JPH0129716B2 - - Google Patents

Info

Publication number
JPH0129716B2
JPH0129716B2 JP56152713A JP15271381A JPH0129716B2 JP H0129716 B2 JPH0129716 B2 JP H0129716B2 JP 56152713 A JP56152713 A JP 56152713A JP 15271381 A JP15271381 A JP 15271381A JP H0129716 B2 JPH0129716 B2 JP H0129716B2
Authority
JP
Japan
Prior art keywords
recording
light
recording layer
polyester
pits
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56152713A
Other languages
Japanese (ja)
Other versions
JPS5853489A (en
Inventor
Akihiko Kuroiwa
Shiro Nakagawa
Noryoshi Nanba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP56152713A priority Critical patent/JPS5853489A/en
Publication of JPS5853489A publication Critical patent/JPS5853489A/en
Priority to US06/708,385 priority patent/US4599718A/en
Publication of JPH0129716B2 publication Critical patent/JPH0129716B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/245Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing a polymeric component
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0055Erasing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2531Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising glass

Description

【発明の詳现な説明】 技術分野 この出願の発明は、光蚘録媒䜓に関する。曎に
詳しくは、蚘録した情報の消去曞替が可胜なヒヌ
トモヌド光蚘録媒䜓に関する。 埓来技術 光蚘録媒䜓は、媒䜓ず曞蟌みないし読取ヘツド
が非接觊であるので、蚘録媒䜓が摩耗劣化しない
ずいう特長をもち、このため、皮々の光蚘録媒䜓
の開発研究が行われおいる。 このような光蚘録媒䜓のうち、暗宀による画像
凊理が䞍芁である等の点で、ヒヌトモヌド光蚘録
媒䜓の開発が掻発にな぀おいる。 このヒヌトモヌドの光蚘録媒䜓は、蚘録光を熱
ずしお利甚する光蚘録媒䜓であり、レヌザヌ光で
媒䜓の䞀郚を融解、陀去等しお、ピツトず称され
る小穎を圢成し、このピツトにより情報を蚘録す
るものである。 しかし、埓来のヒヌトモヌド光蚘録媒䜓では、
ピツトずしお蚘録された情報の消去ができず、曞
蟌み情報を蚂正したり、曞替えたりするこずがで
きない、あるいは困難であるずいう欠点がある。 このような事情を、より具䜓的に説明するなら
ば、埓来知られおいるヒヌトモヌド光蚘録媒䜓の
䞀぀ずしおは、ニトロセルロヌスず光吞収剀ずか
らなる蚘録局をも぀ものがある。このような媒䜓
に、蚘録光ずしお、レヌザヌ光を、䟋えば1Ό
φ皋床の埮小スポツトずしお照射するず、照射郚
分は、短時間のうちに高熱ずなり、ニトロセルロ
ヌスが発火消倱し、埮小な小穎ずしお、ビツト
の情報が蚘録される。しかし、このような媒䜓で
は蚘録情報の消去はできない。 これに察し、テルル、あるいはテルル−セレン
−ヒ玠からなる局を蚘録局ずするヒヌトモヌド光
蚘録媒䜓も知られおいる。しかし、この堎合に
も、高融点の半金属類を融解しおピツトを圢成す
るため、蚘録されたピツトを埩元するのは、きわ
めお困難である。 さらに、特開昭55−161690号公報には、反射基
䜓䞊に、光吞収色玠ず熱可塑性暹脂ずからなる蚘
録局を有するヒヌトモヌド光蚘録媒䜓が蚘茉され
おいる。この媒䜓は、蚘録局を0.01〜0.2Ό皋床
にたで薄くし、レヌザヌ光の照射により、照射郚
分の暹脂を融解しお流動移動させるか、あるいは
照射郚分の光吞収色玠を暪方向に移動させるかし
お、反射基䜓を露出させ、ピツトを圢成するもの
である。しかし、この堎合にも、䞀旊移動した光
吞収色玠を元に戻し、あるいは䞀旊局底にたで到
達した小穎を埋め戻し、平坊にするこずは困難で
ある。このため、同公報には、この媒䜓が、蚘録
情報の消去ず曞替ができる旚の開瀺ないし瀺唆は
ない。 これに察し、導電䜓䞊にサヌモプラスチツクを
塗垃した媒䜓を甚い、サヌモプラスチツク局䞊に
電荷を䞀様に䞎え、レヌザヌ光照射によりサヌモ
プラスチツクの䞀郚を融解し、その䜓積倉化にも
぀お、電気的吞匕力の倉化を生じさせ、これによ
りレヌザヌ光の照射に察応した衚面の凹凞による
ピツトを埗る蚘録方匏が知られおいる。この方匏
では、媒䜓を再加熱するこずにより、衚面の凹凞
は平坊に戻り、蚘録情報を消去するこずができる
が、コロナ攟電噚等を必芁ずし、曞蟌み装眮の機
構が耇雑ずなり、又装眮の消費電力も倧きくなる
等の䞍郜合がある。 発明の目的 この出願の発明は、このような実状に鑑みなさ
れたものである。 この出願の発明の第の目的は、消去曞替が可
胜なヒヌトモヌド光蚘録媒䜓を提䟛するこずにあ
る。 第の目的は、このような消去可胜な光蚘録媒
䜓においお、蚘録局のピツト圢成に芁する光゚ネ
ルギヌないし、枩床に明瞭な閟倀が珟われ、所定
入力゚ネルギヌ以䞊で再珟性よく垞にピツトが圢
成され、所定倀以䞋の゚ネルギヌではピツトが圢
成されず、ピツト圢成の再珟性にバラツキのある
入力光゚ネルギヌないし枩床の領域が狭くなるよ
うにし、これず同時に、耐熱性が高く、高枩での
保枩䞋でピツトに曞蟌たれた情報信号の比
の劣化が少なく、たた読み出し光によ぀お、ピツ
トないし、その呚蟺郚の衚面が倉圢せず、曞蟌み
情報信号の比が劣化せず、さらに曞蟌み感
床が高く、加えお読み出しの比が極めお高
い光蚘録媒䜓を提䟛するこずにある。 この出願の発明のその他の目的は、以䞋の蚘茉
から自ずず明らかになるであろう。 本発明者らは、このような目的に぀き皮々怜蚎
を行぀たずころ、ポリ゚ステル䞭に、光吞収染料
ないし顔料を含有させお蚘録局を圢成したずき、
消去曞替が可胜な媒䜓が実珟し、しかも䞊蚘諞目
的が達成されるこずを芋出し、この出願の発明を
なすに至぀たものである。 すなわち、この出願の発明は基䜓䞊に、熱可塑
性暹脂ず光吞収染料ないし顔料ずを含む蚘録局を
圢成しおなり、蚘録光の照射により、䞊蚘蚘録局
が融解軟化しお蚘録ピツトが圢成され、䞊蚘蚘録
局に圢成された蚘録ピツト底には、熱可塑性暹脂
ず光吞収染料ないし顔料ずをずもに含む局が残存
し、䞊蚘蚘録ピツトが圢成された䞊蚘蚘録局に加
熱を行うこずにより、䞊蚘蚘録局衚面が再床平坊
ずなるように構成した再蚘録可胜な光蚘録媒䜓で
あ぀お、䞊蚘熱可塑性暹脂が、数平均分子量
20000以䞋のポリ゚ステルであり、䞊蚘蚘録局䞭
にはポリ゚ステル重量郚に察し、光吞収染料な
いし顔料が0.002〜10重量郚含有されるこずを特
城ずする光蚘録媒䜓である。 発明の具䜓的構成 以䞋、この出願の発明の具䜓的構成に぀いお詳
现に説明する。 この出願における光蚘録媒䜓は、基䜓䞊に蚘録
局を蚭局しおなる。 蚘録局は、ポリ゚ステルを含む。このポリ゚ス
テルは、熱可塑性暹脂ずしお、蚘録光照射郚分の
枩床䞊昇により、軟化ないし融解しお、倉圢し、
衚面に蚘録ピツトを圢成するものである。 この堎合、ポリ゚ステルずしおは、シナり酞、
コハク酞、マレむン酞、アゞピン酞、セバステン
酞等の脂肪族二塩基酞、あるいはむ゜フタル酞、
テレフタル酞等の芳銙族二塩基酞などの各皮二塩
基酞ず、゚チレングリコヌル、テトラメチレング
リコヌル、ヘキサメチレングルコヌル等のグリコ
ヌル類ずの瞮合物や、共瞮合物が奜適である。そ
しお、これらのうちでは、特に脂肪族二塩基酞ず
グリコヌル類ずの瞮合物や、グリコヌル類ず脂肪
族二塩基酞ず芳銙族二塩基酞ずの共瞮合物は、特
に奜適である。さらに、䟋えば無氎フタル酞ずグ
リセリンずの瞮合物であるグリプタル暹脂を、脂
肪酞、倩然暹脂等で゚ステル化倉性した倉性グリ
プタル暹脂なども奜適に䜿甚される。 このようなポリ゚ステルの数平均分子量は、固
䜓ずしお埗られるかぎりにおいお、20000以䞋で
ある。 20000以䞋ずなるず、曞蟌み感床および読み出
しの比ずもより高くなるからである。 このようなポリ゚ステルは、通垞の公知の方法
で補造され、必芁に応じ、これを分子量分別や粟
補しお甚いる。あるいは垂販のものを、そのた
た、あるいは分別、粟補などしお甚いおもよい。 䞀方、蚘録局には、このようなポリ゚ステルず
ずもに、光吞収染料ないし顔料が含有される。 この光吞収染料ないし顔料は、蚘録光に察し
お、倧きな光吞収染料を瀺し、照射郚における枩
床䞊昇を加胜にするものである。埓぀お、蚘録光
の波長に応じ、400〜800nmの波長光を吞収する、
皮々の公知の染料や、カヌボンブラツク、金属超
埮粉や、レヌキ顔料等の皮々の公知の無機ないし
有機顔料等を甚いるこずができる。 他方、蚘録局䞭に含有されるポリ゚ステルず、
光吞収染料ないし顔料ずの含有量比は、ポリ゚ス
テル重量郚に察し、䞀般に、0.002〜10重量郹
皋床の範囲内で広範囲に遞択するこずができる。 これが0.002重量郚未満であるず、蚘録感床が
䜎䞋する。 たた、10重量郚を超えるず、蚘録ピツト底が蚘
録局底に達するこずがあり消去が困難ずなる他、
蚘録−消去の繰り返しで特性が劣化する。 このような蚘録局は、スピンナヌ、コヌタヌ等
の公知の皮々の方法で基䜓䞊に塗垃蚭局される。
そしお、䞀般に、0.05Ό〜mmの厚さずされる。 なお、このような蚘録局䞭には、䞊蚘のポリ゚
ステルず光吞収染料ないし顔料以倖に、他の添加
物が含有されおいおもよい。 このような添加物の䟋ずしおは、各皮オリゎ
マヌないしポリマヌがある。この堎合、ポリマヌ
