JPH0129542Y2 - - Google Patents
Info
- Publication number
- JPH0129542Y2 JPH0129542Y2 JP18701680U JP18701680U JPH0129542Y2 JP H0129542 Y2 JPH0129542 Y2 JP H0129542Y2 JP 18701680 U JP18701680 U JP 18701680U JP 18701680 U JP18701680 U JP 18701680U JP H0129542 Y2 JPH0129542 Y2 JP H0129542Y2
- Authority
- JP
- Japan
- Prior art keywords
- ship
- constant
- corrected
- dredging
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000006073 displacement reaction Methods 0.000 claims description 18
- 238000010926 purge Methods 0.000 claims description 18
- 238000012937 correction Methods 0.000 claims description 14
- 238000012545 processing Methods 0.000 claims description 12
- 239000013535 sea water Substances 0.000 claims description 12
- 230000005484 gravity Effects 0.000 claims description 9
- 239000004576 sand Substances 0.000 claims description 9
- 208000003028 Stuttering Diseases 0.000 claims description 8
- 238000009434 installation Methods 0.000 claims description 3
- 239000013049 sediment Substances 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 238000010586 diagram Methods 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 239000002689 soil Substances 0.000 description 7
- 238000009530 blood pressure measurement Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 2
- 239000013505 freshwater Substances 0.000 description 2
- 239000000295 fuel oil Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 208000031361 Hiccup Diseases 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
Landscapes
- Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
Description
本考案は浚渫船における従来の積載土量のアナ
ログ計測法を廃してデイジタル化を行いマイクロ
コンピユータを利用して構成機器の標準化を計る
とともに計測精度を向上した積載土量計測装置に
関する。
船舶の左右両舷の甲板を越えて船槽から両腕の
ように浚渫導管を海底に降下し、上記船槽に海底
の土砂を海水とともに吸上げて浚渫を行う浚渫船
においては計画されたコースに従つて船首と船尾
の吃水の均衡をとりながらまた浚渫導管の先端が
示す海底の深度を計測しながら浚渫作業を行うも
のである。また船槽の積載土量は浚渫作業の成果
を評価する手段でその計測は重要な仕事になつて
いる。この積載土量の計測は従来から船舶の排水
量の変化を基礎に行われ、その基準はエアパージ
式の圧力測定装置による吃水測定におかれてい
る。すなわちエアパージ式の脊圧を測定すること
によつてこの圧力に比例する深度を計測するもの
である。排水量の計算はこの吃水と船体の当該面
積の積としての当該船体容積の算出によつて行わ
れる。このような積載土量の計測において従来は
吃水精度に影響する圧力検出端であるエアパージ
口の取付位置の相異による誤差補正を圧力測定装
置の圧力発信器の出力レンジで修正してきた。こ
の補正値は本船の完工近くまでは正確にわからな
いこともあつて事実上は修正できない事が多く、
取付位置によつては特殊レンジの圧力発信器を必
要とした。また船体構造による演算用諸定数もア
ナログ増巾器の回路定数で設定および修正を行う
必要から、計測系統ごとに回路定数を修正するた
め、他の設定定数に影響を及ぼす等の不具合があ
り、これら演算用諸定数はこれまた本船試運転時
までわからないことが多く、充分な補正を短期間
に行うことは困難であつた。
このような実状に鑑み本考案は積載土量の計測
における全ての演算をマイクロコンピユータで行
い、計測装置の各種構成機器及び使用法の標準化
を行い、補正等はソフトウエア処理とすることに
よつて計装作業を単純化し、設定定数および換算
定数は計装完了後においても随時に修正可能なよ
うにし、充分な補正を行い、計測精度を向上する
とともに経済性をも向上した浚渫船の積載土量計
測装置を提供することを目的とするものである。
従つて船腹中央位置の吃水の変化に応じて本船
の総排水量の変化を示した折線近似による総排水
量の算出は従来不可能であつたがコンピユータの
使用により可能となり、また設定定数の種類は
PROMに設定するもの44デイジツト、デイジタ
ルスイツチに設定するもの88デイジツトの数であ
り、従来のアナログ演算回路の抵抗器で修正する
ことは不可能なことである。
以下に図面にもとづき実施例について説明す
る。第1図は本考案になる装置の一実施例を示す
吃水および深度測定を行う圧力測定装置の説明図
である。第1図aは吃水測定の圧力測定装置の船
側装備部分の説明図で、第1図aにおいて1は浚
渫船、3は圧力測定装置、4はエアパージ箱5に
圧搾空気を供給するとともに信号空気圧を伝える
細い導管を示す。6は導管4と同形の細い導管で
エアパージの泡を大気中に導くものでエアパージ
が適切に行われている事を示す表示管で導管4と
ともに船側に装備される。また圧力検出端である
