JPH01296129A - Touch pressure sensor - Google Patents

Touch pressure sensor

Info

Publication number
JPH01296129A
JPH01296129A JP12666288A JP12666288A JPH01296129A JP H01296129 A JPH01296129 A JP H01296129A JP 12666288 A JP12666288 A JP 12666288A JP 12666288 A JP12666288 A JP 12666288A JP H01296129 A JPH01296129 A JP H01296129A
Authority
JP
Japan
Prior art keywords
substrate
light
light source
pressure sensor
outer layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12666288A
Other languages
Japanese (ja)
Other versions
JPH0658272B2 (en
Inventor
Kazuo Tanie
和雄 谷江
Natsuo Suzuki
鈴木 夏夫
Hisato Hiraishi
平石 久人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Citizen Watch Co Ltd
Original Assignee
Agency of Industrial Science and Technology
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Citizen Watch Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP63126662A priority Critical patent/JPH0658272B2/en
Publication of JPH01296129A publication Critical patent/JPH01296129A/en
Publication of JPH0658272B2 publication Critical patent/JPH0658272B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

PURPOSE:To secure a sufficiently broad detecting surface with high resolutions, by arranging a fluorescent substance contained in a substrate to be a light wave guide plate to emit a fluorescence. CONSTITUTION:A detecting member 2 is provided with an outer layer material 6 having numerous protrusions 8a elastically deformable on an inner surface thereof and a substrate 7 arranged along the outer layer material 6 in contact with the protrusions 8a. The substrate 7 is made of a light transmitting material having a fluorescent substance 12 dispersed therein. A light receiver 5 receives light emitted from a light source 3 which is allowed to emit light into the substrate 7 and the substrate 7 through a color filter 4. With such an arrangement, light 41 from the light source 3 enters the substrate 7 to excite the fluorescent substrate 12 thereby emitting a fluorescence 42. When a rugged surface 8 of the outer layer material 6 gets in contact with an object to deform it by a force F applied, with the deformation thereof, a reflecting surface of the substrate 7 is caused to change and according to the change thereof, a quality of reflected light from the substrate 7 varies to be detected with the light receiver 5 thereby enabling detection of a contact pressure F of the object and a contact shape thereof.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、触圧覚センサに関し、特に分布型触圧覚セン
サ関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a tactile pressure sensor, and particularly to a distributed tactile pressure sensor.

[産業上の利用分野] 近年、人間には危険または困難な作業を、人間に替わっ
て遂行し得る種々の機能を有するロボットが開発され、
これに伴って感覚センサも各種のものが開発されている
[Industrial Application Fields] In recent years, robots with various functions that can perform tasks that are dangerous or difficult for humans have been developed.
Along with this, various types of sensory sensors have been developed.

[発明が解決しようとする課題] 触圧覚センサは、ロボットハンドの把持面を正確に位置
決めしたり、触覚的に把持物体の形状を認識したり、あ
るいは接触面の変化から把持物体のすべりを検出したり
するのに必要不可欠であり、従来から開発努力がなされ
ているが、従来の触・圧覚センサには、機械的スイッチ
を用いるものや、導電ゴム等の抵抗変化を利用するもの
等があるが、これらは、一般に高密度配置ができないた
めに分解能が低かったり、あるいは、高密度配置が可能
な場合でも、触圧覚センサとしての前記機能を発揮する
ために充分な広さの検出面を確保できないという問題が
あり、これら問題点の解決が望まれている。
[Problems to be solved by the invention] Tactile pressure sensors can accurately position the grasping surface of a robot hand, tactilely recognize the shape of a grasped object, or detect slippage of a grasped object from changes in the contact surface. Conventional tactile/pressure sensors include those that use mechanical switches and those that utilize resistance changes such as conductive rubber. However, these generally have low resolution because they cannot be arranged in high density, or even if high density arrangement is possible, it is difficult to ensure a detection surface large enough to perform the function as a tactile pressure sensor. There is a problem that this is not possible, and a solution to these problems is desired.