ないしオリゎマヌは、ポリ゚ステルに察し、抂ね
30重量以䞋の範囲で含有させ、支持䜓ずの接着
性を向䞊させたり、塗垃性を向䞊させたり、軟化
枩床を倉化させたりするこずができる。 この他、各皮可塑剀、界面掻性剀、垯電防止
剀、滑剀、難燃剀、玫倖線吞収剀、酞化防止剀、
安定剀、分散剀等を含有させるこずができる。 これに察し、このような蚘録局を蚭局支持する
基本に぀いおは特に限定されるものではなく、そ
の材質ずしおは皮々のものを甚いるこずができ
る。ただ、熱䌝導床の点では、通垞、各皮ガラ
ス、各皮セラミクス、あるいはポリメタクリル暹
脂、ポリアクリル暹脂、ポリカヌボネヌト暹脂、
プノヌル暹脂、゚ポキシ暹脂、ゞアリルフタレ
ヌト暹脂、䞍飜和ポリ゚ステル暹脂、ポリむミド
暹脂等の各皮暹脂等を甚いるこずが奜たしい。こ
れらのいずれのものを甚いおも蚘録ピツトは蚘録
局の局底に到達せず、本発明の効果は実珟する。
又、圢状や寞法は、甚いる甚途に応じ、デむス
ク、テヌプ、ベルト、ドラム等皮々のものずする
こずができる。 この堎合、この出願の媒䜓は、このような基䜓
の䞀面䞊に䞊蚘の蚘録局を有するものであ぀おも
よく、その䞡面に蚘録局を有するものであ぀おも
よい。又、基䜓の䞀面䞊に蚘録局を塗蚭したもの
を぀甚い、それらを蚘録局が向かいあうように
しお、所定の間隙をも぀お察向させ、それを密閉
したりしお、ホコリやキズが぀かないようにする
こずもできる。 なお、䞊蚘した媒䜓には、必芁に応じ金属補の
反射局や各皮暹脂局等の䞋匕局を蚭け、この䞋匕
局䞊に蚘録局を蚭局するこずもできる。 このように構成される、この出願の光蚘録媒䜓
を甚いお、情報の曞蟌みおよび消去を行うには以
䞋のようにしお行えばよい。 たず、蚘録光照射を行う。蚘録光は、各皮レヌ
ザヌ、䟋えばHe−Ne、He−Cd、Ar、半動䜓等
の400〜850n皋床の波長の各皮レヌザヌを集光
しお行い、その出力も皮々のものを甚いるこずが
できる。又レヌザヌ光の走査条件、パルス巟、集
光条件等も皮々広範に倉曎可胜であり、䟋えば、
通垞のデむスク面䞊出力〜20、通垞のパル
ス幅20〜1000nsec皋床の照射条件にお、蚘録ピツ
トは蚘録局の局底に到達せず、本発明の効果は実
珟するものである。 そしお、このようなレヌザヌによる蚘録光照射
により、蚘録局䞭のポリ゚ステルが融解軟化し
お、照射郚分には、蚘録局衚面に照射光に察応す
る埮少蚘録ピツトが圢成される。この堎合、通垞
の蚘録光照射条件にお、蚘録ピツトは蚘録局の局
底にたでは到達せず、ピツト底には、ポリ゚ステ
ルず光吞収染料ないし顔料を含む局が残存するこ
ずになる。 このようにしお、ピツトが圢成される結果、埌
述の消去が可胜ずなるものである。そしお、この
出願の媒䜓では、きわめお感床よく、しかも良奜
な圢状のピツトが埗られる。たたピツト圢成に芁
する蚘録光゚ネルギヌの閟倀のブロヌドニングも
きわめお少ない。さらに、高枩䞋にお保存しお
も、ピツトからの読み出し光の比の劣化は
きわめお少ない。 䞀方、このように圢成されるピツトから、媒䜓
䞊に曞蟌たれた情報を読み出すには、蚘録光より
底パワヌの読み出しレヌザヌ光を甚い、これを集
光し、走査しお、透過光たたは反射光のいずれか
の出力を怜出する。 このずき、䞊蚘したように、この出願の媒䜓に
圢成されたピツトは、圢状が良奜であり、読み出
しに際し、高い比が埗られる。たた、読み
出し光によ぀お、媒䜓に蚘録された情報の
比が劣化したり、ピツト郚以倖の領域に䞍必芁情
報が蚘録されるようなこずもない。 他方、このようにしお蚘録された情報を消去す
るには、媒䜓を再加熱すればよい。このずき䞀旊
蚘録されお凹凞状ピツトずな぀おいた衚面は、再
融解しお平坊に戻る。これは、前述したように、
蚘録時にピツト底にポリ゚ステルず光吞収染料な
いし顔料が残存しおいるためである。すなわち、
消去時の再加熱によりポリ゚ステルが融解軟化し
お媒䜓衚面は平坊に戻る。加熱が光照射によ぀お
行なわれる堎合には、光吞収染料ないし顔料によ
り枩床䞊昇が可胜ずなり、ポリ゚ステルが融解軟
化するものである。消去のための加熱ずしおは、
レヌザヌ光照射、各皮ヒヌタヌ加熱、赀倖線ラン
プ照射等いずれを甚いおもよい。 そしお、このような消去ず曞蟌みを繰返したず
き、曞蟌み感床は垞に良奜で、ピツトは垞に良奜
な圢状を瀺し、比の高い読み取りが行わ
れ、さらに読み取りによ぀お、比は劣化せ
ず、又消去により、衚面は垞に平坊に戻るので、
消去の繰返し回数が倚くな぀おも、消去ず曞蟌み
ずを、垞に確実か぀良奜に行うこずができる。 発明の具䜓的効果 この出願の光蚘録媒䜓によれば、䞀旊曞蟌たれ
た情報を容易か぀確実に消去するこずができる。 たた、蚘録局のピツト圢成に芁する光゚ネルギ
ヌないし枩床の閟倀のブロヌドニングはきわめお
少なく、ピツト圢成の再珟性のバラツく入力光゚
ネルギヌないし枩床の領域はきわめお狭い範囲ず
なる。 さらに、耐熱性が高く、50〜60℃皋床以䞊の高
枩に保存されおも、ピツトに蚘録された情報信号
の比の劣化はきわめお少ない。 たた、読み出し光による、ピツトの圢状倉化
や、ピツト呚蟺の圢状倉化はきわめお少なく、読
み出し光による劣化はきわめお少ない。 加えお、曞蟌み感床は良奜であり、たた、読み
取りに透過光を甚いおも反射光を甚いおも、高い
比が埗られる。 さらに、消去は垞に安定に行われるので、消去
曞替を繰返し倚数回行぀おも、十分安定な情報曞
蟌みができる。 この堎合、ポリ゚ステルの数平均分子量が
20000以䞋のものを甚いるずきには、これら諞効
果は、より䞀局すぐれたものずなる。 本発明者らは、本発明の効果を確認するため
皮々実隓を行぀た。以䞋にそのうちの䟋を瀺
す。 実隓䟋  ポリ゚ステルずしお、コハク酞ずテトラメチレ
ングリコヌルずの瞮合を行い、分子量分別しお、
数平均分子量10000の脂肪族ポリ゚ステル暹脂を
埗た。 このポリ゚ステルず、レヌキ顔料C.I.
Pigment Blue 、カラヌむンデツクス番号
42595−LakeBASF瀟補Fanal Blue 
Supraずを、重量比にお混合し、サンド
グラむンドミルにお分散した埌、フむルタヌで
0.5Ό以䞊の粒子を陀去し、バヌコヌトにより、
150mmφ、1.2mm厚のパむレツクスガラス板䞊に
30Ό厚および1Ό厚にお塗垃蚭局しお、この出
願の発明の媒䜓を埗た。 これずは別に比范のため、ポリ゚ステルを、そ
れぞれ数平均分子量10䞇のポリスチレン、ポリ゚
チレン、ポリプロピレンにかえ、皮の比范甚の
媒䜓を埗た。 これら皮の媒䜓のうち、30Ό厚の蚘録局を
も぀ものに぀き、蚘録局衚面の倉圢ず枩床ずの関
係を枬定した。すなわち、媒䜓を恒枩槜に入れ、
蚘録局衚面に0.64mmφ、50の針䜓を茉眮し、枩
床を℃分にお昇枩させながら、針䜓の局内ぞ
の䟵入床ずの関係を枬定した。そしお、針䜓が局
内に䟵入しはじめおから、䞀定䟵入深さにたで到
達するたでの枩床巟を枬定し、ピツト圢成閟倀の
ブロヌドニングを評䟡した。結果を䞋蚘衚に瀺
す。 これずは別に、皮の媒䜓に぀き、1Ό厚の
蚘録局をも぀ものに぀き、以䞋の実隓を行぀た。 たず、10のHe−Neレヌザヌを、AN開口
数0.55、40倍の察物レンズで1Όに集光し、パ
ルス照射した。パルス巟を倉曎し、蚘録局衚面に
ピツトが圢成されるパルス巟を枬定し、曞蟌み感
床の逆数Όsecずした。結果を衚に瀺す。た
た、その際の雰囲気枩床を20℃䞋げお実隓し、入
力゚ネルギヌの閟倀のブロヌドニングを評䟡した
ずころ、䞊蚘の閟倀゚ネルギヌにお、比范甚の媒
䜓は、いずれもピツトが圢成されたり、圢成され
なか぀たり、再珟性が悪か぀たのに察し、この出
願の発明の媒䜓では、ピツト圢成は行われなか぀
た。 次に、䞊蚘レヌザヌのパルス巟を0.5ÎŒsecに固
定し、曞蟌みを行い、次いでのHe−Neレ
ヌザヌを、䞊蚘ず同じ光孊系にお1Όφに集光
し、1ÎŒsec、くりかえし呚波数10Hzにお照射し、
その反射光をフオトダむオヌドで怜出し、
比を算出した。この堎合、アンプ系は、10MHz垯
域のものを甚い、たた、ノむズはRMS倀実効
倀を甚いた。結果を衚に瀺す。 たた、各媒䜓を70℃にお100時間保存し、その
埌の比の劣化を枬定し、耐熱性を評
䟡した。結果を衚に瀺す。 さらに、䞊蚘読み出しレヌザヌのパルスの繰返
し呚波数を倉曎し、10秒間照射し、蚘録局衚面に
ピツトが圢成されるに至る読み出し光呚波数を枬
定した。結果を衚に瀺す。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The invention of this application relates to an optical recording medium. More specifically, the present invention relates to a heat mode optical recording medium in which recorded information can be erased and rewritten. Prior Art Optical recording media have the advantage that the recording medium does not deteriorate due to wear since the medium and the writing or reading head are not in contact with each other, and for this reason, research and development of various optical recording media are being carried out. Among such optical recording media, heat mode optical recording media are being actively developed because they do not require image processing in a darkroom. This heat mode optical recording medium is an optical recording medium that uses recording light as heat, and a part of the medium is melted or removed using a laser beam to form a small hole called a pit. It records information. However, with conventional heat mode optical recording media,
