JPH01296301A - Method for controlling servo loop of industrial robot - Google Patents

Method for controlling servo loop of industrial robot

Info

Publication number
JPH01296301A
JPH01296301A JP12601388A JP12601388A JPH01296301A JP H01296301 A JPH01296301 A JP H01296301A JP 12601388 A JP12601388 A JP 12601388A JP 12601388 A JP12601388 A JP 12601388A JP H01296301 A JPH01296301 A JP H01296301A
Authority
JP
Japan
Prior art keywords
industrial robot
observer
estimated
servo loop
controlled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12601388A
Other languages
Japanese (ja)
Inventor
Nobutoshi Torii
信利 鳥居
Susumu Ito
進 伊藤
Tetsuro Kato
哲朗 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP12601388A priority Critical patent/JPH01296301A/en
Publication of JPH01296301A publication Critical patent/JPH01296301A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To largely set the gain of the servo loop of an industrial robot and, at the same time, to sufficiently suppress the vibration of the robot by estimating state variables by means of an observer to which a disturbance estimating term is introduced and feeding back the estimated state variables. CONSTITUTION:The observer 28 obtains the estimated value X1', X2', and X3' of each state variable by inputting command torque T and output rotating speed X1 of an object to be controlled (industrial robot) 24. Then the observer 28 feeds back the estimated values through amplifiers 30, 32, and 34 respectively having gains K1, K2, and K3. In this case, a state variable of X4'=0 is introduced so that the influence of a disturbance factor can be eliminated and the estimation can be performed easily. Thus the damping characteristics and rigidity of the object to be controlled 24 are apparently increased and the object 24 can be controlled stably.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は産業用ロボットの駆動制御方法に関し、特に外
乱推定項を導入したオブザーバを使用したサーボループ
制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a drive control method for an industrial robot, and more particularly to a servo loop control method using an observer incorporating a disturbance estimation term.

〔従来の技術〕[Conventional technology]

一般に産業用ロボットの可動機体部、例えば多関節型ロ
ボットの各アームには夫々駆動用のサーボモータが対応
している。ロボット作業においては、各アームに対応し
た各サーボモータを適切に駆動制御することによって先
端部に所定の動作をさせたり、所定の位置へ到達させる
Generally, each arm of a movable body of an industrial robot, such as an articulated robot, is associated with a driving servo motor. In robot work, each servo motor corresponding to each arm is appropriately driven and controlled to cause the tip to perform a predetermined movement or reach a predetermined position.

産業用ロボットは一般に工作機械等と異なり、片持ち構
造を成しており、しかも各アーム等の各可動機体部と各
駆動源である各サーボモータとの間には低剛性な減速機
等が存在している。従って全体として低剛性であって共
振周波数の低い、しかも減衰性の非常に悪い制御対象系
である。従って従来においてはサーボループのゲインを
小さく設定することによりアーム等の振動を防止してい
た。
Unlike machine tools, industrial robots generally have a cantilever structure, and low-rigidity reduction gears are installed between each movable body part such as each arm and each servo motor that is each drive source. Existing. Therefore, it is a controlled system that has low rigidity as a whole, a low resonance frequency, and very poor damping properties. Therefore, in the past, vibrations of the arm, etc. were prevented by setting the gain of the servo loop small.

〔発明が解決しようとする課題〕 ′ 然しなから産業用ロボットを素速く、しかも正確に作動
させることは商品の生産効率の向上の観点から不可欠で
あり、従来の様にサーボループのゲインを小さく設定し
ていたのでは斯る要望に応えることはできない。
[Problem to be solved by the invention] ′ However, it is essential to operate industrial robots quickly and accurately from the perspective of improving product production efficiency, so it is necessary to reduce the gain of the servo loop as in the past. If we had set this, we would not be able to meet such requests.