この問題を解決するために、本件発明の発明者は先に新
たな触圧覚センサを開発した(昭和60年特許出願公開
第120229号)。この新たに提案された触圧覚セン
サ51は第11図に示すように、透明基板の一方の面に
凹凸面58をもつ可撓性シートからなる外層材56を重
ね、かつライトガイド53を通して透明基板に光を入射
し、外層材56の凹凸面58が物体と接触して変形した
とぎに、その変形によって透明基板57の光反射面を変
化させ、その光反射面の変化に応じて透明基板57から
の反射光子が変化することを受光素子55で検出して、
物体の接触及び圧力を検出するものである。この新たに
提案された触圧覚センサは充分な広さの検出面を有する
高分解能の触圧覚センサを得ることができる顕著な効果
を発揮づ゛るのであるが、透明基板57に入射すべき光
量が比較的に大きく要し、これを低下させることが望ま
れる。
In order to solve this problem, the inventor of the present invention previously developed a new tactile pressure sensor (Patent Application Publication No. 120229, 1985). As shown in FIG. 11, this newly proposed tactile pressure sensor 51 has an outer layer material 56 made of a flexible sheet having an uneven surface 58 overlaid on one side of a transparent substrate, and a light guide 53 passed through the transparent substrate. When the uneven surface 58 of the outer layer material 56 comes into contact with an object and deforms, the light reflecting surface of the transparent substrate 57 changes due to the deformation, and the transparent substrate 57 changes according to the change in the light reflecting surface. The light receiving element 55 detects a change in the reflected photons from the
It detects the contact and pressure of objects. This newly proposed tactile pressure sensor has the remarkable effect of being able to obtain a high-resolution tactile pressure sensor with a sufficiently large detection surface, but the amount of light that should be incident on the transparent substrate 57 is is relatively large, and it is desirable to reduce this.

この発明は上記の如き事情に鑑みてなされたものであっ
て、分解能が高くロボットハンドへの装着を可能とする
コンパクトな構成であり、しかも機能発揮のために充分
な広さの検出面を確保でき、入射光量が小さくてすむ、
高密度分布型触圧覚センサを提供することを目的として
いる。
This invention was made in view of the above circumstances, and has a compact configuration that has high resolution and can be attached to a robot hand, and also has a detection surface large enough to perform its functions. The amount of incident light can be small.
The purpose is to provide a high-density distributed tactile pressure sensor.

[課題を解決するための手段] この目的に対応して、この発明の触圧覚センサは内側面
に弾性変形可能な多数の突起を有する外層材と前記突起
に接触した状態で前記外層材に沿って配設された基板と
を備えた検出部材を有し、前記基板は蛍光物質を分散さ
せた透光性材料で構成され、かつ、前記基板に光を入射
し得る光源と前記基板から出射した光を色フィルタを介
して受光する受光装置とを備えることを特徴としている
[Means for Solving the Problems] Corresponding to this object, the tactile pressure sensor of the present invention includes an outer layer material having a large number of elastically deformable protrusions on an inner surface thereof, and a tactile pressure sensor that extends along the outer layer material while in contact with the protrusions. a detection member comprising a substrate disposed on a substrate, the substrate being made of a translucent material in which a fluorescent substance is dispersed; and a light source capable of inputting light into the substrate; It is characterized by comprising a light receiving device that receives light through a color filter.

[作用コ このように構成された触圧覚センサでは、光源からの光
が基板に入り蛍光物質を励起して蛍光を発する。外層材
の凹凸面が物体と接触して変形したときに、その変形に
よって基板の反射面が変化し、その光反射面の変化に応
じて基板からの反射光ωが変化することを受光装置で検
出して物体の接触圧力、接触形状を検出する。
[Operation] In the tactile pressure sensor configured as described above, light from the light source enters the substrate and excites the fluorescent substance to emit fluorescence. When the uneven surface of the outer layer material comes into contact with an object and deforms, the reflecting surface of the substrate changes due to the deformation, and the light receiving device detects that the reflected light ω from the substrate changes according to the change in the light reflecting surface. Detects the contact pressure and shape of the object.

[実施例] 以下、この発明の詳細を、一実施例を示す図面について
説明する。
[Example] Hereinafter, details of the present invention will be explained with reference to drawings showing one example.

第1図、第2図及び第3図において、1は触圧覚センサ
である。検出部材2と光源3と色フイルタ−4と受光装
置5とを重ねて備えている。
In FIG. 1, FIG. 2, and FIG. 3, 1 is a tactile pressure sensor. A detection member 2, a light source 3, a color filter 4, and a light receiving device 5 are stacked on top of each other.

検出部材2は外層材6と基板7とを重ねて構成される。The detection member 2 is constructed by overlapping an outer layer material 6 and a substrate 7.

外層材6は、例えば白色のシリコンゴムのJ:うな、可
撓性を有するシート状の材料からなり、かつ光をよく反
射し得る材料で構成されており、基板7と接する側の面
(内側面)には、−様に細かいピッチで分布する凹凸か
らなる凹凸面8が形成されており、その凸部8aの先端
点において基板7の面11と接している。凹凸の形状と
しては例えば円錐形等を用いることができる。
The outer layer material 6 is made of a flexible sheet-like material such as white silicone rubber, and is made of a material that can reflect light well. A concavo-convex surface 8 consisting of concavities and convexities distributed at a fine pitch like a - is formed on the side surface), and is in contact with the surface 11 of the substrate 7 at the tip of the convex portion 8a. As the shape of the unevenness, for example, a conical shape or the like can be used.