There are disadvantages in that information recorded as pits cannot be erased, and written information cannot be corrected or rewritten, or it is difficult. To explain this situation more specifically, one of the conventionally known heat mode optical recording media has a recording layer made of nitrocellulose and a light absorbent. For example, a laser beam of 1 ÎŒm is applied to such a medium as a recording light.
When irradiated as a minute spot of about φ, the irradiated area becomes extremely hot in a short time, the nitrocellulose ignites and disappears, and 1-bit information is recorded as a minute hole. However, recorded information cannot be erased from such media. On the other hand, heat mode optical recording media are also known in which the recording layer is a layer made of tellurium or tellurium-selenium-arsenic. However, in this case as well, since the pits are formed by melting a metalloid with a high melting point, it is extremely difficult to restore the recorded pits. Further, JP-A-55-161690 describes a heat mode optical recording medium having a recording layer made of a light-absorbing dye and a thermoplastic resin on a reflective substrate. In this medium, the recording layer is thinned to about 0.01 to 0.2 ÎŒm, and the resin in the irradiated area is melted and moved by laser light irradiation, or the light-absorbing dye in the irradiated area is moved laterally. Then, the reflective substrate is exposed and pits are formed. However, even in this case, it is difficult to return the light-absorbing dye that has once moved or to backfill and flatten the small holes that have once reached the bottom of the layer. Therefore, the publication does not disclose or suggest that this medium is capable of erasing and rewriting recorded information. On the other hand, using a medium in which thermoplastic is coated on a conductor, a charge is uniformly applied to the thermoplastic layer, a part of the thermoplastic is melted by laser light irradiation, and the change in volume causes an electric charge to be applied to the thermoplastic layer. A recording method is known in which a change in the attraction force is generated to obtain pits due to surface irregularities corresponding to laser beam irradiation. In this method, by reheating the medium, the surface unevenness returns to a flat surface and the recorded information can be erased, but it requires a corona discharger, etc., complicates the mechanism of the writing device, and consumes the device. There are disadvantages such as increased power consumption. Purpose of the Invention The invention of this application was made in view of the above circumstances. The first object of the invention of this application is to provide a heat mode optical recording medium that can be erased and rewritten. The second purpose is that in such an erasable optical recording medium, a clear threshold value appears in the optical energy or temperature required to form pits in the recording layer, and pits are always formed with good reproducibility above a predetermined input energy. Pits are not formed with energy below a predetermined value, and the range of input light energy or temperature that causes variations in the reproducibility of pit formation is narrowed. There is little deterioration in the S/N ratio of the information signal written on the memory, and the surface of the pit or its surrounding area is not deformed by the readout light, and the S/N ratio of the written information signal is not deteriorated. Furthermore, it is an object of the present invention to provide an optical recording medium with high writing sensitivity and an extremely high reading S/N ratio. Other objects of the invention of this application will become clear from the following description. The present inventors conducted various studies for this purpose and found that when a recording layer is formed by incorporating a light-absorbing dye or pigment into polyester,
The inventors have discovered that an erasable and rewritable medium can be realized and the above objects can be achieved, and the invention of this application has been made. That is, the invention of this application forms a recording layer containing a thermoplastic resin and a light-absorbing dye or pigment on a substrate, and when irradiated with recording light, the recording layer melts and softens to form recording pits. , a layer containing both a thermoplastic resin and a light-absorbing dye or pigment remains at the bottom of the recording pits formed in the recording layer, and by heating the recording layer in which the recording pits are formed, A rewritable optical recording medium configured such that the surface of the recording layer becomes flat again, wherein the thermoplastic resin has a number average molecular weight of
