JPH01295816A - Injection molding apparatus - Google Patents

Injection molding apparatus

Info

Publication number
JPH01295816A
JPH01295816A JP12644588A JP12644588A JPH01295816A JP H01295816 A JPH01295816 A JP H01295816A JP 12644588 A JP12644588 A JP 12644588A JP 12644588 A JP12644588 A JP 12644588A JP H01295816 A JPH01295816 A JP H01295816A
Authority
JP
Japan
Prior art keywords
mold
vulcanization
rubber
pressure
injection molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12644588A
Other languages
Japanese (ja)
Inventor
Tsutomu Nakamura
勉 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP12644588A priority Critical patent/JPH01295816A/en
Publication of JPH01295816A publication Critical patent/JPH01295816A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/77Measuring, controlling or regulating of velocity or pressure of moulding material

Abstract

PURPOSE:To well perform vulcanization by accurately monitoring the advance state of vulcanization, by providing at least one pressure sensor in a mold. CONSTITUTION:A mold 2 is equipped with a heater 7 and pressure sensors 8, 9 are embedded in the inner wall of the mold to make it possible to measure the pressure of the rubber in a mold cavity. The temp. of the rubber material received in the pot of an injection mechanism 1 is 50-100 deg.C while the mold 2 is heated to 160-200 deg.C. The rubber material injected in the mold 2 receives a temp. rise of about 100 deg.C by the heating due to the heat transfer from the mold 2 and frictional heating and the advance of the vulcanization and solidification thereof accompanied by heating is observed as an increase in pressure by the pressure sensors. By this method, since the state of the rubber material flowing within the mold can be directly measured, a curing time can be known corresponding to the kind and injection molding condition of unvulcanized rubber and molding operation is controlled to make it possible to perform a good injection molding.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、射出成形装置に関し、特にゴムの加硫進行状
態を測定することができ、それにより、適切な加硫を行
うことができる射出成形装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an injection molding device, and particularly to an injection molding device that can measure the progress of vulcanization of rubber and thereby perform appropriate vulcanization. Regarding molding equipment.

〔従来の技術〕[Conventional technology]

ゴムは、一般に、未加硫ゴムに橋かけ剤、たとえば、イ
オウ、パーオキサイドをロールやバンバリーミキサ−を
用いて添加した後、高温(140℃〜200℃)、加圧
(50〜100kgf /cni)状態の金型内におい
て硬化させ成形品とする。
Generally, rubber is produced by adding a cross-linking agent such as sulfur or peroxide to unvulcanized rubber using a roll or a Banbury mixer, and then applying pressure (50 to 100 kgf/cni) at high temperature (140°C to 200°C) to produce rubber. ) in a mold to form a molded product.

成形方法には、圧縮成形、移送成形(トランスファ成形
)、射出成形などがあるが、近年、射出成形技術が、成
形サイクルの短縮化、及び完全無人化などの利点がある
為に急速に発展した。
Molding methods include compression molding, transfer molding, injection molding, etc. In recent years, injection molding technology has developed rapidly due to its advantages such as shortening the molding cycle and being completely unmanned. .

射出成形装置は、一般に、金型と咳金型のキャビティー
内に未加硫ゴム材料を押出す射出機構を備えており、射
出機構のノズルから高圧で金型キャビティーに射出され
た未加硫ゴムは、該金型キャビティー内で加圧下で加硫
される。得られる成形品は、硬化後に金型を開いて取出
される。
Injection molding equipment generally includes an injection mechanism that extrudes unvulcanized rubber material into a mold cavity and a cough mold cavity, and the unvulcanized rubber material is injected into the mold cavity from a nozzle of the injection mechanism at high pressure. Sulfurized rubber is vulcanized under pressure within the mold cavity. After curing, the resulting molded product is removed from the mold by opening it.