外層材6の凸部8aに接触した状態で基材7が重ねられ
ている。基材7はアクリル、ポリカーボネート等の透明
性の高い材料で構成され、かつ蛍光物質12を分散させ
ている。蛍光物質としては例えば青〜緑を吸収し赤を発
光するpery+ene等を用いることができる。
The base material 7 is stacked in contact with the convex portion 8a of the outer layer material 6. The base material 7 is made of a highly transparent material such as acrylic or polycarbonate, and has fluorescent substances 12 dispersed therein. As the fluorescent material, for example, pery+ene, which absorbs blue to green light and emits red light, can be used.

基板7の面11と平行な面13に対向する位置には、ス
ペーサ14を介して光源3が重ねられている。面13と
光源3との間には空間9が位置する。光源3としては基
板7の蛍光物質12を励起できる蛍光色より短波長の光
を発する面発光型の光源であることが好ましい。また、
光13は基板7からの蛍光を透過させる透明性が必要で
あり、このようなことから、光源3はガラス根土に薄膜
EL(エレクトロ・ルミネッセンス)を形成したものを
使用することができる。この場合、薄膜EしはZnSベ
ース、TbF3ドープで緑、SrSベース5eF3ドー
プで青の発光となる。
A light source 3 is stacked on the substrate 7 at a position facing a surface 13 parallel to the surface 11 with a spacer 14 interposed therebetween. A space 9 is located between the surface 13 and the light source 3. The light source 3 is preferably a surface-emitting type light source that emits light with a shorter wavelength than the fluorescent color that can excite the fluorescent material 12 of the substrate 7. Also,
The light 13 needs to be transparent enough to transmit the fluorescence from the substrate 7, and for this reason, the light source 3 can be a glass substrate with a thin EL (electroluminescence) film formed thereon. In this case, the thin film E emits green light when it is ZnS-based and doped with TbF3, and blue when it is SrS-based and doped with 5eF3.

色フィルタ4は蛍光色を選択的に透過するカラーフィル
タであり、第4図に示すように、光源3の光よりも長波
長の蛍光を透過させる特性をもつものである。ダイクロ
イックミラーを用いると透過光以外を反射するので、基
板7の蛍光物質12の励起強度を強められるので好まし
い。受光装置5はレンズ15及び光電変換素子群16と
からなっている。
The color filter 4 is a color filter that selectively transmits fluorescent colors, and has a characteristic of transmitting fluorescent light having a longer wavelength than the light from the light source 3, as shown in FIG. It is preferable to use a dichroic mirror because it reflects light other than transmitted light, thereby increasing the excitation intensity of the fluorescent substance 12 on the substrate 7. The light receiving device 5 includes a lens 15 and a group of photoelectric conversion elements 16.

レンズ15はロッドレンズ或いは屈折率分布型のマイク
ロレンズアレーで構成されている。光電変換素子群16
はフォトトランジスタアレー、フォトダイオードアレー
で構成されている。これらはディスクリート素子を組合
せてもよいが、a−8i(アモルファス・シリコン)等
を用いて薄膜素子としてガラス等の適当な基板上に集積
する方が好ましい。光電変換素子群16を薄膜化集積素
子とする場合には、触圧覚センサが小型のものの場合に
は素子サイズ10順×10IM1程度のCODまたはM
O3型単板素子を用いることができる。また、触圧覚セ
ンサを大型化した場合には、単結晶S1を用いる前記の
方式では第1図に示ずような構成は難しいので、a−3
iのPIN型フォトダイオード(第5図)を受光素子と
してMOSトランジスタもa−3iで形成すれば、基板
として無アルカリガラス等を用い第6図に示すような素
子サイズ1100mX100以上の大型の光電変換素子
アレーを作成できる。
The lens 15 is composed of a rod lens or a refractive index distribution type microlens array. Photoelectric conversion element group 16
consists of a phototransistor array and a photodiode array. Although these may be a combination of discrete elements, it is preferable to integrate them as thin film elements using a-8i (amorphous silicon) or the like on a suitable substrate such as glass. When the photoelectric conversion element group 16 is a thin film integrated element, if the tactile pressure sensor is small, a COD or M of about 10 element sizes x 10 IM1 is used.
An O3 type single plate element can be used. Furthermore, when increasing the size of the tactile pressure sensor, it is difficult to construct the structure shown in Fig. 1 using the above method using single crystal S1, so a-3
If the i PIN type photodiode (Fig. 5) is used as a light receiving element and the MOS transistor is also formed of a-3i, a large photoelectric conversion with an element size of 1100 m x 100 or more as shown in Fig. 6 can be achieved using non-alkali glass as the substrate. Can create element arrays.