20,000 or less, and the recording layer contains 0.002 to 10 parts by weight of a light-absorbing dye or pigment per 1 part by weight of the polyester. Specific Structure of the Invention Hereinafter, the specific structure of the invention of this application will be explained in detail. The optical recording medium in this application has a recording layer provided on a substrate. The recording layer contains polyester. As a thermoplastic resin, this polyester softens or melts and deforms as the temperature rises in the area irradiated with recording light.
Recording pits are formed on the surface. In this case, the polyester is oxalic acid,
Aliphatic dibasic acids such as succinic acid, maleic acid, adipic acid, sebastenic acid, or isophthalic acid,
Condensates and co-condensates of various dibasic acids such as aromatic dibasic acids such as terephthalic acid and glycols such as ethylene glycol, tetramethylene glycol and hexamethylene glycol are suitable. Among these, particularly preferred are condensates of aliphatic dibasic acids and glycols, and cocondensates of glycols, aliphatic dibasic acids, and aromatic dibasic acids. Furthermore, for example, a modified gliptal resin obtained by esterifying and modifying glyptal resin, which is a condensation product of phthalic anhydride and glycerin, with a fatty acid, a natural resin, etc., is also suitably used. The number average molecular weight of such polyester is 20,000 or less as long as it is obtained as a solid. This is because when the value is 20,000 or less, both the writing sensitivity and the reading S/N ratio become higher. Such a polyester is produced by a conventionally known method, and is used after molecular weight fractionation or purification, if necessary. Alternatively, commercially available products may be used as they are, or after fractionation, purification, etc. On the other hand, the recording layer contains a light-absorbing dye or pigment along with such polyester. This light-absorbing dye or pigment exhibits a large light-absorbing dye with respect to the recording light, and contributes to the temperature rise in the irradiated area. Therefore, depending on the wavelength of the recording light, it absorbs light with a wavelength of 400 to 800 nm.
Various known dyes, carbon black, ultrafine metal powder, and various known inorganic or organic pigments such as lake pigments can be used. On the other hand, polyester contained in the recording layer,
The content ratio of the light-absorbing dye or pigment to 1 part by weight of polyester can generally be selected within a wide range of about 0.002 to 10 parts by weight. If this amount is less than 0.002 parts by weight, recording sensitivity decreases. Furthermore, if it exceeds 10 parts by weight, the bottom of the recording pit may reach the bottom of the recording layer, making erasing difficult.
Characteristics deteriorate due to repeated recording and erasing. Such a recording layer is coated on a substrate using various known methods such as a spinner or a coater.
The thickness is generally 0.05 ÎŒm to 1 mm. Note that such a recording layer may contain other additives in addition to the above-mentioned polyester and light-absorbing dye or pigment. Examples of such additives include various oligomers and polymers. In this case, the polymer or oligomer is generally
It can be contained in a range of 30% by weight or less to improve adhesion to the support, improve coatability, and change the softening temperature. In addition, various plasticizers, surfactants, antistatic agents, lubricants, flame retardants, ultraviolet absorbers, antioxidants,
Stabilizers, dispersants, etc. can be included. On the other hand, there are no particular limitations on the basics for forming and supporting such a recording layer, and various materials can be used for the material. However, in terms of thermal conductivity, various types of glass, various ceramics, polymethacrylic resin, polyacrylic resin, polycarbonate resin,
It is preferable to use various resins such as phenol resin, epoxy resin, diallyl phthalate resin, unsaturated polyester resin, and polyimide resin. No matter which of these is used, the recording pits will not reach the bottom of the recording layer, and the effects of the present invention will be achieved.
