relative to the main raw material gas.

(発明が解決しようとする課題) しかしVAD法におけるガラス微粒子の堆積面の温度を
空間的に一定にすることはできないので、回転引上げら
れつつある堆積面に対してバーナ炎が回転対称にはおか
れていないと第2図に示すようなドーパント濃度のゆら
ぎが生じてしまう。図において横軸rは透明ガラス体の
半径を、縦軸はドーパント濃度を示す、このようなドー
パント濃度のゆらぎは、いわゆる外付は法においても同
様に生じるもので、第3図はその様子を示したものであ
る。なお図において横軸、縦軸は第2図と同一である。
(Problem to be solved by the invention) However, in the VAD method, the temperature of the deposition surface of glass particles cannot be kept constant spatially, so the burner flame is not placed rotationally symmetrically with respect to the deposition surface that is being rotated and pulled up. Otherwise, fluctuations in the dopant concentration as shown in FIG. 2 will occur. In the figure, the horizontal axis r indicates the radius of the transparent glass body, and the vertical axis indicates the dopant concentration.Such fluctuations in dopant concentration also occur in the so-called external method, and Figure 3 shows this situation. This is what is shown. In the figure, the horizontal and vertical axes are the same as in FIG. 2.

(課題を解決するための手段) この発明は、以上の観点からドーパント濃度のゆらぎを
極力抑制した方法を提供するもので、予めSiO□から
なる多孔質ガラス体を作り、これを金属酸化物形成原料
ガスと酸素とを含む雰囲気内に収容し、この雰囲気下で
加熱処理して金属酸化物とSiO□とからなる多孔質ガ
ラス体とし、しかる後これを高温に加熱して透明ガラス
化するようにしたものである。
(Means for Solving the Problems) In view of the above, the present invention provides a method that suppresses fluctuations in dopant concentration as much as possible, by preparing a porous glass body made of SiO It is housed in an atmosphere containing raw material gas and oxygen, and heat-treated in this atmosphere to form a porous glass body made of metal oxide and SiO□, which is then heated to a high temperature to become transparent glass. This is what I did.

なおこの方法は、最初に多孔質ガラス体を得、それから
透明ガラス化する方法であるからいわゆるVAD法、外
付は法、ゾルゲル法等の手段の如何を問わずいずれでも
よい、さらに加熱手段としての炉には、金属酸化物形成
原料ガスと酸素とがSiO□多孔質ガラス体内で反応し
て一定の濃度を形成するように均一温度ゾーンの長い炉
を用いられる。
Note that this method is a method of first obtaining a porous glass body and then converting it into transparent glass, so any method such as the so-called VAD method, an external method, a sol-gel method, etc. may be used. A furnace with a long uniform temperature zone is used so that the metal oxide forming raw material gas and oxygen react in the SiO□ porous glass body to form a constant concentration.

(作用) 金属酸化物形成原料ガスと酸素がSiO□からなる多孔
質ガラス体内に均一に入り、そこで反応して金属酸化物
を形成するため一定濃度の金属酸化物を含むSiO□多
孔質ガラス体が得られる。したがってこの多孔質ガラス
体を透明ガラス化すれば金属酸化物の濃度にゆらぎのな
い透明ガラス体とすることができる。
(Function) Metal oxide forming raw material gas and oxygen uniformly enter the porous glass body made of SiO□ and react there to form a metal oxide, so the SiO□ porous glass body contains a certain concentration of metal oxide. is obtained. Therefore, by converting this porous glass body into transparent glass, it is possible to obtain a transparent glass body with no fluctuation in the metal oxide concentration.

(実施例) 第1図は、この発明方法に用いられる装置を示したもの
で、lはVAD法により得られた5102多孔質ガラス
体で、回転自在かつ上下動可能に支承されている。2は
石英ガラス製の炉心管、3は炉心管2の底部に設けられ
たガス供給口で、GeC1< 。
(Example) FIG. 1 shows an apparatus used in the method of the present invention, in which 1 is a 5102 porous glass body obtained by the VAD method, which is supported so as to be rotatable and movable up and down. 2 is a core tube made of quartz glass, 3 is a gas supply port provided at the bottom of the core tube 2, and GeC1<.

