JPH01296089A - Intermediate heat exchanger - Google Patents

Intermediate heat exchanger

Info

Publication number
JPH01296089A
JPH01296089A JP12391488A JP12391488A JPH01296089A JP H01296089 A JPH01296089 A JP H01296089A JP 12391488 A JP12391488 A JP 12391488A JP 12391488 A JP12391488 A JP 12391488A JP H01296089 A JPH01296089 A JP H01296089A
Authority
JP
Japan
Prior art keywords
heat exchanger
tubes
lower shell
secondary coolant
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12391488A
Other languages
Japanese (ja)
Inventor
Shohei Matsuda
昌平 松田
Masaaki Kaga
加賀 正昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP12391488A priority Critical patent/JPH01296089A/en
Publication of JPH01296089A publication Critical patent/JPH01296089A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To widen a gap between the bundles of tubes to reduce the flow speed of fluid and improve load bearing capacity with respect to hydrodynamic elastic vibration, by a method wherein heat transfer tubes near the inlet window of secondary cooling material are provided with elliptical sectional configuration and are arranged so that the major axis thereof coincides with the flow direction of the fluid. CONSTITUTION:In an intermediate heat exchanger for a liquid metal cooling tank type fast breeder reactor, the flow speed of secondary cooling material is quickened especially at the vicinity of the inlet window of the second cooling material and the vicinity of entrances 21 of ascending tubes and, therefore, heat transfer tubes 13 in these areas are readily damaged by hydrodynamic elastic vibration. Therefore, the heat transfer tubes 22 arranged near the inlet 21 of the ascending tubes are provided with elliptical sectional configuration and are arranged so that the major axis of the elliptical sectional configuration coincides with the flow direction of the secondary cooling material. When the hat transfer tubes are constituted of elliptical pipes having the same sectional area and the ratio of a minor axis to the major axis thereof is 1:2, the healthiness of the tubes with respect to the hydrodynamic elastic vibration may be improved to 1.62 times as compared with a circular heat transfer tube.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、例えば液体金属冷却タンク型高速増殖炉に適
用される炉容器内設置型の中間熱交換器に係り、特に熱
交換用管束の構成を改良した中間熱交換器に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to an intermediate heat exchanger installed in a reactor vessel, which is applied to, for example, a liquid metal cooled tank type fast breeder reactor, and particularly The present invention relates to an intermediate heat exchanger with an improved structure of a heat exchange tube bundle.

(従来の技術) 液体金属冷却タンク型高速増殖炉では、炉容器を循環す
る1次冷却材および蒸気発生器を含む2次冷却材を循環
する2次冷却材の双方に液体金属、例えば液体ナトリウ
ムが使用され、この1次冷却材と2次冷却材との間の熱
の受渡しに用いられる中間熱交換器が炉容器内に設置さ
れている。
(Prior Art) In a liquid metal cooled tank type fast breeder reactor, a liquid metal such as liquid sodium is used in both the primary coolant that circulates in the reactor vessel and the secondary coolant that circulates in the secondary coolant that includes the steam generator. is used, and an intermediate heat exchanger used for transferring heat between the primary coolant and the secondary coolant is installed in the furnace vessel.

以下、第3図を用いて炉容器内の構造を説明する。炉容
器1は上方をルーフスラブ2で覆われ、ルーフスラブ2
に中間熱交換器3が炉心4の周囲に1次循環ポンプ5と
ともに一定の間隔を保持して複数台吊下げられている。
Hereinafter, the structure inside the furnace vessel will be explained using FIG. 3. The furnace vessel 1 is covered with a roof slab 2 from above.
A plurality of intermediate heat exchangers 3 are suspended around the reactor core 4 together with primary circulation pumps 5 at regular intervals.

なお、符号6は炉容器1内を満たしている1次冷却材が
漏洩して外部に漏れるのを防止する安全容器を示してい
る。
Note that the reference numeral 6 indicates a safety container that prevents the primary coolant filling the inside of the reactor vessel 1 from leaking to the outside.

次に、中間熱交換器3の構造を第4図を参照して説明す
る。中間熱交換器3はルーフスラブ2から垂直に吊下げ
られる円筒状の上部f!i47およびこれに連結される
下部$8を主体として構成される。
Next, the structure of the intermediate heat exchanger 3 will be explained with reference to FIG. The intermediate heat exchanger 3 has a cylindrical upper part f! vertically suspended from the roof slab 2. It is mainly composed of the i47 and the lower part $8 connected to it.