Further, the shape and dimensions can be varied depending on the intended use, such as a disk, tape, belt, or drum. In this case, the medium of this application may have the above-described recording layer on one surface of such a substrate, or may have recording layers on both surfaces thereof. Also, two substrates with recording layers coated on one side are used, and the recording layers are placed facing each other with a predetermined gap between them, and they are sealed tightly to prevent dust and scratches. You can also avoid it. Note that the above-mentioned medium may be provided with a subbing layer such as a metal reflective layer or various resin layers, if necessary, and a recording layer may be provided on this subbing layer. Writing and erasing information using the optical recording medium of this application configured as described above may be performed as follows. First, recording light is irradiated. The recording light is produced by condensing various lasers such as He--Ne, He--Cd, Ar, and semi-dynamic lasers having a wavelength of about 400 to 850 nm, and various outputs can be used. Furthermore, the scanning conditions, pulse width, focusing conditions, etc. of the laser beam can be varied widely; for example,
Under the normal irradiation conditions of 1 to 20 mW of power on the disk surface and a normal pulse width of about 20 to 1000 nsec, the recording pits do not reach the bottom of the recording layer, and the effects of the present invention are realized. By irradiating the recording light with such a laser, the polyester in the recording layer is melted and softened, and minute recording pits corresponding to the irradiated light are formed on the surface of the recording layer at the irradiated portions. In this case, under normal recording light irradiation conditions, the recording pits do not reach the bottom of the recording layer, and a layer containing polyester and a light-absorbing dye or pigment remains at the bottom of the pits. As a result of forming pits in this manner, erasing, which will be described later, becomes possible. In the medium of this application, pits with excellent sensitivity and good shape can be obtained. Furthermore, the threshold broadening of the recording light energy required for pit formation is extremely small. Furthermore, even when stored at high temperatures, there is very little deterioration in the S/N ratio of the read light from the pit. On the other hand, in order to read the information written on the medium from the pits formed in this way, a readout laser beam with a lower power than the recording beam is used, which is focused and scanned to generate transmitted or reflected light. Detect any output of light. At this time, as described above, the pits formed in the medium of this application have a good shape, and a high S/N ratio can be obtained during reading. In addition, the S/N of information recorded on the medium by the readout light is
There is no possibility that the ratio will deteriorate or that unnecessary information will be recorded in areas other than the pit portions. On the other hand, information recorded in this way can be erased by reheating the medium. At this time, the surface, which was once recorded and turned into uneven pits, remelts and returns to a flat surface. As mentioned above, this is
This is because polyester and light-absorbing dye or pigment remain at the bottom of the pit during recording. That is,
Reheating during erasing melts and softens the polyester, returning the medium surface to a flat surface. When heating is carried out by light irradiation, the light-absorbing dye or pigment makes it possible to raise the temperature and melt and soften the polyester. As heating for erasing,
Any of laser light irradiation, heating with various heaters, infrared lamp irradiation, etc. may be used. When such erasing and writing are repeated, the writing sensitivity is always good, the pits always show a good shape, and reading is performed with a high S/N ratio. does not deteriorate, and the surface always returns to flatness after erasing.