依って本発明はサーボループのゲインを大きく設定する
と共に振動を十分に抑制することの可能な産業用ロボッ
トのサーボループ制御方法を提供する。
Accordingly, the present invention provides a servo loop control method for an industrial robot that is capable of setting a large servo loop gain and sufficiently suppressing vibrations.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的に鑑みて本発明は、産業用ロボットの可動機体
部と該可動機体部を駆動する駆動源とを、並設された1
次元剛性ばねと1次元吸振器とによって接続して成る運
動解析モデルに基づく状態方程式に外乱推定環を導入し
たオブザーバによって状態変数を推定し、これら推定状
態変数をフィードバックさせて前記駆動源を駆動制御す
る産業用ロボットのサーボループ制御方法を提供する。
In view of the above object, the present invention provides a movable body part of an industrial robot and a drive source for driving the movable body part, which are arranged in parallel.
A state variable is estimated by an observer that introduces a disturbance estimation ring into a state equation based on a motion analysis model that is connected by a dimensional rigid spring and a one-dimensional vibration absorber, and these estimated state variables are fed back to drive and control the drive source. This invention provides a servo loop control method for an industrial robot.

〔作 用〕[For production]

産業用ロボットの可動機体部と該可動機体部を駆動する
駆動源とを、並設された1次元剛性ばねと1次元吸振器
とによって接続した運動解析モデルは比較的産業用ロボ
ットの運動状態を忠実に表現するが、現実に存在する非
線型摩擦等の外乱因子のためにオブザーバによる状態変
数の推定値では必ずしも系の減衰性能が向上しない。そ
こで外乱推定環を導入して上記外乱因子の影響を吸収し
、これによりオブザーバの状態変数推定性能が向上する
A motion analysis model in which the movable body of an industrial robot and a drive source that drives the movable body are connected by a one-dimensional rigid spring and a one-dimensional vibration absorber installed in parallel can relatively accurately understand the motion state of the industrial robot. Although it is expressed faithfully, the damping performance of the system does not necessarily improve with the estimated values of the state variables by the observer due to disturbance factors such as nonlinear friction that actually exist. Therefore, a disturbance estimation ring is introduced to absorb the influence of the disturbance factors, thereby improving the state variable estimation performance of the observer.

〔実施例〕〔Example〕

以下本発明を添付図面に示す実施例に基づいて更に詳細
に説明する。第2図は産業用ロボットの可動機体部、例
えばアーム12と駆動源であるサーボモータのロータl
Oとを並列配置された1次元ばね14とダッシュポット
16とで接続した運動解析モデルである。この1次元ば
ね14とダッシュポット16とは主としてアーム12と
サーボモータのロータlOとの間に介在する減速機18
をモデル化したものであり、このモデルは減速機そのも
のの動特性を概ね正確に表わすものであることが簡単な
実験により分かっている。この解析モデルによって次の
運動方程式が成立する。
The present invention will be described in more detail below based on embodiments shown in the accompanying drawings. Figure 2 shows the movable body part of an industrial robot, such as the arm 12 and the rotor l of the servo motor that is the drive source.
This is a kinematic analysis model in which O is connected by a one-dimensional spring 14 and a dashpot 16 arranged in parallel. This one-dimensional spring 14 and dashpot 16 are mainly connected to a reducer 18 interposed between the arm 12 and the rotor lO of the servo motor.
It has been found through simple experiments that this model generally accurately represents the dynamic characteristics of the reducer itself. This analytical model establishes the following equation of motion.

ここで、 T:モータの出力トルク、 θM:ロータ10の回転角度、 JM:ロータ10の慣性モーメント、 θR:モータ軸換算のロボットアーム回転角度、JR:
モータ軸換算のロボットアームの慣性モーメント、 K:減速機部分の捩りばね係数、 C:減速機部分の減衰係数、 である、ここでθM−θRミθSという新炭数を導入し
て整理すると次式となる。
Here, T: Motor output torque, θM: Rotation angle of rotor 10, JM: Moment of inertia of rotor 10, θR: Robot arm rotation angle converted to motor axis, JR:
The moment of inertia of the robot arm in terms of the motor shaft, K: Torsional spring coefficient of the reducer part, C: Damping coefficient of the reducer part, Here, by introducing the new coal numbers θM - θR and θS, we get the following. The formula becomes

ここで、 all=o。here, all=o.

a12=−C/JM。a12=-C/JM.

a13=−に/JM。a13=-/JM.

a21=0、 a22=−(C/JM+C/JR)、 a23=−(K/JM+に/JR)、 bl−1/JM。a21=0, a22=-(C/JM+C/JR), a23=-(K/JM+/JR), bl-1/JM.

b2=1/JM。b2=1/JM.