なお、第5図及び第6図において符号17はフォトダイ
オード、18は透明電極、21は電極、22は絶縁膜で
ある。絶縁膜22は通常SiO2またはSi3N4で構
成する。
In FIGS. 5 and 6, reference numeral 17 is a photodiode, 18 is a transparent electrode, 21 is an electrode, and 22 is an insulating film. The insulating film 22 is usually made of SiO2 or Si3N4.

このように構成された触圧覚センサ1は例えばロボット
ハンドの手先のフレーム24に組込まれ、外層材6が外
方に露出している状態にする。
The tactile pressure sensor 1 configured as described above is installed, for example, in the frame 24 of the hand of a robot hand, so that the outer layer material 6 is exposed to the outside.

このように構成された触圧覚センサ1において、光源3
が発光し基板7の中に光41が照射されると、その光4
1が蛍光物質12を励起して、基板7内に蛍光42が発
生する。この時に第7図に示す如く外層材6の外面から
外層材6に垂直方向から力Fがかかると、外層材6が弾
性変形を起こし、外層材6の凹凸面8が押し潰されて変
形するが、弱く押されている箇所では凸部8aの先端近
傍だけが基板7の面11に接し、強く押されている箇所
では、その力の強さに応じて凹部の一部あるいは全部が
而11に接した状態となる。
In the tactile pressure sensor 1 configured in this way, the light source 3
emits light and irradiates light 41 into the substrate 7, the light 4
1 excites the fluorescent material 12, and fluorescence 42 is generated within the substrate 7. At this time, as shown in FIG. 7, when a force F is applied from the outer surface of the outer layer material 6 to the outer layer material 6 in a vertical direction, the outer layer material 6 causes elastic deformation, and the uneven surface 8 of the outer layer material 6 is crushed and deformed. However, in places where the pressure is weak, only the vicinity of the tip of the convex portion 8a comes into contact with the surface 11 of the substrate 7, and where the pressure is strongly pressed, part or all of the concave portion contacts the surface 11 of the substrate 7, depending on the strength of the force. It will be in contact with.

一方、光学上、透明板の中をある臨界角以下の入射角で
、透明板の表面に向かって進行する光は、透明板の表面
が空気に接している場合には殆ど全反射して再び透明板
7の中に戻るが、透明板7の表面がこの実施例における
シートのような物質に接している場合には、透明板7の
表面を透過し、またその物質にその光が反I)lされた
場合は、その反射光は再び透明板の表面を透過して透明
板の中に戻るという性質を有する。
On the other hand, optically, light that travels through a transparent plate toward the surface of the transparent plate at an incident angle below a certain critical angle is almost totally reflected and re-entered when the surface of the transparent plate is in contact with air. Returning to the transparent plate 7, if the surface of the transparent plate 7 is in contact with a substance such as the sheet in this embodiment, the light will be transmitted through the surface of the transparent plate 7 and reflected by the substance. ), the reflected light has the property of passing through the surface of the transparent plate again and returning into the transparent plate.

さて、力Fによって外層材6が押付けられている箇所以
外では基板7の而11の大部分は、外層材6の凹凸面の
凹部に入っている空気に接しており、基板7の中の蛍光
42は、おおむね前記臨界角以下の入射角で基板7の面
11に向かって進行するので、而11において殆ど全反
射して再び基板7の中に戻り、基板7の他方の面13に
向かうが、而13は空気と接しているので而13におい
ても光は殆ど全反射して基板7の中に戻される。
Now, except for the part where the outer layer material 6 is pressed by the force F, most of the parts 11 of the substrate 7 are in contact with the air contained in the recesses of the uneven surface of the outer layer material 6, and the fluorescence inside the substrate 7 is Since the light 42 travels toward the surface 11 of the substrate 7 at an incident angle that is generally less than the above-mentioned critical angle, it is almost completely reflected at the 11 and returns to the substrate 7 again, heading toward the other surface 13 of the substrate 7. , and 13 are in contact with the air, so that the light is almost completely reflected at 13 and returned into the substrate 7.

外層材6が押付けられている箇所では、基板7の面11
に達した蛍光42は面11を透過して白いシリコンゴム
等の外層材60表面で反射して再び、面11を透過し、
基板7の中に入る。
At the location where the outer layer material 6 is pressed, the surface 11 of the substrate 7
The fluorescent light 42 that has reached the surface 11 passes through the surface 11, is reflected by the surface of the outer layer material 60 such as white silicone rubber, and passes through the surface 11 again.
Enter the board 7.