エアパージ口13の位置は船首からF、船底から
fなる距離にある。船長はLで他の2つの圧力測
定装置3のエアパージ口13の位置は船腹中央位
置や船尾からAなる位置に装備され、船底から何
れもm,aなる距離にある。エアパージ箱5の栓
口を開くと海水は導管4と6とを昇り海面11と
等しい位置に達する。エアパージが行われると導
管4の水柱は押し下げられ導管6に僅かな泡が認
められる圧力に空気圧が保持され、この脊圧が測
定され吃水値となる。第1図bは深度測定の圧力
測定装置の説明図である。第1図bにおいて浚渫
船1の両舷側に浚渫導管2が海低12に降下さ
れ、この浚渫導管に沿つて細い導管10も降下さ
れ海底12からPおよびSなる距離にエアパージ
口13を開くように設置される。エアパージが適
切に行われるならば海底12の深度が脊圧として
正確に測定される。第1図cは圧力測定装置3の
説明図である。第1図cにおいて導管4の脊圧は
減圧弁とニードル弁で制御されて圧力発信器8に
より計測され、アナログ入力信号である直流
4mAから20mAの電流値に変換されて端子9から
出力される。端子7はソレノイドバルブを制御
し、エアをONおよびOFFする信号入力端子で、
14は圧力計である。圧力発信器は標準のもので
よく、例えば最大吃水10mまでは0〜1Kg/cm2の
レンジのもの、最大吃水30mまでは0〜3Kg/cm2
レンジのものというように標準レンジを定め、従
来のようにエアパージ口13の位置例えば距離
f,m,a,pおよびsによつてこのレンジを補
正して特殊レンジの圧力発信器を作製する必要は
なくなる。すなわちこれらの補正は、例えば
df=10/f1・Sω(if−f2)+f ……(1)
のようにマイクロコンピユータによつて行われ
る。ここにf1,f2はレンジの値、ifは4mAから
20mAの範囲にある脊圧の圧力変換電流値、dfは
吃水でSωは海水比重である。勿論数値は0から
1000の数値に交換されたものである。
第2図は本考案になる装置の一実施例を示す主
演算装置の説明図である。第2図において主演算
装置は主演算パネル40を中心に各端子を介して
接続される周辺機器とから構成される。マイクロ
コンピユータは中央演算器21、入出力制御器2
2、記憶器23及び記憶制御器24がバスで接続
されて構成される。デイジタルスイツチ25は記
憶制御器24を介して記憶器23に各種設定定数
および換算定数を記憶する。デイジタル表示器2
6は照明制御付7桁のLED表示を行うもので土
砂重量をはじめデイジタルスイツチ25による設
定値をデイジタル表示する。デイジタル表示器2
7と28とは浚渫導管2が位置する海底の浚渫深
度を表示する。29は圧力測定装置3に圧搾空気
を供給し、圧力発信器8からのアナログ入力信号
を出力して遠く離れた操舵室の主演算パネル40
の端子35に送る圧力測定操作パネルである。3
0は電源AC220Vを入力して主演算パネル40の
端子34を介してコンピユータに電流を送り、ま
た直接に圧力発信器8へ駆動電圧を送る電源装置
である。31は主演算パネルの端子36を介して
入出力制御器22に接続され、土砂重量を示すデ
イジタル出力信号をD/A変換器でアナログ信号
としてグラフイツク表示を行うトレンドペンレコ
ーダである。32は主演算パネルの端子でデイジ
タル表示器27と28とを入出力制御器22へ接
続する。33は主演算パネル40の端子で電源ス
イツチ37を電源装置30に接続する。海底の浚
渫深度はデイジタル表示器27と28とに表示さ
れるとともに圧力測定操作パネル29のデイジタ
ル表示器38と39に遠隔表示される。次に本装
置の動作について説明する。電源スイツチ37を
ONとし各所に駆動電圧を送り、圧搾空気を圧力
測定操作パネル29によつて各所に送ると各種の
アナログ入力信号が入出力制御器22に入力して
くる。ここでアナログアドレススイツチとA/D
変換器によつて各種のアナログ入力信号は10秒か
ら30秒の周期で繰返し走査サンプリングされそれ
ぞれのデイジタル入力信号に遂次変換される。各
吃水、各深度および船槽の積載物の船底よりのレ
ベルはエアパージ口の取付位置、レンジ補正およ
び海水比重補正定数による補正演算を式(1)のよう
に行う。ここで海水比重は外部のデイジタルスイ
ツチ25によつて設定され、取付位置の補正定数
は内部のデイジタルスイツチで設定され、レンジ
定数は記憶器23のPROMに設定記憶されてい
る。この補正演算は中央演算器21で行われる。
さらに船首と、船尾の吃水にはお互に影響を及ぼ
し合うため相関補正を次式において演算する。船
首吃水Df、船尾吃水Daとすると
Df=(L−A)df−F・da/L−(A+F)……(2)
Da=(L−F)da−A・df/L−(A+F)……(3)
式(2)と(3)においてL,AおよびFは前述の距離
を示しdfとdaとは船首と船尾のエアパージ口に
おける吃水を示す。次に船腹中央位置の補正吃水
の変化に応じて本船の総排水量の変化を示した折
線近似によつて総排水量を算出し、この総排水量
に補正海水比重定数を乗じて総重量を算出し記憶
する。次に本船の船体重量と清水や燃料油その他
This invention relates to a device for measuring the amount of loaded soil in a dredger that eliminates the conventional analog method of measuring the amount of loaded soil, digitizes it, uses a microcomputer to standardize the component equipment, and improves measurement accuracy. For dredging vessels, dredging is carried out by lowering dredging conduits from the ship's port and starboard decks to the seabed like arms from the ship's tank, and sucking up earth and sand from the seabed along with seawater into the ship's tank. Therefore, dredging work is carried out while balancing the water intake at the bow and stern, and while measuring the depth of the seabed indicated by the tip of the dredging conduit. Also, measuring the amount