ところで、ゴムの加硫が不充分であると所望のゴム物性
を得ることができないので、一般に、ゴムの成形におい
てはゴムの加硫進行状態を正確にモニターすることが重
要である。そこで、ゴムの加硫状態を測定する装置とし
て、バルカメータ、キュロメータ、レオメータ、キュラ
ストメータ等の装置が知られている。これらは、いずれ
もゴムにせん断力を与えその時のゴムに生じる応力を測
定することによりゴムの加硫状態を判定する装置である
By the way, if the rubber is insufficiently vulcanized, desired rubber physical properties cannot be obtained, so it is generally important to accurately monitor the progress of vulcanization of the rubber when molding the rubber. Therefore, devices such as a valkameter, a curometer, a rheometer, and a culastometer are known as devices for measuring the vulcanization state of rubber. All of these are devices that determine the vulcanization state of rubber by applying shear force to the rubber and measuring the stress generated in the rubber at that time.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、上記の測定装置は、圧縮成形法の場合には有
効であるが、ゴムが高速でノズルや金型内を通過する射
出成形の場合には得られる判定結果の信頼性が低いとい
う問題がある。すなわち、ゴム材料が射出機構のノズル
から金型へのゲートを高速で通過する時に、摩擦により
発熱するが、この発熱は当然ながら加硫に影響する。し
かもこのときの発熱の温度は用いられる装置の金型キャ
ビティー内へのゲート口の寸法、形状のみならず、加硫
に供されるゴム材料の種類、組成によってもかなり異な
るので一様ではない。−例をあげると、一定条件下にお
ける発熱温度は下表に示すように異なることが知られて
いる(Quirk J、F、+ RubberAge 
、 99 、 [10] 、 84 (1967) )
However, although the above measurement device is effective in compression molding, it has the problem that the reliability of the judgment results obtained is low in injection molding, where rubber passes through the nozzle and mold at high speed. be. That is, when the rubber material passes through the gate from the nozzle of the injection mechanism to the mold at high speed, heat is generated due to friction, and this heat generation naturally affects vulcanization. Moreover, the temperature of the heat generated at this time is not uniform, as it varies considerably depending on not only the size and shape of the gate opening into the mold cavity of the equipment used, but also the type and composition of the rubber material used for vulcanization. . - For example, it is known that the exothermic temperature under certain conditions varies as shown in the table below (Quirk J, F, + RubberAge
, 99, [10], 84 (1967))
.

ゴム材料       発熱温度(’C)IR10 シリコーンゴム        18 CR23 SBR171225 JIR26 NR35 SBR150038 NBR60 このようにゴムの加硫速度は種々のファクターの影響を
受けるため、加硫の進行状態を前記の測定装置によって
正確に判定し、加硫を適切に制御することはできなかっ
た。
Rubber material Exothermic temperature ('C) IR10 Silicone rubber 18 CR23 SBR171225 JIR26 NR35 SBR150038 NBR60 As the vulcanization rate of rubber is affected by various factors, the progress of vulcanization can be accurately determined using the measuring device described above. However, it was not possible to properly control vulcanization.

そこで、本発明の目的は、射出成形法において加硫の進
行状態を正確にモニターし、判定することができ、それ
により加硫を良好に実施することができる射出成形装置
を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an injection molding apparatus that can accurately monitor and judge the progress of vulcanization in an injection molding method, and thereby can perform vulcanization well. .

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、金型内に1又は2以上の圧力センサーを
配設することによって、射出成形法における加硫進行状
態を正確にモニターし判定できることを見出した。
The present inventors have discovered that by disposing one or more pressure sensors in the mold, it is possible to accurately monitor and determine the progress of vulcanization in an injection molding process.

即ち、本発明は、 射出機構及び金型を備える射出成形装置において、前記
金型内に少なくとも1個の圧力センサーが設けられてい
ることを特徴とする射出成形装置を提供するものである
That is, the present invention provides an injection molding apparatus including an injection mechanism and a mold, characterized in that at least one pressure sensor is provided in the mold.

〔作 用〕[For production]

本発明を、図1に概念的に示す実施例に即して以下詳し
く説明する。
The invention will be explained in detail below with reference to an embodiment shown conceptually in FIG.