であり、制御系の出カッをモータの速度、′即ちロータ
10の回転速度bMとするならば次式が成立する。
If the output of the control system is the speed of the motor, that is, the rotational speed bM of the rotor 10, then the following equation holds true.

ツー (100) x 然しなから既述の如く、上記解析モデルには産業用ロボ
ット各部の摩擦は含まれてはおらず、非線形の摩擦等の
因子の影響を取り除くため士、=0という状態変数を導
入すると、 V =  (10003夏 となる。この状態方程式に基づいたオブザーバにより(
xi x2 x3 x4 )を推定し、この中で△  
 /\   △ xl、x2.x3の推定値xi、x2.x3をフィード
バンクさせてサーボループ制御を行なう。
Two (100) When introduced, V = (10003 summers. By the observer based on this state equation, (
xi x2 x3 x4), in which △
/\ △ xl, x2. The estimated value xi of x3, x2. Servo loop control is performed by feeding x3.

第1図に制御ループの全体を図示しており、図示してい
ないコントローラ内においてロボットの各アームの移動
すべき位置の指令信号が入力され、位置ループゲインK
Pを有する位置速度変換器20を通して速度に変換され
、この指令速度を積分ゲインに4と比例ゲインに5とを
有した速度トルク変換器22を通してトルクTに変換す
る。制御対象24である産業用ロボットの所定のサーボ
モータは指令トルクTに応じた電流制御によって駆動さ
れ、回転速度x1が出力される。この出力回転速度xi
はパルスエンコーダ等によって実測され、その実測回転
速度x1をフィードバックして、位置速度変換器20の
出力する指令回転速度との差をとり、速度トルク変換器
22へ入力させる。また制御対象サーボモータ24の出
力回転速度xiを積分器26を通して位置を算出し、該
算出位置をフィードバックして指令位置との差をとり、
位置速度変換器20へ入力させる。
The entire control loop is shown in Figure 1, in which a command signal for the position to which each arm of the robot should move is input into a controller (not shown), and the position loop gain K
The commanded velocity is converted into a velocity through a position/velocity converter 20 having an integral gain of 4 and a torque T through a velocity/torque converter 22 having an integral gain of 4 and a proportional gain of 5. A predetermined servo motor of the industrial robot, which is the controlled object 24, is driven by current control according to the command torque T, and outputs a rotational speed x1. This output rotation speed xi
is actually measured by a pulse encoder or the like, and the measured rotational speed x1 is fed back, and the difference between it and the commanded rotational speed output from the position/speed converter 20 is calculated and inputted to the speed/torque converter 22. Further, the output rotation speed xi of the controlled servo motor 24 is passed through the integrator 26 to calculate the position, the calculated position is fed back and the difference from the command position is calculated,
It is input to the position/velocity converter 20.