この上部flii7には壁面を貫いて1次冷却材入口窓
9が設けられ、下部胴8には下方に向けて開口している
1次冷却材出口10が設けられている。この1次冷却材
入口窓9から1次冷却材出口10にかけて下部胴8内の
中心部を占める熱交換部が形成されている。すなわち、
上方を上部管板11、下方を下部管板12で各々支持さ
れた複数の伝熱管13が垂直に配置され、伝熱壁により
内と外とに隔てられ、1次冷却材と2次冷却材との間で
熱の受渡しが行なわれる。
The upper flii7 is provided with a primary coolant inlet window 9 passing through the wall surface, and the lower body 8 is provided with a primary coolant outlet 10 that opens downward. A heat exchange portion occupying the center of the lower shell 8 is formed from the primary coolant inlet window 9 to the primary coolant outlet 10. That is,
A plurality of heat transfer tubes 13 are vertically arranged, each supported by an upper tube plate 11 at the top and a lower tube plate 12 at the bottom, separated by a heat transfer wall into an inside and an outside, and are separated by a primary coolant and a secondary coolant. Heat is transferred between the

一方、上部胴7の上端部には2次冷却材入口14および
2次冷却材出口15がそれぞれ設けられている。この2
次冷却材人口14は上部11ii7から下部胴8にかけ
て延在するように取付けられる下降管16と連結してお
り、2次冷却材出口15は下降管16のまた、上記した
伝熱管13により構成される熱交換部は交互におかれた
太きさめ異なる2種類のドーナッツ形状のバッフル18
.19により仕切られており、2次冷却材が伝熱管13
の外側を下方から上方に向かって流れるようになってい
る。なお、図中、符号20および21は2次冷却材入口
窓および上昇管入口をそれぞれ示している。
On the other hand, a secondary coolant inlet 14 and a secondary coolant outlet 15 are provided at the upper end of the upper body 7, respectively. This 2
The secondary coolant population 14 is connected to a downcomer pipe 16 installed to extend from the upper part 11ii7 to the lower body 8, and the secondary coolant outlet 15 is constituted by the downcomer pipe 16 and the heat transfer tube 13 described above. The heat exchange section consists of two types of donut-shaped baffles 18 of different thickness placed alternately.
.. The secondary coolant is separated by heat transfer tube 13.
It flows from the bottom to the top on the outside. Note that in the figure, numerals 20 and 21 indicate the secondary coolant inlet window and the riser pipe inlet, respectively.

上記構成において、上部胴7の外側に流れた1次冷却材
は1次冷却材入口窓9から上部111ii7内に流れ、
ざらに伝熱管13内を下に向かって流れる間にその外側
を流れる2次冷却材と熱交換して温度降下し、その後下
部胴8に導かれる。そして、そこから1次冷却材出口1
0から器外に排出される。
In the above configuration, the primary coolant that has flowed to the outside of the upper body 7 flows from the primary coolant inlet window 9 into the upper part 111ii7,
While flowing roughly downward within the heat transfer tube 13, the temperature is lowered by exchanging heat with the secondary coolant flowing outside the tube 13, and then introduced into the lower shell 8. From there, the primary coolant outlet 1
0 and is discharged outside the vessel.

一方、2次冷却材は2次冷却材人口14を通して下降管
16内に入り、これに導かれて下に向かって流れ、2次
冷却材入口窓20を通って熱交換部に流入し、伝熱管1
3の外側を流れて上述した1次冷却材との熱交換で温度
上昇し、上昇管入口21を経て上昇管17内に入り、こ
れに導かれて上昇し、2次冷却材出口15を経て蒸気発
生装置(図示せず)に送られる。
On the other hand, the secondary coolant enters the downcomer pipe 16 through the secondary coolant population 14, is guided by this, flows downward, flows into the heat exchange section through the secondary coolant inlet window 20, and is transferred. heat tube 1
3, the temperature rises through heat exchange with the primary coolant mentioned above, enters the riser pipe 17 through the riser pipe inlet 21, is guided by this, rises, and passes through the secondary coolant outlet 15. It is sent to a steam generator (not shown).