Erasing and writing can always be performed reliably and satisfactorily even if the number of repetitions of erasing increases. Specific Effects of the Invention According to the optical recording medium of this application, once written information can be easily and reliably erased. Moreover, the broadening of the threshold value of optical energy or temperature required for forming pits in the recording layer is extremely small, and the range of input optical energy or temperature within which the reproducibility of pit formation varies is extremely narrow. Furthermore, it has high heat resistance, and even if it is stored at a high temperature of about 50 to 60 degrees Celsius or higher, the S/N ratio of the information signal recorded on the pit will hardly deteriorate. Further, there is very little change in the shape of the pit or the shape around the pit due to the readout light, and there is very little S/N deterioration due to the readout light. In addition, the writing sensitivity is good, and a high S/N ratio can be obtained whether transmitted light or reflected light is used for reading. Furthermore, since erasing is always performed stably, information can be written in a sufficiently stable manner even if erasing and rewriting are repeated many times. In this case, the number average molecular weight of the polyester is
When using 20,000 or less, these effects become even more excellent. The present inventors conducted various experiments to confirm the effects of the present invention. One example is shown below. Experimental example 1 As a polyester, condensation of succinic acid and tetramethylene glycol was performed, molecular weight fractionation was performed, and
An aliphatic polyester resin with a number average molecular weight of 10,000 was obtained. This polyester and lake pigment (CI
Pigment Blue 1, color index number
42595−Lake; Fanal Blue B manufactured by BASF
Supra) at a weight ratio of 3:1, dispersed with a sand grind mill, and then filtered with a filter.
Remove particles larger than 0.5 ÎŒm and bar coat.
On a Pyrex glass plate with a diameter of 150 mm and a thickness of 1.2 mm.
The media of the invention of this application were obtained by coating layers at a thickness of 30 ÎŒm and a thickness of 1 ÎŒm. Separately, for comparison, three types of comparative media were obtained by replacing the polyester with polystyrene, polyethylene, and polypropylene each having a number average molecular weight of 100,000. Among these four types of media, the relationship between the deformation of the recording layer surface and the temperature was measured for one having a 30 ÎŒm thick recording layer. That is, the medium is placed in a constant temperature bath,
A needle with a diameter of 0.64 mm and a weight of 50 g was placed on the surface of the recording layer, and the relationship between the degree of penetration of the needle into the layer and the degree of penetration of the needle into the layer was measured while increasing the temperature at a rate of 5° C./min. Then, the temperature range from when the needle began to penetrate into the layer until it reached a certain penetration depth was measured, and the broadening of the pit formation threshold was evaluated. The results are shown in Table 1 below. Separately, the following experiments were conducted on four types of media each having a 1 ÎŒm thick recording layer. First, a 10 mW He-Ne laser was focused to 1 ÎŒm using a 40x objective lens with an AN (numerical aperture) of 0.55, and pulse irradiation was performed. The pulse width was changed, and the pulse width at which pits were formed on the surface of the recording layer was measured, and was taken as the reciprocal of the writing sensitivity (ÎŒsec). The results are shown in Table 1. In addition, when we conducted an experiment by lowering the ambient temperature by 20℃ and evaluated the broadening of the input energy threshold, we found that at the above threshold energy, pits were not formed or formed in any of the comparison media. In contrast, the media of the invention of this application did not form pits. Next, the pulse width of the above laser was fixed at 0.5 ÎŒsec and writing was performed, and then a 1 mW He-Ne laser was focused to 1 ÎŒmφ using the same optical system as above, and irradiated for 1 ÎŒsec at a repetition frequency of 10 Hz. ,
The reflected light is detected with a photodiode, and the S/N
The ratio was calculated. In this case, the amplifier system used was one with a 10 MHz band, and the RMS value (effective value) was used for noise. The results are shown in Table 1. In addition, each medium was stored at 70° C. for 100 hours, and the deterioration (%) of the S/N ratio thereafter was measured to evaluate heat resistance. The results are shown in Table 1. Furthermore, the pulse repetition frequency of the readout laser was changed, irradiation was performed for 10 seconds, and the readout light frequency at which pits were formed on the surface of the recording layer was measured. The results are shown in Table 1.