図1の射出成形装置は、射出機構1と金型2とを有し、
射出機横1は大体円筒状ポットからなり、内部に未加硫
ゴム3を押出すためのプランジャー4が備わっている。
The injection molding apparatus in FIG. 1 includes an injection mechanism 1 and a mold 2,
The side 1 of the injection machine consists of a generally cylindrical pot, and a plunger 4 for extruding unvulcanized rubber 3 is provided inside.

射出機構1の先端にあるノズル5は金型2のゲート6に
接続されている。金型2には加熱用ヒータ7が備わり、
さらに金型内壁には圧力センサー8及び9が埋設されて
いて金型キャビティー内のゴムの圧力を測定できるよう
になっている。圧力センサー8及び9はアンプ10を介
してレコーダ11に接続されていて、圧力センサーの出
力が記録される。
A nozzle 5 at the tip of the injection mechanism 1 is connected to a gate 6 of the mold 2. The mold 2 is equipped with a heating heater 7,
Further, pressure sensors 8 and 9 are embedded in the inner wall of the mold so that the pressure of the rubber inside the mold cavity can be measured. Pressure sensors 8 and 9 are connected to a recorder 11 via an amplifier 10, and the outputs of the pressure sensors are recorded.

この射出成形装置は次のように動作する。This injection molding device operates as follows.

加硫剤が練り込まれた未加硫のゴム材料3は、プランジ
ャー4によりノズル5から金型2内へ射出され、金型内
を矢印I2の方向へ流れる。金型内に設置された圧力セ
ンサーの内、ゲート6に近い圧力センサー8によって、
ノズル5から射出されたゴム材料の初期の圧力が測定さ
れる。
The unvulcanized rubber material 3 into which the vulcanizing agent has been kneaded is injected into the mold 2 from the nozzle 5 by the plunger 4, and flows inside the mold in the direction of arrow I2. Among the pressure sensors installed in the mold, the pressure sensor 8 near the gate 6
The initial pressure of the rubber material injected from the nozzle 5 is measured.

金型2内のゴム材料13は、矢印12の方向へ流動しな
がら徐々に加硫が進行し、ついには金型2内に固定され
る。
The rubber material 13 in the mold 2 gradually progresses in vulcanization while flowing in the direction of the arrow 12, and is finally fixed in the mold 2.

ところで、射出機構1のポット内にあるゴム材料の温度
は50〜100℃で、他方金型2は160 ”〜200
℃に加熱されている。金型2内へ射出されたゴム材料に
は、金型からの熱伝導による加熱と摩擦による加熱によ
り100℃近い温度上昇を受け、それに伴なって加硫、
さらには加硫による固定(流動性の低下及び膨張)が同
時に進行する。
By the way, the temperature of the rubber material in the pot of the injection mechanism 1 is 50~100℃, while the temperature of the mold 2 is 160''~200℃.
It is heated to ℃. The rubber material injected into the mold 2 experiences a temperature rise of nearly 100°C due to heat conduction from the mold and heating due to friction, resulting in vulcanization and
Furthermore, fixation (reduction in fluidity and expansion) by vulcanization proceeds simultaneously.

この加硫の進行は、圧力センサーにより、圧力の増加と
して例えば図2に例示するように観測される。図2にお
いて、区域Aはプランジャーによる射出圧力の増加であ
り、区域Bは加硫に伴なう圧力増加分である。もし、ゴ
ム材料に加硫剤が含まれていないと加硫は進行せず、ゴ
ム材料の流動性は温度上昇によって高まるので区域Bに
おいて圧力増は起らない。ゴム材料は、例えば、下表に
示す熱膨張係数を有するので、加硫、固定、膨張に伴な
う上記の圧力増加は十分に測定可能なものである。
The progress of this vulcanization is observed by a pressure sensor as an increase in pressure, as illustrated in FIG. 2, for example. In FIG. 2, area A is the increase in injection pressure due to the plunger, and area B is the increase in pressure due to vulcanization. If the rubber material does not contain a vulcanizing agent, vulcanization will not proceed, and the fluidity of the rubber material will increase as the temperature increases, so no pressure increase will occur in zone B. Since the rubber material has, for example, a coefficient of thermal expansion shown in the table below, the above pressure increase due to vulcanization, fixation, and expansion can be sufficiently measured.