(発明が解決しようとする課題) 以上述べたような中間熱交換器3において、2次冷却材
の流速が2次冷却材入口窓20fi傍そして上昇管入口
21近傍で特に速くなっており、これらの領域の伝熱管
13が流力弾性振動により損傷を受ける懸念がある。
(Problems to be Solved by the Invention) In the intermediate heat exchanger 3 as described above, the flow velocity of the secondary coolant is particularly high near the secondary coolant inlet window 20fi and the riser pipe inlet 21, and There is a concern that the heat exchanger tubes 13 in the region may be damaged by hydroelastic vibration.

以下、この問題を図面を参照して詳細に説明する。This problem will be explained in detail below with reference to the drawings.

第5図において、下降管16内を流下した2次冷却材は
図中の矢印に示すように2次冷却材入口窓20から管束
内に流し込み、図中2点鎖線で示すバ!ッフル板18の
外周部を過ぎると今度は流れの向きを変え、紙面と垂直
に流れて次のスパンへ導かれる。この2次冷却材の流れ
で特に2次冷却材入口窓20近傍は、管束隙間面積すな
わち流路面積が少いので流速が速くなっている。その他
に流れが管束に対して直交に流れる直交流が支配的であ
るので、この領域は流力弾性振動による個々の伝熱管1
3の振動およびそれらの損傷が懸念される。
In FIG. 5, the secondary coolant that has flowed down the downcomer pipe 16 flows into the tube bundle through the secondary coolant inlet window 20 as shown by the arrow in the figure, and then flows into the tube bundle as shown by the two-dot chain line in the figure. After passing the outer periphery of the baffle plate 18, the flow changes direction and flows perpendicular to the plane of the paper to be guided to the next span. Particularly in the flow of the secondary coolant, the flow velocity is high near the secondary coolant inlet window 20 because the tube bundle gap area, that is, the flow path area is small. In addition, since the flow is dominated by a cross flow that is perpendicular to the tube bundle, this region is caused by hydroelastic vibration of the individual heat exchanger tubes.
3 vibrations and their damage are a concern.

また、第6図において、下部胴8とバッフル板18の外
周部との間を紙面に垂直に上昇してきた2次冷却材は流
れの向きを変え、図中の矢印に示すように半径方向に内
側に向って流れ、上昇管人口21を過ぎると再び紙面に
垂直に上昇し、下界管16と上昇管17との間の流路に
導かれる。この場合においても上昇管入口21近傍は流
路面積が少いので2次冷却材の流速は特に速くなってい
る。また、同じく直交流が支配的であるので、この領域
も流ノコ弾性振動による個々の伝熱管13の振動および
それらの損傷が懸念される。
In addition, in FIG. 6, the secondary coolant that has risen perpendicularly to the plane of the paper between the lower shell 8 and the outer periphery of the baffle plate 18 changes its flow direction and moves in the radial direction as shown by the arrow in the figure. It flows inward, passes through the riser tube 21, rises perpendicularly to the plane of the paper again, and is guided into the flow path between the lower limit tube 16 and the riser tube 17. In this case as well, since the flow path area is small near the riser pipe inlet 21, the flow velocity of the secondary coolant is particularly high. Further, since the cross flow is similarly dominant, there is a concern that the individual heat exchanger tubes 13 may vibrate and be damaged due to the flow saw elastic vibration in this region as well.