この時の外層材6の表面における反射は外層材6の材質
上、乱反射となるので、反射角は入射角と必ずしも一致
せず、面11と垂直に近いものも出て、これら面11と
垂直に近い蛍光43は而11を透過し、垂直に近い入射
角で面13に達するので、前記臨界角以上となり而13
をも透過して、面13に対向して位置する光源3を通過
し、色フィルタ4に達する。色フィルタ4でフィルタリ
ングされて蛍光だけがレンズ15を通して光電変換素子
群16に入る。光電変換素子16は入射光量に応じた電
気信号を出力する。
At this time, reflection on the surface of the outer layer material 6 becomes diffuse reflection due to the material of the outer layer material 6, so the reflection angle does not necessarily match the incident angle, and there are some that are close to perpendicular to the surface 11, and these reflection angles are perpendicular to the surface 11. Fluorescence 43, which is close to
The light also passes through the light source 3 located opposite the surface 13 and reaches the color filter 4 . After being filtered by the color filter 4, only the fluorescent light enters the photoelectric conversion element group 16 through the lens 15. The photoelectric conversion element 16 outputs an electric signal according to the amount of incident light.

外層材4を押す力Fによって強く押されている部分はど
外層材6が基板7の面11と接する面積が大ぎくなり、
従ってその位置に対応する位置にある光電変換素子群1
6に達する光量も多く、光電変換素子群16による電気
出力も大きくなる。
In the areas where the outer layer material 4 is strongly pressed by the force F, the area where the outer layer material 6 contacts the surface 11 of the substrate 7 becomes large.
Therefore, photoelectric conversion element group 1 located at a position corresponding to that position
The amount of light reaching 6 is also large, and the electrical output by the photoelectric conversion element group 16 is also large.

これらの光電変換素子群16からの電気出力はコンピュ
ータによって処理され、ノアFによる外層材6への圧力
分布が検出される。即ち、外層材6への圧力の位置と大
きざとの分布を検出することが出来、どんな形状のもの
がどの位の強さでシートを押しているかを識別すること
ができる。
The electrical output from these photoelectric conversion element groups 16 is processed by a computer, and the pressure distribution on the outer layer material 6 due to Noah F is detected. That is, it is possible to detect the position and size distribution of the pressure applied to the outer layer material 6, and it is possible to identify what shape is pushing the sheet and with what force.

このときの圧力分布を、コンピュータからモニタテレビ
に映像として送ることもできる。
The pressure distribution at this time can also be sent as an image from the computer to a television monitor.

[実験例] 白色系の型取り用熱硬化型2液性シリコンゴムを用い1
20℃、2時間の硬化条件にてシート状に形成して外層
材6とした。この時金型を用いて一方の面はピッチが0
.51nlRで頂角が90”の円錐形の凹凸が密に分布
するようにする。シート厚さは1.0#とした。
[Experiment example] Using white thermosetting two-component silicone rubber for mold making,
The outer layer material 6 was formed into a sheet under curing conditions of 20° C. for 2 hours. At this time, using a mold, one side has a pitch of 0.
.. The conical concavities and convexities of 51nlR and an apex angle of 90'' were densely distributed.The sheet thickness was 1.0#.

次に、蛍光物質として、青〜緑の光を吸収し赤色を発光
する有機系蛍光染料のpery+eneを用意し、これ
をポリカーボネート樹脂中に分散させ根状に成形する。
Next, as a fluorescent substance, pery+ene, an organic fluorescent dye that absorbs blue to green light and emits red light, is prepared, and this is dispersed in polycarbonate resin and molded into a root shape.

板厚は5#とじた。こうして蛍光物質が均一にドープさ
れた透明の基板が得られる。
The plate thickness was 5#. In this way, a transparent substrate uniformly doped with fluorescent material is obtained.

Peryleneの発光特性は第4図に示した。The luminescent characteristics of Perylene are shown in FIG.