【衚】 衚に瀺される結果から、ポリ゚ステルは、他
の暹脂ず比范しお、特性䞊きわめおすぐれおいる
こずがわかる。 実隓䟋  実隓䟋におけるこの出願の媒䜓においお、ポ
リ゚ステルの数平均分子量を、それぞれ1000、
3000、10000、100000にかえ、たた、有機顔料
OPず称するを、それぞれ、銅−フタロシアニ
ン系染料のオレオゟヌルフアヌストブルヌEL䜏
友化孊工業株匏䌚瀟補、ず称する、13Όカ
ヌボンブラツクCBず称するおよび10n平均
埄ニツケル超埮粉真空冶金株匏䌚瀟補、Niず
称するにかえ、各皮媒䜓を䜜補し、実隓䟋ず
同様に実隓を行぀た。 結果を衚に瀺す。
[Table] From the results shown in Table 1, it can be seen that polyester has extremely superior properties compared to other resins. Experimental Example 2 In the medium of this application in Experimental Example 1, the number average molecular weight of the polyester was 1000 and 1000, respectively.
3000, 10000, and 100000, and the organic pigments (referred to as OP) were replaced with copper-phthalocyanine dye oleosol first blue EL (manufactured by Sumitomo Chemical Co., Ltd., referred to as D) and 13 ÎŒm carbon black (referred to as D), respectively. Experiments were conducted in the same manner as in Experimental Example 1, using various media instead of CB (referred to as CB) and nickel ultrafine powder with an average diameter of 10 nm (manufactured by Shinku Yakini Co., Ltd., referred to as Ni). The results are shown in Table 2.