かかる伝熱管13の流力弾性振動を防止する方法として
は個々の伝熱管13の間隔すなわち管ピッチを大きくし
、管束内を通る流体の速度を遅くするの外径の屑入をま
ねき、ひいては上容器−1の5/)任も増大させ、高速
増殖炉プラントの大形化を招くことになる。管束向流体
の速度を低下させる別の方法として上部管板11および
下部管板12に最も近接するバッフル板18.19を管
板面より離してすなわちスパンを大きくする方法がある
。このようにすれば流路面積が広くなるので、これら2
箇所の領域の流速を下げることができる。しかし、伝熱
管13の支持スパンが広くなったことにより、伝熱管1
3の固有振動数が下げられ、逆に伝熱管13が撮動しや
すくなる。それ故この方法も流力弾性撮動の防止対策と
しては必らずしも都合がよくない。
A method for preventing such hydroelastic vibrations of the heat transfer tubes 13 is to increase the interval between the individual heat transfer tubes 13, that is, the tube pitch, which slows down the velocity of the fluid passing through the tube bundle, which leads to the ingress of debris on the outer diameter, and which also increases the This also increases the capacity of vessel-1, leading to an increase in the size of the fast breeder reactor plant. Another method for reducing the velocity of the tube-bundling fluid is to move the baffle plates 18, 19 closest to the upper tube sheet 11 and lower tube sheet 12 away from the tube sheet surface, that is, to increase the span. In this way, the flow path area becomes wider, so these two
The flow velocity in the area can be reduced. However, as the support span of the heat exchanger tube 13 has become wider, the heat exchanger tube 1
3 is lowered, and conversely, the heat exchanger tube 13 becomes easier to photograph. Therefore, this method is not necessarily convenient as a preventive measure against hydroelastic imaging.

本発明の目的は2次冷却材入口窓近傍および上昇管入口
近傍における流力弾性振動による伝熱管の損傷を防止し
得るようにした中間熱交換器を提本発明は上記目的を達
成するため2次冷却材入口窓および/または上昇管入口
近傍の伝熱管の断面形状を楕円形あるいは長円形に構成
し、かつその伝熱管の長軸を2次冷却材の流れ方向と同
一の向きに配置するようにしたことを特徴としている。
SUMMARY OF THE INVENTION An object of the present invention is to provide an intermediate heat exchanger that can prevent damage to heat transfer tubes caused by hydroelastic vibration near the secondary coolant inlet window and the riser inlet. The cross-sectional shape of the heat exchanger tube near the secondary coolant inlet window and/or riser pipe inlet is configured to be oval or oval, and the long axis of the heat exchanger tube is arranged in the same direction as the flow direction of the secondary coolant. It is characterized by the fact that

(作 用) このような構造の中間熱交換器では、2次冷却材入口窓
および上昇管入口近傍において、円周方向に伝熱管相互
の間隔が広くなる。すなわち、流れに対して管束の隙間
が広くなり、2次冷却材の流速を低下させることができ
る。
(Function) In the intermediate heat exchanger having such a structure, the distance between the heat transfer tubes becomes wider in the circumferential direction near the secondary coolant inlet window and the riser tube inlet. That is, the gap between the tube bundle becomes wider with respect to the flow, and the flow velocity of the secondary coolant can be reduced.

一方、伝熱管の固有振動数は、伝熱管の断熱2次モーメ
ントの172乗に比例するために楕円断面の伝熱管を採
用することによる伝熱管を楕円断面とすることによる断
面2次モーメントの低下の影響は伝熱管相互の隙間の拡
大による流速低下の寄与に比べると問題なく小さい。
On the other hand, since the natural frequency of a heat exchanger tube is proportional to the 172nd power of the adiabatic moment of inertia of the heat exchanger tube, the second moment of area of the heat exchanger tube is reduced by using a heat exchanger tube with an elliptical cross section. The effect of this is reasonably small compared to the contribution of the decrease in flow velocity due to the enlargement of the gap between the heat exchanger tubes.

(実施例) 以下、本発明の実施例を図面によって説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明による中間熱交換器の一実施例を示すも
ので、上昇管人口21近傍に配置される伝熱管22は断
面楕円形に構成されている。そして、この伝熱管22は
その長軸を2次冷却材の流れ方向に一致させている。
FIG. 1 shows an embodiment of an intermediate heat exchanger according to the present invention, in which heat exchanger tubes 22 disposed near riser tubes 21 have an elliptical cross-section. The long axis of the heat transfer tube 22 is aligned with the flow direction of the secondary coolant.

以下、説明のための一例として、当初管外径が25.4
.、肉厚1.2mmの円形伝熱管を用い円周方向の管ピ
ッチを33.02am、すなわち管外径と管ピッチの比
が1 :  1.3である管群において、例えば円形断
面の伝熱管をこれと同一断面積、同一の管の肉厚を有す
る短径と長径の比が1:2である楕円断面の伝熱管と置
換した場合の流力弾性撮動に対する耐力の向上について
、以下に説明する。
Below, as an example for explanation, the initial pipe outer diameter is 25.4.
.. In a group of tubes using circular heat exchanger tubes with a wall thickness of 1.2 mm and a tube pitch in the circumferential direction of 33.02 am, that is, a ratio of tube outer diameter to tube pitch of 1:1.3, for example, a heat exchanger tube with a circular cross section The improvement of the resistance against hydroelastic imaging when replacing this with a heat exchanger tube with an elliptical cross section with the same cross-sectional area, the same wall thickness, and a ratio of short axis to long axis of 1:2 is described below. explain.