次に第8図に示すように、厚さ11Mのパイレックスガ
ラス基板26上に1000へのITO(Indium−
Tin−Oxide)の透明電極27を蒸着で形成し、
更に3000AのY2O3による絶縁膜28.1μmの
CeドープSrSによる発光層31.3000AのY2
O3による絶縁膜32.1000AのITOの透明電極
33を順次にやはり蒸着法により形成したEL(エレク
トロルミネッセンス)平面発光素子で光源3を作る。発
光は透明電極27.33の間に5KHz、120Vの電
圧を印加して得る。本発光体の発光特性は第4図に示し
た。
Next, as shown in FIG. 8, ITO (Indium-
A transparent electrode 27 of (Tin-Oxide) is formed by vapor deposition,
Furthermore, an insulating film of 3000A of Y2O3 and a luminescent layer of 28.1 μm of Ce-doped SrS.
The light source 3 is made of an EL (electroluminescence) flat light emitting device in which an insulating film 32 made of O3 and a transparent electrode 33 made of ITO of 1000 A are sequentially formed by the vapor deposition method. Light emission is obtained by applying a voltage of 5 KHz and 120 V between the transparent electrodes 27 and 33. The light emitting characteristics of this light emitter are shown in FIG.

次に屈折率の異なる透明多層膜を設計した膜厚で積層す
ることによって特定波長の光を透過させる色フィルタ4
は容易に作成できて、これはダイクロイック・ミラーと
して良く知られている。
Next, a color filter 4 that transmits light of a specific wavelength by laminating transparent multilayer films with different refractive indexes with a designed film thickness.
is easy to create and is well known as a dichroic mirror.

ここでは第4図に示したような透過特性のダイクロイッ
ク・ミラーを厚さ1Mのパイレックスガラス基板上に形
成した。
Here, a dichroic mirror with transmission characteristics as shown in FIG. 4 was formed on a Pyrex glass substrate with a thickness of 1M.

次にレンズ15として分布屈折率平板マイクロレンズを
用意する。ガラス基板に直径0.9mm。
Next, a distributed refractive index flat plate microlens is prepared as the lens 15. A glass substrate with a diameter of 0.9 mm.

ピッチ1.0#Iの2次元レンズアレーとし、各レンズ
の開口数は0.23であった。
A two-dimensional lens array with a pitch of 1.0#I was used, and the numerical aperture of each lens was 0.23.

次に光電変換素子群16としてフォトトランジスアレー
を形成した。
Next, a phototransistor array was formed as the photoelectric conversion element group 16.

以上を第1図のように積層する。この時基板7と光源3
との間には0.5mの厚さのスペーサ14を入れて、両
者の間に空間を設ける。
The above is laminated as shown in FIG. At this time, the substrate 7 and the light source 3
A spacer 14 with a thickness of 0.5 m is inserted between the two to provide a space between the two.

こうして触圧覚センサが完成した。In this way, a tactile pressure sensor was completed.

[発明の効果コ この発明によれば分解能が高く、ロボットハンドへの装
着を可能とするコンパクトな構成で、かつ機能発揮のた
めに充分な広さの検出面を確保できる高密度分布型触圧
党センサを得ることができる。
[Effects of the invention] According to this invention, a high-density distributed contact force has a high resolution, a compact configuration that allows it to be attached to a robot hand, and a detection surface that is large enough to perform its functions. Party sensor can be obtained.

特に重要なこととして、この発明の触圧覚センサでは光
導波板となるべき基板7中に蛍光物資を含んで蛍光を発
する構造となっているために、基板7中での光の減衰が
少なく、検出感度を高めることができる。
What is particularly important is that the tactile pressure sensor of the present invention has a structure in which the substrate 7, which is to serve as an optical waveguide plate, contains a fluorescent material and emits fluorescence, so the attenuation of light in the substrate 7 is small. Detection sensitivity can be increased.

[他の実施例1 第9図はこの発明の他の実施例を示すもので、この実施
例においては受光装置5としてレンズ35を備えたカメ
ラ36を使用している。
[Other Embodiment 1] FIG. 9 shows another embodiment of the present invention, in which a camera 36 equipped with a lens 35 is used as the light receiving device 5.