産業用ロボット(制御対象)24の運動状態方程式イと
口を表現する場合の変数Xは式二に示す様にxi 、x
2、及びx3、即ちθM、θS、及びθSである。独立
変数が3個であることは、式ハの特性行列が3行3列で
あることと対応し、その特性方程式が3次式であること
に基づく。この制御対象24の制御においてはその漸近
安定化のためにオブザーバ28を使用する。該オブザー
バ28は制御対象24への指令トルクTと出力回転有し
た増幅器30 、32 、34を通してフィードバンク
させる。この状態変数の推定に際し、推定に使用する運
動状態方程式イ及び口には摩擦等の非線形的外乱因子の
影響は考慮されておらす、オブザーバ28にはこうした
外乱因子の影響を受けた結果としての出力である速度x
iを入力させるため、各状態変数の推定がうまくゆかな
いことがある。
The motion state equation A of the industrial robot (controlled object) 24 and the variable X used to express the mouth are xi, x as shown in Equation 2.
2, and x3, that is, θM, θS, and θS. The fact that there are three independent variables corresponds to the fact that the characteristic matrix of equation (c) has three rows and three columns, and is based on the fact that the characteristic equation is a cubic equation. In controlling this controlled object 24, an observer 28 is used for asymptotic stabilization. The observer 28 feedbanks through amplifiers 30 , 32 , 34 with command torque T and output rotation to the controlled object 24 . When estimating this state variable, the influence of nonlinear disturbance factors such as friction is taken into consideration in the state of motion equation (A) used for estimation. Speed x which is the output
Because i is input, estimation of each state variable may not go well.

そこで既述の如くれ=0という状態変数を導入し、これ
により外乱因子の影響を取り除くことができ、推定を容
易にさせる。
Therefore, the previously mentioned state variable of ``Yakure=0'' is introduced, which makes it possible to remove the influence of disturbance factors and facilitate estimation.

なお、前述した状態方程式ハの特性行列は、その成分a
llとa21は共に零であるため見かけ上のはれ−0で
示される状態変数x4の推定値であ1図の様にフィード
バックさせることは、運動状式イの右辺へ移せば次式と
なる。
Note that the characteristic matrix of the state equation C described above is its component a
Since both ll and a21 are zero, feeding back the estimated value of the state variable x4, which is indicated by the apparent deflection -0, as shown in Figure 1 becomes the following equation by moving it to the right side of the motion equation A. .

T=JM・θM+C・(θ台−δR)+K・(θ台−θ
R)この式から分かる様に減衰係数Cが見かけ上に2分
、捩りばね係数Kかに3分、夫々大きくなったことにな
る。即ち制御対象24の減衰性能並びに剛性が見かけ上
増大したことになり、安定した制御が可能となる。
T=JM・θM+C・(θ unit − δR)+K・(θ unit − θ
R) As can be seen from this equation, the damping coefficient C has apparently increased by 2 minutes, and the torsion spring coefficient K has increased by 3 minutes. That is, the damping performance and rigidity of the controlled object 24 are apparently increased, and stable control becomes possible.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかな様に本発明によれば、制御対象
が安定化できるため、位置ループゲインKP、積分ゲイ
ンに4、及び比例ゲインに5の前向きゲインを大きく設
定でき、延いては制御対象物を素速く、しかも正確に作
動させることができる。
As is clear from the above description, according to the present invention, since the controlled object can be stabilized, the forward gain of the position loop gain KP, the integral gain of 4, and the proportional gain of 5 can be set large, and as a result, the controlled object can be stabilized. Able to operate things quickly and accurately.

【図面の簡単な説明】 第1図は本発明に係る制御ループ図、 第2図は産業用ロボットの運動解析モデル図。 lO・・・サーボモータのロータ、 l2・・・アーム、   18・・・減速機。[Brief explanation of the drawing] FIG. 1 is a control loop diagram according to the present invention, Figure 2 is a motion analysis model diagram of an industrial robot. lO...servo motor rotor, l2...Arm, 18...Reducer.

Claims (1)

【特許請求の範囲】[Claims] 1、産業用ロボットに所望の作動をさせる場合において
、前記産業用ロボットの可動機体部と該可動機体部を駆
動する駆動源とを、並設された1次元剛性ばねと1次元
吸振器とによって接続して成る運動解析モデルに基づく
状態方程式に外乱推定項を導入したオブザーバによって
状態変数を推定し、これら推定状態変数をフィードバッ
クさせて前記駆動源を駆動制御することを特徴とする産
業用ロボットのサーボループ制御方法。
1. When making an industrial robot perform a desired operation, the movable body of the industrial robot and the drive source that drives the movable body are connected by a one-dimensional rigid spring and a one-dimensional vibration absorber arranged in parallel. An industrial robot characterized in that a state variable is estimated by an observer in which a disturbance estimation term is introduced into a state equation based on a kinematic analysis model connected to each other, and the estimated state variables are fed back to drive and control the drive source. Servo loop control method.
JP12601388A 1988-05-25 1988-05-25 Method for controlling servo loop of industrial robot Pending JPH01296301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12601388A JPH01296301A (en) 1988-05-25 1988-05-25 Method for controlling servo loop of industrial robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12601388A JPH01296301A (en) 1988-05-25 1988-05-25 Method for controlling servo loop of industrial robot