エチレンプロピレン− シリコーンゴム      8.5 xlO−’/’C
シリコーンゴム      9.5 Xl0−’/’C
ブタルゴム        1.8 xto−’/’c
クロロプレンゴム     2.OXl0−’/’C天
然ゴム      1.5〜1.8 Xl0−’/”C
したがって、上記のA区域から8区域への転移、及び8
区域における圧力変化の挙動から加硫の進行状態を判定
することができる。すなわち、8区域において圧力増加
が最大に達した時点で加硫が完結したと判定することが
でき、硬化時間はこの時点までの時間として測定するこ
とができる。
Ethylene propylene- silicone rubber 8.5 xlO-'/'C
Silicone rubber 9.5 Xl0-'/'C
Butal rubber 1.8 xto-'/'c
Chloroprene rubber 2. OXl0-'/'C Natural rubber 1.5-1.8 Xl0-'/'C
Therefore, the above transition from area A to area 8, and
The progress of vulcanization can be determined from the behavior of pressure changes in the zone. That is, it can be determined that vulcanization is complete when the pressure increase reaches the maximum in the 8 zones, and the curing time can be measured as the time up to this point.

本発明の装置では、圧力センサーが少なくとも1個、好
ましくは1又は2個設けられる。金型内では位置により
加硫速度が異なるので、金型全体の加硫速度を7正確に
把握するのには複数個の圧力センサーを位置を変えて設
けるのが有利である。
In the device of the invention at least one, preferably one or two pressure sensors are provided. Since the vulcanization rate varies depending on the position within the mold, it is advantageous to provide a plurality of pressure sensors at different positions in order to accurately determine the vulcanization rate of the entire mold.

本発明の装置に用いられる圧力センサーとしては、例え
ば、水晶式圧力センサーを使用することができ、測定さ
れた圧力は、例えばアナライジングレコーダー、アナロ
グレコーダー、オシログラフ等によって記録すればよい
As the pressure sensor used in the device of the present invention, for example, a quartz pressure sensor can be used, and the measured pressure may be recorded by, for example, an analyzing recorder, an analog recorder, an oscilloscope, or the like.

〔実施例〕〔Example〕

次に、本発明を実施例により具体的に説明する。 Next, the present invention will be specifically explained using examples.

以下の記載において、「部」は重量部を意味する。In the following description, "part" means part by weight.

実施例1 射出成形装置として、図3に示すスパイラルフロー21
に、射出成形機構(検出製作所製、図示路)が取りつけ
られたものを使用した。スパイラルフロー21の内壁に
は、200mm間隔で圧力センサー22および23 (
キスラー社製)が埋設され、これらの圧力センサーはア
ナライジングレコーダー(横河電機製作所製)に接続さ
れている。
Example 1 Spiral flow 21 shown in FIG. 3 was used as an injection molding device.
An injection molding mechanism (manufactured by Sensing Seisakusho, shown in the diagram) was used. On the inner wall of the spiral flow 21, pressure sensors 22 and 23 (
(manufactured by Kistler) is buried, and these pressure sensors are connected to an analyzing recorder (manufactured by Yokogawa Electric Corporation).

熱硬化型シリコーンゴムKE951U(商品名、信越化
学工業株式会社製)100部に橋かけ剤C−8(商品名
、信越化学工業株式会社製)2部をロールを用いて添加
、混練し、未加硫ゴム材料を調製した。この未加硫ゴム
材料を、上記の射出成形装置において金型温度170℃
、射出圧力102102O/cotの条件で射出したと
ころ、圧力センサー22および23により、それぞれ、
図4に示す曲線aおよびbとして、圧力変化の挙動が測
定された。この測定結果から、この未加硫ゴムは、上記
の条件では25秒で硬化することがわかった。
2 parts of cross-linking agent C-8 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.) was added to 100 parts of thermosetting silicone rubber KE951U (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.) using a roll, and kneaded. A vulcanized rubber material was prepared. This unvulcanized rubber material was molded at a mold temperature of 170°C in the injection molding apparatus mentioned above.
, when injection was performed under the conditions of injection pressure 102102O/cot, the pressure sensors 22 and 23 detected, respectively,
The behavior of pressure changes was measured as curves a and b shown in FIG. The measurement results showed that this unvulcanized rubber cured in 25 seconds under the above conditions.