BCl3 、 POCl3などの金属酸化物形成原料ガ
ス、酸素、Heが供給される。4は炉心管2の上側部に
設けられたガス排出口、5は炉心管2の上部に設けられ
たSiO□多孔質ガラス体導入口である。6は炉心管2
を囲むヒータで、SiO□多孔質ガラス体全体を均一に
加熱すために十分に長いヒートゾーンを備えている0以
上の構成において、炉心管2内に8102多孔質ガラス
体1を吊るし、ガス供給口3から金属酸化物形成原料ガ
ス、酸素およびHeを供給してSiO□多孔質ガラス体
1内に金属酸化物形成原料ガスと′酸素とが十分に充填
されるようにする。
Metal oxide forming raw material gases such as BCl3 and POCl3, oxygen, and He are supplied. Reference numeral 4 designates a gas discharge port provided at the upper side of the furnace core tube 2, and reference numeral 5 represents a SiO□ porous glass body inlet provided at the upper portion of the furnace core tube 2. 6 is the furnace core tube 2
The 8102 porous glass body 1 is suspended in the furnace tube 2 in a configuration of 0 or more with a heat zone long enough to uniformly heat the entire SiO□ porous glass body with a heater surrounding the The metal oxide forming raw material gas, oxygen and He are supplied from the port 3 so that the SiO□ porous glass body 1 is sufficiently filled with the metal oxide forming raw material gas and oxygen.

次にヒータ6を動作させて炉心管2内を金属酸化物形成
原料ガスと酸素とが反応しつる温度に維持してSiO□
多孔質ガラス体内に金属酸化物を形成させる。最後に金
属酸化物形成原料ガスの供給を断ち、酸素とHeとを供
給しつつ炉心管2内をさらに高温にして金属酸化物を含
むSiO□多孔質ガラス体を透明ガラス化する。
Next, the heater 6 is operated to maintain the inside of the furnace tube 2 at a temperature at which the metal oxide forming raw material gas and oxygen react with each other.
Metal oxides are formed within the porous glass body. Finally, the supply of the metal oxide forming raw material gas is cut off, and while supplying oxygen and He, the temperature inside the furnace tube 2 is further increased to convert the SiO□ porous glass body containing the metal oxide into transparent glass.

(具体例) SiO□多孔質ガラス体を得るためにVAD法を採用し
た。多重管バーナ内にH25β/分、 0210127
分、5iC14500cc 7分、Ar 200 cc
 7分を供給し、生成されるSiO□ガラス微粒子をタ
ーゲット先端に堆積させ直径50111!8φ 、長さ
400ml1  の5iOz多孔質ガラス体とした。次
にこの多孔質ガラス体を第1図に示す電気炉内に入れし
ばら(Heで置換した。この電気炉のヒータの均熱ゾー
ンは500 mlInである。それから炉内を1000
℃まで徐々に昇温させるとともにHe3g、7分、Ge
Cl420OI2/分、0□ λ℃/分流しつつ5時間
処理した。この後GeCl4を止め、 He 5ε/分
、0□50 cc 7分流しつつ1650 ℃まで昇温
して透明ガラス体とした。この透明ガラス体を延伸し、
その上に石英ガラスバイブを被せてコラップスした。か
くして得られたプリフォームの屈折率分布をアナライザ
を用いて測定したところゆらぎのない均一なものであっ
た。
(Specific Example) A VAD method was adopted to obtain a SiO□ porous glass body. H25β/min in multi-tube burner, 0210127
min, 5iC14500cc 7 min, Ar 200 cc
7 minutes, and the generated SiO□ glass particles were deposited on the tip of the target to form a 5iOz porous glass body with a diameter of 50111!8φ and a length of 400ml1. Next, this porous glass body was placed in the electric furnace shown in Fig. 1 and replaced with He for a while.The soaking zone of the heater of this electric furnace was 500 mlIn.
Gradually raise the temperature to ℃ and add 3g of He, 7 minutes,
The treatment was carried out for 5 hours while flowing Cl420OI2/min and 0□ λ°C/min. Thereafter, the GeCl4 was stopped, and the temperature was raised to 1650° C. while flowing He 5ε/min and 0□50 cc for 7 minutes to obtain a transparent glass body. Stretch this transparent glass body,
I put a quartz glass vibrator on top of it and collapsed it. When the refractive index distribution of the thus obtained preform was measured using an analyzer, it was found to be uniform with no fluctuation.

なお、金属酸化物形成原料ガス濃度およびその多孔質ガ
ラス体内への拡散時間を調整することにより緩やかな椿
屈折率分布を持った透明ガラス体を得ることができる。
Note that a transparent glass body having a gentle camellia refractive index distribution can be obtained by adjusting the concentration of the metal oxide forming raw material gas and the time for its diffusion into the porous glass body.