Publications (1)

Publication Number Publication Date
JPH01296301A true JPH01296301A (en) 1989-11-29

Family

ID=14924567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12601388A Pending JPH01296301A (en) 1988-05-25 1988-05-25 Method for controlling servo loop of industrial robot

Country Status (1)

Country Link
JP (1) JPH01296301A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992014195A1 (en) * 1991-02-06 1992-08-20 Fanuc Ltd Oscillation damper
JPH06245570A (en) * 1993-02-12 1994-09-02 Kobe Steel Ltd Controller in motor drive system
EP1591857A2 (en) * 2004-04-08 2005-11-02 Fanuc Ltd Vibration control device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6069712A (en) * 1983-09-27 1985-04-20 Matsushita Electric Ind Co Ltd Oscillation controller
JPS61251902A (en) * 1985-04-30 1986-11-08 Yokogawa Electric Corp Noise eliminating device
JPS6277608A (en) * 1985-09-30 1987-04-09 Fujitsu Ltd Control system for moving body
JPS6391702A (en) * 1986-10-03 1988-04-22 Fujitsu Ltd Digital servo control system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6069712A (en) * 1983-09-27 1985-04-20 Matsushita Electric Ind Co Ltd Oscillation controller
JPS61251902A (en) * 1985-04-30 1986-11-08 Yokogawa Electric Corp Noise eliminating device
JPS6277608A (en) * 1985-09-30 1987-04-09 Fujitsu Ltd Control system for moving body
JPS6391702A (en) * 1986-10-03 1988-04-22 Fujitsu Ltd Digital servo control system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992014195A1 (en) * 1991-02-06 1992-08-20 Fanuc Ltd Oscillation damper
JPH06245570A (en) * 1993-02-12 1994-09-02 Kobe Steel Ltd Controller in motor drive system
EP1591857A2 (en) * 2004-04-08 2005-11-02 Fanuc Ltd Vibration control device
EP1591857A3 (en) * 2004-04-08 2005-11-09 Fanuc Ltd Vibration control device

Similar Documents

Publication Publication Date Title
US9785138B2 (en) Robot and robot controller
JP2001273037A (en) Servo control unit
US5920169A (en) Servomotor control method
JPH07295650A (en) Method for controlling articulated robot
JPH01296301A (en) Method for controlling servo loop of industrial robot
JPS61201304A (en) Method for controlling position of robot
JPH0392911A (en) Robot control method for sliding mode control
JPH02205489A (en) Control method for impedance of manipulator
JP2580502B2 (en) Force / torque control method for motor with reduction gear
JPS6190207A (en) Robot controlling device
JPS61163406A (en) Robot control device
Wapenhans et al. Optimal trajectory planning with application to industrial robots
JP3151437B2 (en) Position control method and position control device thereof
JP2542915B2 (en) Vibration suppression drive device
JPH04343690A (en) Joint friction compensating method for multi-joint manipulator
JPS61217802A (en) Robot controller
JP2864461B2 (en) Position control method and position control device thereof
JPS5858886A (en) Acceleration controller for dc motor
JPH05250029A (en) Industrial robot
Tiemin et al. Comparative study on the acceleration feedback and the strain feedback of a flexible manipulator
JPH01304501A (en) Servo loop control method for industrial robot
JPH07205072A (en) Cooperation controller of plural robot
JPH077307B2 (en) Decoupling control method for robot
JPS6214209A (en) Industrial robot
JPH06214656A (en) Sliding mode control method provided with damping element