また、第10図はこの発明の更に他の実施例を示すもの
で、この実施例においては、光源3を平面発光型とせず
に投光型とし、側りから基板7に投光する構成とし、か
つ、受光装置としてレンズ35を備えたカメラ36を使
用し、色フィルタ4、レンズ35、カメラ36を離隔し
た位置から基板7に対向させたものである。
Further, FIG. 10 shows still another embodiment of the present invention. In this embodiment, the light source 3 is not a planar light emitting type but a light projecting type, and the light source 3 is configured to project light onto the substrate 7 from the side. In addition, a camera 36 equipped with a lens 35 is used as a light receiving device, and the color filter 4, lens 35, and camera 36 are opposed to the substrate 7 from a separated position.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例に係わる触圧覚センサの斜
8M説明図、第2図は第1図に示ず触圧覚センサの縦断
面分解説明図、第3図は第1図の触圧覚センサをロボッ
トハンドに組込んだ状態を示す縦断面図、第4図は色フ
ィルタの透過特性を示すグラフ、第5図はフォトダイオ
ードを示す断面拡大説明図、第6図はMO8型踊像素子
を示す回路図、第7図は触圧覚センザの動作を示す縦断
面説明図、第8図は光源の縦断面説明図、第9図は他の
実施例の触圧覚センサの断面説明図、第10は他の実施
例の触圧覚センサの断面説明図、及び第11図は従来の
触圧覚センサを示す断面説明図である。 1・・・触圧覚センサ 2・・・検出部材 3・・・光源 4・・・色フィルタ 5・・・受光装置 6・・・外層材 7・・・基板 8・・・凹凸面 8a・・・凸部 9・・・空間 11・・・而 12・・・蛍光物資 13・・・面 14・・・スペーサ 15・・・レンズ 16・・・光電変換素子群 17・・・フォトダイオード 18・・・透明電極 21・・・電極 22・・・絶縁膜 24・・・フレーム 26・・・パイレックスガラス基板 27・・・透明電極 28・・・平面発光素子 35・・・レンズ 36・・・カメラ 復代理人、代理人、弁理士   川 片 治 男第1図 第2図 第3図 第4図 400     500     600     7
00 nm汲 長 第5図 第6図 第7図 第10図 第11図
FIG. 1 is an explanatory 8M oblique view of a tactile pressure sensor according to an embodiment of the present invention, FIG. 2 is an exploded longitudinal cross-sectional view of the tactile pressure sensor not shown in FIG. A longitudinal cross-sectional view showing the pressure sensor installed in the robot hand, Fig. 4 is a graph showing the transmission characteristics of the color filter, Fig. 5 is an enlarged cross-sectional view showing the photodiode, and Fig. 6 is the MO8 type dance element. 7 is a vertical cross-sectional explanatory diagram showing the operation of the tactile pressure sensor, FIG. 8 is a vertical cross-sectional explanatory diagram of the light source, and FIG. 9 is a cross-sectional explanatory diagram of the tactile pressure sensor of another embodiment. 10 is an explanatory cross-sectional view of a tactile pressure sensor according to another embodiment, and FIG. 11 is an explanatory cross-sectional view showing a conventional tactile pressure sensor. 1... Touch pressure sensor 2... Detection member 3... Light source 4... Color filter 5... Light receiving device 6... Outer layer material 7... Substrate 8... Uneven surface 8a...・Convex portion 9...Space 11...Meta 12...Fluorescent material 13...Surface 14...Spacer 15...Lens 16...Photoelectric conversion element group 17...Photodiode 18. ... Transparent electrode 21 ... Electrode 22 ... Insulating film 24 ... Frame 26 ... Pyrex glass substrate 27 ... Transparent electrode 28 ... Planar light emitting element 35 ... Lens 36 ... Camera Sub-Agent, Agent, Patent Attorney Osamu Kawa Kata Figure 1 Figure 2 Figure 3 Figure 4 400 500 600 7
00 nm length Fig. 5 Fig. 6 Fig. 7 Fig. 10 Fig. 11

Claims (4)

【特許請求の範囲】[Claims] (1)内側面に弾性変形可能な多数の突起を有する外層
材と前記突起に接触した状態で前記外層材に沿って配設
された基板とを備えた検出部材を有し、前記基板は蛍光
物質を分散させた透光性材料で構成され、かつ、前記基
板に光を入射し得る光源と前記基板から出射した光を色
フィルタを介して受光する受光装置とを備えることを特
徴とする触圧覚センサ
(1) A detection member including an outer layer material having a large number of elastically deformable protrusions on an inner surface and a substrate disposed along the outer layer material in contact with the protrusions, the substrate being fluorescent The touch panel is made of a light-transmitting material in which a substance is dispersed, and includes a light source capable of inputting light into the substrate and a light receiving device receiving light emitted from the substrate via a color filter. pressure sensor
(2)前記光源は平面光源であり、前記受光素子は光電
変換素子であり、前記光源、色フィルタ、レンズアレー
及び前記受光素子が順次前記基板に重ねられて配設され
ていることを特徴とする特許請求の範囲第1項記載の触
圧覚センサ
(2) The light source is a planar light source, the light receiving element is a photoelectric conversion element, and the light source, color filter, lens array, and light receiving element are arranged in order to be stacked on the substrate. The tactile pressure sensor according to claim 1
(3)前記光源は平面光源であり、前記受光素子はカメ
ラであり、前記光源、色フィルタが順次前記基板に重ね
られて配設され、前記受光素子は前記色フィルタに対向
して位置していることを特徴とする特許請求の範囲第1
項記載の触圧覚センサ
(3) The light source is a planar light source, the light receiving element is a camera, the light source and the color filter are sequentially stacked on the substrate, and the light receiving element is located opposite to the color filter. Claim 1 characterized in that
Tactile pressure sensor described in section
(4)前記光源は投影型光源であって前記基板から離隔
して位置し、前記受光素子はカメラであって前記色フィ
ルタを介して前記基板に対向して位置していることを特
徴とする特許請求の範囲第1項記載の触圧覚センサ
(4) The light source is a projection type light source and is located apart from the substrate, and the light receiving element is a camera and is located opposite to the substrate through the color filter. Tactile pressure sensor according to claim 1
JP63126662A 1988-05-24 1988-05-24 Tactile sensor Expired - Lifetime JPH0658272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63126662A JPH0658272B2 (en) 1988-05-24 1988-05-24 Tactile sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63126662A JPH0658272B2 (en) 1988-05-24 1988-05-24 Tactile sensor