一般に、流力弾性振動を生じる限界流速Verは次の式
で表わされる。以下式中の記号の右肩に(d 799を
つけたものは、楕円形の伝熱管を使用した場合である。
Generally, the critical flow velocity Ver that causes hydroelastic vibration is expressed by the following equation. In the formula below, (d 799 is added to the right side of the symbol) when an oval heat exchanger tube is used.

ここに、foは管の固有振動数で次式による。Here, fo is the natural frequency of the pipe and is based on the following equation.

Ver:限界流速 me:付加質量を含む単位長さ当りの雪質量K :管配
列、ピッチ、支持方法等によって定まる定数 do:代表径    δ0:減衰率 A :バッフル間距離および支持方法等によって定まる
定数 ρ :流体密度    E:ヤング率 I :伝熱管の断面2次モーメント 式■を式■に代入することにより次式に示すように流速
と断面2次モーメントの関係式が導かれる。
Ver: Critical flow velocity me: Snow mass per unit length including added mass K: Constant determined by pipe arrangement, pitch, support method, etc. do: Representative diameter δ0: Attenuation rate A: Constant determined by distance between baffles, support method, etc. ρ: Fluid density E: Young's modulus I: By substituting the equation (2) of the second moment of area of the heat exchanger tube into the equation (2), a relational expression between the flow velocity and the second moment of area is derived as shown in the following equation.

ど、流力弾性撮動に対してより健全性の高い設計である
といえる。
However, it can be said that the design is more sound for hydroelastic imaging.

円形の伝熱管の場合 本実施例である楕円形面の伝熱管の場合ここで、円形の
伝熱管の断面2次モーメントはI −6695,4でお
る。一方楕円形の伝熱管における流力弾性振動は、一般
に、流れに垂直な方向で生じることから、長軸に関する
断面2次モーメントを採用すると、I′=50411I
IIr&4でありI/I−0、753となる。なお、長
袖に関する断面2次モーメントは楕円形で最も小さな断
面2次モーメントであり、流れに垂直な方向以外の方向
での振動に対しては同一流速であれば、断面2次モーメ
ントが大ぎくなるため、流力弾性撮動に対してより耐力
を有していることになる。一方、伝熱管相互の間隔が広
がることにより2次冷却材の流速は¥=。、53 kl
:6゜ ■ er = 1.62 X − ■ すなわち、同一断面積を有する短径と長径の比が1:2
の楕円形の伝熱管とすることにより円形の伝熱管に比べ
流力弾性振動に対する健全性が1.62倍に向上するこ
とがわかる。
In the case of a circular heat exchanger tube In the case of a heat exchanger tube with an oval surface according to this embodiment, the moment of inertia of the circular heat exchanger tube is I -6695.4. On the other hand, since hydroelastic vibration in an elliptical heat transfer tube generally occurs in the direction perpendicular to the flow, if the second moment of area about the long axis is adopted, I' = 50411I
IIr&4, which is I/I-0, 753. The moment of inertia of area related to long sleeves is the smallest moment of inertia of an ellipse, and the moment of inertia of area becomes large for vibrations in directions other than perpendicular to the flow, if the flow velocity is the same. Therefore, it has more resistance against hydroelastic imaging. On the other hand, as the distance between the heat transfer tubes increases, the flow velocity of the secondary coolant increases. , 53kl
:6゜■ er = 1.62
It can be seen that by using an elliptical heat exchanger tube, the soundness against hydroelastic vibration is improved by 1.62 times compared to a circular heat exchanger tube.

本発明によれば断面2次モーメントの低下により剛性の
低下があるものの、流路面積拡大による効果が多きり1
qられ、流力弾性撮動に対して高い耐力を得ることがで
きる。
According to the present invention, although there is a decrease in rigidity due to a decrease in the moment of inertia of the area, there are many effects due to the expansion of the flow path area.
q, and high resistance to hydroelastic imaging can be obtained.