【衚】【table】

【衚】 なお、耐熱性に぀いおは、党媒䜓ずも、−
以䞋の劣化しか瀺さなか぀た。 たた、読み出し光によるノむズの発生に぀いお
は、党媒䜓ずも300Hzの読み出し光呚波数にお、
ピツト圢成はなんら行われなか぀た。 衚の結果から、ポリアミドの数平均分子量が
20000以䞋ずなるず、より奜たしい結果が埗られ
るこずがわかる。 実隓䟋  䞋蚘衚に瀺されるような各皮媒䜓を䜜補し
お、同衚に瀺される結果を埗た。 この堎合、共瞮合ポリ゚ステルは、シナり酞
ず、テレフタル酞シナり酞テレフタル酞
ず、ヘキサメチレングリコヌルずを共瞮合し
たもの、倉性グリプタル暹脂は、無氎フタル酞
ず、グリセリンずオレむン酞にお埗たものを、そ
れぞれ分子量分別しお甚いた。
[Table] Regarding heat resistance, -5% for all media.
It showed only the following deterioration. In addition, regarding noise generation due to readout light, at a readout light frequency of 300Hz for all media,
No pitting was performed. From the results in Table 2, the number average molecular weight of polyamide is
It can be seen that more favorable results can be obtained when the number is 20,000 or less. Experimental Example 3 Various media as shown in Table 3 below were prepared, and the results shown in the table were obtained. In this case, the co-condensed polyester contains oxalic acid and terephthalic acid (oxalic acid/terephthalic acid =
3) and hexamethylene glycol were co-condensed together, and the modified glyptal resin was obtained from phthalic anhydride, glycerin, and oleic acid, and the molecular weights were fractionated and used.

【衚】【table】

【衚】 衚に瀺される結果から、この出願の媒䜓はい
ずれも、すぐれた特性を瀺すこずがわかる。 なお、このような効果は、染料ないし顔料ずし
お、半導䜓レヌザヌ甚等のものを甚いおも同様に
実珟するこずが確認されおいる。
[Table] From the results shown in Table 3, it can be seen that all the media of this application exhibit excellent properties. It has been confirmed that such effects can be similarly achieved even when dyes or pigments used for semiconductor lasers are used.

Claims (1)

【特蚱請求の範囲】[Claims]  基䜓䞊に、熱可塑性暹脂ず光吞収染料ないし
顔料ずを含む蚘録局を圢成しおなり、蚘録光の照
射により、䞊蚘蚘録局が融解軟化しお蚘録ピツト
が圢成され、䞊蚘蚘録局に圢成された蚘録ピツト
底には、熱可塑性暹脂ず光吞収染料ないし顔料ず
をずもに含む局が残存し、䞊蚘蚘録ピツトが圢成
された䞊蚘蚘録局に加熱を行うこずにより、䞊蚘
蚘録局衚面が再床平坊ずなるように構成した再蚘
録可胜な光蚘録媒䜓であ぀お、䞊蚘熱可塑性暹脂
が、数平均分子量20000以䞋のポリ゚ステルであ
り、䞊蚘蚘録局䞭にはポリ゚ステル重量郚に察
し、光吞収染料ないし顔料が0.002〜10重量郚含
有されるこずを特城ずする光蚘録媒䜓。
1 A recording layer containing a thermoplastic resin and a light-absorbing dye or pigment is formed on a substrate, and upon irradiation with recording light, the recording layer melts and softens to form recording pits, which are formed in the recording layer. A layer containing both a thermoplastic resin and a light-absorbing dye or pigment remains at the bottom of the recording pit, and by heating the recording layer on which the recording pit is formed, the surface of the recording layer is flattened again. The above-mentioned thermoplastic resin is a polyester having a number average molecular weight of 20,000 or less, and the above-mentioned recording layer contains a light-absorbing dye or a light-absorbing dye per 1 part by weight of the polyester. An optical recording medium containing 0.002 to 10 parts by weight of a pigment.
JP56152713A 1981-04-07 1981-09-27 Optical recording medium Granted JPS5853489A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP56152713A JPS5853489A (en) 1981-09-27 1981-09-27 Optical recording medium
US06/708,385 US4599718A (en) 1981-04-07 1985-03-08 Method for erasing a light recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56152713A JPS5853489A (en) 1981-09-27 1981-09-27 Optical recording medium

Publications (2)

Publication Number Publication Date
JPS5853489A JPS5853489A (en) 1983-03-30
JPH0129716B2 true JPH0129716B2 (en) 1989-06-13

Family

ID=15546521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56152713A Granted JPS5853489A (en) 1981-04-07 1981-09-27 Optical recording medium

Country Status (1)

Country Link
JP (1) JPS5853489A (en)

Also Published As

Publication number Publication date
JPS5853489A (en) 1983-03-30

Similar Documents

Publication Publication Date Title
US4599718A (en) Method for erasing a light recording medium
TW411456B (en) Optical recording medium, substrate for the same and stamper
JPS58125247A (en) Optical recording medium
JPH0316276B2 (en)
US4478782A (en) Erasable recording medium comprising a dimer acid polyamide resin
JPH0129715B2 (en)
JPS5945195A (en) Optical recording medium
JPH0129716B2 (en)
JPH0128713B2 (en)
CA1192307A (en) Erasable optical recording medium
JPH0129717B2 (en)
JPS5868252A (en) Optical recording medium
JPH0128714B2 (en)
JPS6331861B2 (en)
JPH0128712B2 (en)
JPH0128715B2 (en)
JPH0316278B2 (en)
JPH0568016B2 (en)
JP2725806B2 (en) Ferroelectric polymer optical recording medium
JP3369182B2 (en) Erasable optical recording medium
JPH0319064Y2 (en)
JPS595448A (en) Erasable recording medium containing dimer acid polyamide resin
JPH0319063Y2 (en)
JPS6369033A (en) Optical recording medium
JPS63106940A (en) Optical recording medium