また、金型温度を180℃とした以外は、上記と同様に
して射出成形を行ったところ、硬化時間は15秒である
ことがわかった。
Further, when injection molding was performed in the same manner as above except that the mold temperature was 180° C., it was found that the curing time was 15 seconds.

実施例2 未加硫ゴム材料として、下記の組成: EPT3045  (三井石油化学)      10
0部旭カーボン#70(旭カーボン社製、 50部カー
ボンブラック) サンバー2280 (日本サンオイル製、   20部
プロセスオイル) ZnO5部 ステアリン酸             1部ジクミル
パーオキサイド       2.7部のEPDM (
ヨウ素価12)組成物を用い、金型温度を170℃とし
た以外は実施例1と同様にして射出成形を行ったところ
、圧力の上昇の挙動から33秒で硬化することがわかっ
た。
Example 2 The unvulcanized rubber material had the following composition: EPT3045 (Mitsui Petrochemical) 10
0 parts Asahi Carbon #70 (manufactured by Asahi Carbon Co., Ltd., 50 parts carbon black) Sambar 2280 (manufactured by Nippon Sun Oil, 20 parts process oil) ZnO 5 parts Stearic acid 1 part Dicumyl peroxide 2.7 parts EPDM (
When injection molding was performed in the same manner as in Example 1 except that the composition was used with an iodine value of 12) and the mold temperature was 170°C, it was found that the composition was cured in 33 seconds based on the behavior of pressure increase.

実施例3 未加硫ゴム材料として、下記の組成: 天然ゴム             100部旭カーボ
ン#70 (旭カーボン社製、カーボンブラック)  
        30部ZnO5部 ステアリン酸             3部イオウ 
               265部アクセルDM
(川口化学工業社製、  0.7部加硫促進剤) の天然ゴム組成物を用い、金型温度を170℃とした以
外は実施例1と同様にして射出成形を行ったところ、圧
力の上昇から35秒で硬化することがわかった。
Example 3 The unvulcanized rubber material had the following composition: Natural rubber 100 parts Asahi Carbon #70 (manufactured by Asahi Carbon Co., Ltd., carbon black)
30 parts ZnO 5 parts stearic acid 3 parts sulfur
265 part accelerator DM
(Kawaguchi Kagaku Kogyo Co., Ltd., 0.7 part vulcanization accelerator) was used for injection molding in the same manner as in Example 1 except that the mold temperature was 170°C. It was found that it hardened in 35 seconds after rising.

〔発明の効果〕〔Effect of the invention〕

本発明の射出成形装置によれば、従来のレオメータ−な
どと異なり金型内を流れるゴム材料の状態を直接測定で
き、外部からの影響のない測定を行うことができるため
、射出成形法における加硫の進行状態を正確にモニター
し、判定することができる。したがって、成形に供され
る未加硫ゴムの種類、射出成形条件に応じて硬化時間を
知ることができ、射出成形操作を制御することにより、
良好な射出成形を行うことができる。
According to the injection molding apparatus of the present invention, unlike conventional rheometers, it is possible to directly measure the state of the rubber material flowing inside the mold, and measurement can be performed without external influences. The progress of sulfur can be accurately monitored and determined. Therefore, the curing time can be determined according to the type of unvulcanized rubber to be molded and the injection molding conditions, and by controlling the injection molding operation,
Good injection molding can be performed.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は本発明の装置の一例を示す概念図。 図2は本発明の装置で測定される金型内の圧力の変化を
示す。 図3は実施例で用いた装置の一部で、センサーが取付け
られたスパイラルフローを示す。 図4は実施例1で測定された圧力変化を示す曲線を示す
。 代理人 弁理士  岩見谷  周志 第1図 10        ]] 第2図
FIG. 1 is a conceptual diagram showing an example of the device of the present invention. FIG. 2 shows the change in pressure inside the mold as measured by the device of the invention. FIG. 3 is part of the apparatus used in the example, and shows a spiral flow equipped with a sensor. FIG. 4 shows a curve showing the pressure change measured in Example 1. Agent Patent Attorney Shushi Iwamiya Figure 1 10]] Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)射出機構及び金型を備える射出成形装置において
、前記金型内に少なくとも1個の圧力センサーが設けら
れていることを特徴とする射出成形装置。
(1) An injection molding apparatus comprising an injection mechanism and a mold, characterized in that at least one pressure sensor is provided within the mold.
(2)特許請求の範囲第1項記載の装置を用いるゴムの
加硫測定方法。
(2) A method for measuring vulcanization of rubber using the apparatus according to claim 1.
JP12644588A 1988-05-24 1988-05-24 Injection molding apparatus Pending JPH01295816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12644588A JPH01295816A (en) 1988-05-24 1988-05-24 Injection molding apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12644588A JPH01295816A (en) 1988-05-24 1988-05-24 Injection molding apparatus