以上は上昇管入口21近傍に関する説明であるが、二次
流体入口窓20近傍についても同様のことがいえる。
Although the above description relates to the vicinity of the riser pipe inlet 21, the same can be said to the vicinity of the secondary fluid inlet window 20.

次に、第2図を参照して本発明の他の実施例について説
明する。第1図と異なる点は伝熱管22の配列が円周配
列でなく、三角形配列である点である。
Next, another embodiment of the present invention will be described with reference to FIG. The difference from FIG. 1 is that the heat exchanger tubes 22 are arranged not in a circumferential arrangement but in a triangular arrangement.

このような構造の中間熱交換器を用いても上昇管入口2
1近傍の伝熱管22は円周上の伝熱管相互の間隔が増大
したことによる2次冷却材の流速の低減によりこの領域
の流力弾性振動に対して高い耐力を有することになる。
Even if an intermediate heat exchanger with such a structure is used, the riser pipe inlet 2
The heat exchanger tubes 22 in one vicinity have a high resistance to hydroelastic vibrations in this region due to a reduction in the flow velocity of the secondary coolant due to an increase in the distance between the heat exchanger tubes on the circumference.

2次冷却材入口窓20近傍についψ様のことがいえる。The same thing as ψ can be said about the vicinity of the secondary coolant inlet window 20.

以上断面楕円形の伝熱管について説明してきたが、形状
を長円形に変えても同様のことがいえるのは明白である
Although the heat exchanger tube having an elliptical cross section has been described above, it is clear that the same thing can be said even if the shape is changed to an ellipse.

〔発明の効果〕〔Effect of the invention〕

以上述べてきたように本発明による中間熱交換器を用い
ると従来2次冷却材流速が速く流力弾性撮動による伝熱
管損傷が懸念されていた2次冷却材入口窓および上昇管
入口近傍の管束に対し、2次冷却材の流速抑制作用によ
り流力弾性撮動に対する高い耐力をもたらすことができ
、ひいては信頼性の高い中間熱交換器を提供できる。
As described above, when using the intermediate heat exchanger according to the present invention, the secondary coolant flow rate is high and the heat exchanger tubes can be damaged near the secondary coolant inlet window and the riser pipe inlet, where the flow rate of the secondary coolant was high and there was concern about damage to the heat transfer tubes due to hydroelastic imaging. The flow rate suppressing effect of the secondary coolant on the tube bundle can provide a high resistance against hydroelastic imaging, and as a result, a highly reliable intermediate heat exchanger can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の一実施例を示す中間熱交
換器の管束の部分断面図、第3図は従来の炉容器内の主
要な機器を示す構成図、第4図は従来の中間熱交換器を
拡大して示す断面図、第5図および第6図は従来の中間
熱交換器の管雫β分断面図である。 1・・・炉容器     3・・・中間熱交換器4・・
・炉心      7・・・上部胴8・・・下部胴  
   9・・・1次冷却材入口窓10・・・1次冷却材
出口 13・・・(円形の)伝熱管16・・・下降管 
    17・・・上昇管18、19・・・バッフル板 2G・・・2次冷却材入口窓 22・・・(楕円形の)伝熱管 代理人 弁理士 則 近 憲 佑 同  第子丸 健 第1図 第2図 第3図 第4図 第5図 第6図
1 and 2 are partial sectional views of a tube bundle of an intermediate heat exchanger showing one embodiment of the present invention, FIG. 3 is a configuration diagram showing main equipment in a conventional furnace vessel, and FIG. 4 is a conventional FIG. 5 and FIG. 6 are cross-sectional views showing a conventional intermediate heat exchanger in an enlarged manner. 1...Furnace vessel 3...Intermediate heat exchanger 4...
・Reactor core 7... Upper shell 8... Lower shell
9...Primary coolant inlet window 10...Primary coolant outlet 13...(circular) heat transfer tube 16...Downcomer pipe
17...Rising pipe 18, 19...Baffle plate 2G...Secondary coolant inlet window 22...(elliptical) heat exchanger tube agent Patent attorney Noriyuki Noriyuki Yudo Daishimaru Kendai 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] それぞれ内径を同一の大きさに形成される上部胴および
下部胴を垂直方向に同心を保持して連結し、上記下部胴
内には該下部胴内を上記上部胴から仕切る上部管板およ
び外部と通じさせた該下部胴内の下方空間との間を仕切
る下部管板を各々設けると共に、外部から導かれる被加
熱媒体が上記下部胴内の仕切られた領域を下方から上方
に、かつ加熱媒体が上方から下方にかけて互いに対向流
として流れるように2次冷却材入口窓を有する下降管お
よび上記上部胴内と上記下部胴の下方空間とを連通せし
める多数の伝熱管を上記下部胴内の中央領域および外周
領域にそれぞれ配置してなる中間熱交換器において、上
記2次冷却材入口窓および/または上昇管入口近傍の伝
熱管の断面形状を楕円形あるいは長円形に構成し、かつ
その伝熱管の長軸を被加熱媒体の流れ方向と同一の向き
に配置するようにしたことを特徴とする中間熱交換器。
An upper shell and a lower shell, each formed to have the same inner diameter, are vertically concentrically connected and connected, and inside the lower shell there is an upper tube plate that partitions the inside of the lower shell from the upper shell, and an outer tube plate. A lower tube plate is provided to partition the lower space in the lower shell which is communicated with the lower shell, and a heated medium led from the outside is directed from below to above the partitioned area in the lower shell, and the heating medium is A downcomer pipe having a secondary coolant inlet window and a large number of heat transfer tubes that connect the inside of the upper shell and the space below the lower shell are connected to a central region of the lower shell and a downcomer pipe having a secondary coolant inlet window so as to flow in countercurrent flow from the upper part to the lower part of the lower shell. In the intermediate heat exchangers arranged in the outer peripheral region, the heat exchanger tubes near the secondary coolant inlet window and/or the riser tube inlet have an elliptical or oval cross-sectional shape, and the length of the heat exchanger tubes is elliptical or oval. An intermediate heat exchanger characterized in that the shaft is arranged in the same direction as the flow direction of the medium to be heated.
JP12391488A 1988-05-23 1988-05-23 Intermediate heat exchanger Pending JPH01296089A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12391488A JPH01296089A (en) 1988-05-23 1988-05-23 Intermediate heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12391488A JPH01296089A (en) 1988-05-23 1988-05-23 Intermediate heat exchanger