(発明の効果) この発明方法は、以上のように予めSiO□多孔質ガラ
ス体を用意し、これを金属酸化物形成用ガスと酸素との
雰囲気内に収容してこれらガスを多孔質ガラス体内に充
填させ、そのうえで加熱処理することにより金属酸化物
形成用ガスと酸素との反応により生成される金属酸化物
を多孔質ガラス体内に含ませる方法であるので、金属酸
化物を多孔質ガラス体内にゆらぎのない状態でドーピン
グすることができる。
(Effects of the Invention) In the method of the present invention, a SiO□ porous glass body is prepared in advance as described above, and this is housed in an atmosphere of a metal oxide forming gas and oxygen to allow these gases to enter the porous glass body. This method involves filling the porous glass body with the metal oxide produced by the reaction between the metal oxide forming gas and oxygen, and then heat-treating it. Doping can be done without fluctuation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明方法に用いられる装置の概略説明図
。第2図は、VAD法により得られた母材のドーパント
濃度のゆらぎの様子を示す説明図、第3図は、外付は法
により得られた母材のドーパントa度のゆらぎの様子を
示す説明図。 図において1:SiO□多孔質ガラス体、2:石英炉心
管、3:ガス供給口、6:ヒータ。
FIG. 1 is a schematic explanatory diagram of an apparatus used in the method of this invention. Figure 2 is an explanatory diagram showing the fluctuations in the dopant concentration of the base material obtained by the VAD method, and Figure 3 is an explanatory diagram showing the fluctuations in the dopant a degree of the base material obtained by the external method. Explanatory diagram. In the figure, 1: SiO□ porous glass body, 2: quartz furnace tube, 3: gas supply port, 6: heater.

Claims (1)

【特許請求の範囲】[Claims] SiO_2からなる多孔質ガラス体を、金属酸化物形成
原料ガスと酸素とを含む雰囲気内で加熱処理して金属酸
化物とSiO_2とからなる多孔質ガラス体とし、しか
る後これを高温に加熱して透明ガラス化することを特徴
とする石英系ガラス母材の製造方法。
A porous glass body made of SiO_2 is heat-treated in an atmosphere containing metal oxide forming raw material gas and oxygen to form a porous glass body made of metal oxide and SiO_2, which is then heated to a high temperature. A method for producing a quartz-based glass base material characterized by converting it into transparent glass.
JP12578788A 1988-05-25 1988-05-25 Production of quartz glass base material Pending JPH01298036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12578788A JPH01298036A (en) 1988-05-25 1988-05-25 Production of quartz glass base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12578788A JPH01298036A (en) 1988-05-25 1988-05-25 Production of quartz glass base material

Publications (1)

Publication Number Publication Date
JPH01298036A true JPH01298036A (en) 1989-12-01

Family

ID=14918852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12578788A Pending JPH01298036A (en) 1988-05-25 1988-05-25 Production of quartz glass base material

Country Status (1)

Country Link
JP (1) JPH01298036A (en)

Similar Documents

Publication Publication Date Title
AU673920B2 (en) Method of manufacturing single-mode optical fiber preform
JPH0380740B2 (en)
CN1472150A (en) Method for producing fibre-optical precast stick
JPH01298036A (en) Production of quartz glass base material
JPH0559052B2 (en)
JPH03115136A (en) Optical fiber preform and its production
US20220081345A1 (en) Manufacturing method of glass base material for optical fiber
JPH01286932A (en) Production of optical fiber preform
JPS62182129A (en) Production of preform for optical fiber
JPS5858295B2 (en) Manufacturing method of optical fiber base material
JPH01179736A (en) Production of titanum-doped fiber base material
JP2618260B2 (en) Method for producing intermediate for optical fiber preform
JPS61191528A (en) Thermal treatment of base material for doped quartz series porous glass
JP3953855B2 (en) Method for producing porous base material
JP3071235B2 (en) Method of manufacturing preform for single mode optical fiber
JPS591218B2 (en) Manufacturing method of glass base material for optical fiber
JPH0986948A (en) Production of porous glass base material for optical fiber
JPS62283838A (en) Production of optical fiber
JPH0329732B2 (en)
JPS63315531A (en) Production of optical fiber preform
JPS6256092B2 (en)
JPH04349147A (en) Radiation-resistant optical fiber and its production
JPS63285128A (en) Production of optical fiber preform
JPS63307134A (en) Production of optical fiber preform
JPH0333660B2 (en)