Publications (1)

Publication Number Publication Date
JPH01295816A true JPH01295816A (en) 1989-11-29

Family

ID=14935391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12644588A Pending JPH01295816A (en) 1988-05-24 1988-05-24 Injection molding apparatus

Country Status (1)

Country Link
JP (1) JPH01295816A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5238568A (en) * 1975-09-22 1977-03-25 Ichikoh Industries Ltd Device for controlling pressure of injection molding machine
JPS56134A (en) * 1979-06-15 1981-01-06 Hitachi Ltd Pressure-holding control method for injection-molded and device thereof
JPS59224323A (en) * 1983-06-03 1984-12-17 Tekunopurasu:Kk Monitoring method by in-mold pressure wave form
JPS615884A (en) * 1984-06-19 1986-01-11 松下電器産業株式会社 Lid switch of washing machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5238568A (en) * 1975-09-22 1977-03-25 Ichikoh Industries Ltd Device for controlling pressure of injection molding machine
JPS56134A (en) * 1979-06-15 1981-01-06 Hitachi Ltd Pressure-holding control method for injection-molded and device thereof
JPS59224323A (en) * 1983-06-03 1984-12-17 Tekunopurasu:Kk Monitoring method by in-mold pressure wave form
JPS615884A (en) * 1984-06-19 1986-01-11 松下電器産業株式会社 Lid switch of washing machine

Similar Documents

Publication Publication Date Title
US3182494A (en) Viscurometer
US3718721A (en) Method for controlling the state of cure of curable articles
US3649729A (en) Method of curing a rubber or plastic tire
US3479858A (en) Apparatus for measuring viscoelasticity
JPH08323775A (en) Method for preparing data base of vulcanization constant optimizing vulcanization of rubber compound
JP4730823B2 (en) Vulcanization control method and control system
JP6972742B2 (en) Viscosity measurement method and equipment for unvulcanized rubber and flow simulation method for unvulcanized rubber
US5486319A (en) Tire cure control system and method
US2770841A (en) Method of continuous vulcanizing of rubber
EP0653618B1 (en) Method and instrument for viscoelastic measurements
JPH01295816A (en) Injection molding apparatus
US3039297A (en) Test for determining optimum vulcanization
US4824620A (en) Method for controlling the cross-linking of elastomers in a mould
CN204536153U (en) A kind of capillary die measuring polymeric rheology characteristic under ultrasonic vibration condition
JP7428883B2 (en) Method and device for estimating rubber flow characteristics
JP7293962B2 (en) Molded product quality anomaly prediction system
JP2717641B2 (en) Rubber product manufacturing method and apparatus
CN209007926U (en) A kind of injection pressure detection device
EP0578127A2 (en) Mechanical in situ curometer
JP6939211B2 (en) Rubber product manufacturing method and equipment
US20200156337A1 (en) Temperature sensor, and method for producing pneumatic tire
JP2019107791A (en) Die for tire molding and method for manufacturing pneumatic tire
JP2022048729A (en) Flow characteristic estimation method and device for rubber
CN113978007A (en) Flat vulcanizing mold for simulating retreaded tire crown vulcanizing temperature field
GB1311527A (en) Method and apparatus for testing elastomers