Publications (1)

Publication Number Publication Date
JPH01296089A true JPH01296089A (en) 1989-11-29

Family

ID=14872468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12391488A Pending JPH01296089A (en) 1988-05-23 1988-05-23 Intermediate heat exchanger

Country Status (1)

Country Link
JP (1) JPH01296089A (en)

Similar Documents

Publication Publication Date Title
RU2408094C2 (en) Nuclear reactor, namely nuclear reactor with liquid-metal cooling
JP2722076B2 (en) Heat exchanger for cooling cracked gas
CN100588894C (en) A kind of Needle fin tube and light pipe mixing arranged self-supporting type heat exchanger
JP2952102B2 (en) Heat exchanger
JPH0250398B2 (en)
JP2999053B2 (en) Pressurized water reactor plant
EP0141158A1 (en) Double tank type fast breeder reactor
US4505329A (en) Heat exchanger
US4324617A (en) Intermediate heat exchanger for a liquid metal cooled nuclear reactor and method
JPH01296089A (en) Intermediate heat exchanger
KR100286518B1 (en) Separate Perfusion Spiral Steam Generator
JPS6337880B2 (en)
US4657071A (en) Heat exchanger incorporating an auxiliary cooling device
JPS6033083A (en) Tank type fast breeder reactor
JPS61190286A (en) Heat exchanger
CN219177663U (en) Device for recycling fused salt heat
JPS62166296A (en) Tube support device for multi-tube type heat exchanger
JPS6057290A (en) Tank type fast breeder reactor
JP3372424B2 (en) Tube heat exchanger type vertical steam generator
JPS62293089A (en) Multitubular heat exchanger
JPS58217192A (en) Heat exchanger
JPS59161601A (en) Steam generator
JPS604790A (en) Heat exchanger
JPH0578721B2 (en)
JPH0795110B2 (en) Fast breeder reactor