Publications (2)

Publication Number Publication Date
JPH01296129A true JPH01296129A (en) 1989-11-29
JPH0658272B2 JPH0658272B2 (en) 1994-08-03

Family

ID=14940765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63126662A Expired - Lifetime JPH0658272B2 (en) 1988-05-24 1988-05-24 Tactile sensor

Country Status (1)

Country Link
JP (1) JPH0658272B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008032522A (en) * 2006-07-28 2008-02-14 Nitta Ind Corp Tactile sensor using optical fiber
US8168935B2 (en) 2009-02-23 2012-05-01 Casio Computer Co., Ltd. Pressure sensor and pressure measurement method of pressure sensor
JP2013035097A (en) * 2011-08-08 2013-02-21 Disco Corp Contact detection method of moving object
JP2014516160A (en) * 2011-06-06 2014-07-07 エーファウ・グループ・エー・タルナー・ゲーエムベーハー Method and apparatus for determining pressure distribution for bonding
CN114113008A (en) * 2021-10-22 2022-03-01 清华大学深圳国际研究生院 Artificial touch equipment and method based on structured light

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008032522A (en) * 2006-07-28 2008-02-14 Nitta Ind Corp Tactile sensor using optical fiber
US8168935B2 (en) 2009-02-23 2012-05-01 Casio Computer Co., Ltd. Pressure sensor and pressure measurement method of pressure sensor
JP2014516160A (en) * 2011-06-06 2014-07-07 エーファウ・グループ・エー・タルナー・ゲーエムベーハー Method and apparatus for determining pressure distribution for bonding
JP2013035097A (en) * 2011-08-08 2013-02-21 Disco Corp Contact detection method of moving object
CN114113008A (en) * 2021-10-22 2022-03-01 清华大学深圳国际研究生院 Artificial touch equipment and method based on structured light
CN114113008B (en) * 2021-10-22 2023-12-22 清华大学深圳国际研究生院 Structured light-based artificial haptic device and method

Also Published As

Publication number Publication date
JPH0658272B2 (en) 1994-08-03

Similar Documents

Publication Publication Date Title
JP5238475B2 (en) Display device provided with touch panel, and electronic device
JP4338845B2 (en) Touch panel, display device including touch panel, and electronic apparatus including display device
JP4286853B2 (en) Electronics
US7351949B2 (en) Optical generic switch panel
CN207799711U (en) biological characteristic identification module
CN109933237B (en) Display panel, display device and pressure detection method
CN110308583B (en) Display panel and fingerprint identification display device
JP2011070146A (en) Touch sensing liquid crystal display device and method for manufacturing the same, touch sensing method in display device, and touch sensing display
US20080121787A1 (en) Input apparatus and touch screen using the same
US11577246B2 (en) Microfluidic device and detection method therefor
JP3481408B2 (en) Contact color image sensor, contact color image sensor unit, and method of manufacturing contact color image sensor
JP2000050028A (en) Handy type scanner using plastic optical fiber for reading color image
JPH01296129A (en) Touch pressure sensor
CN111242012A (en) Display device with fingerprint identification function
US10896314B2 (en) Fingerprint identification module
US5254849A (en) Image reading apparatus having light shielding element disposed between light emitting elements
KR20040017139A (en) Image display device combined touch panel and method for manufacturing thereof
JP3067460B2 (en) Image input / output device
KR20190024956A (en) Capacitive three-dimensional sensor
TWI823209B (en) Fingerprint sensing apparatus and fingerprint sensing method thereof
JPS5928756A (en) Optical sensor
KR960001343B1 (en) Image reading device with different reflection coefficients in a
JPH04104684U (en) light emitting device device
JPH06260283A (en) Manufacture of light emitting element device
JP2697180B2 (en) Image reading device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term