of soil loaded in a ship's tank is an important means of evaluating the results of dredging work. The amount of loaded soil has traditionally been measured based on changes in the displacement of a ship, and the standard for this has been based on the measurement of stuttering using an air purge type pressure measuring device. That is, by measuring spinal pressure using an air purge method, the depth proportional to this pressure is measured. The displacement is calculated by calculating the hull volume as the product of this stifling water and the hull area. Conventionally, in measuring the amount of loaded soil, errors due to differences in the mounting position of the air purge port, which is the pressure detection end, which affects the accuracy of stuttering, have been corrected by using the output range of the pressure transmitter of the pressure measurement device. This correction value may not be accurately known until the ship is near completion, so it is often impossible to correct it.
Depending on the installation location, a pressure transmitter with a special range was required. In addition, various calculation constants depending on the hull structure must be set and corrected using the circuit constants of the analog amplifier, and as the circuit constants are corrected for each measurement system, there are problems such as affecting other setting constants. These calculation constants were often unknown until the ship was commissioned, making it difficult to make sufficient corrections in a short period of time. In view of these circumstances, the present invention uses a microcomputer to perform all calculations for measuring the amount of loaded soil, standardizes the various components of the measuring device and its usage, and performs corrections etc. through software processing. Dredger loading volume that simplifies instrumentation work, allows setting constants and conversion constants to be modified at any time even after instrumentation is completed, and provides sufficient compensation to improve measurement accuracy and economic efficiency. The purpose is to provide a measuring device. Therefore, calculation of the total displacement by a broken line approximation, which shows the change in the total displacement of the ship according to the change in the stuttering at the center of the ship, was previously impossible, but it has become possible with the use of a computer, and the types of set constants can be changed.
The number of digits set in the PROM is 44 digits, and the number set in the digital switch is 88 digits, which cannot be corrected with resistors in conventional analog calculation circuits. Examples will be described below based on the drawings. FIG. 1 is an explanatory diagram of a pressure measuring device for measuring stuttering and depth, showing one embodiment of the device according to the present invention. Fig. 1a is an explanatory diagram of the ship side equipment part of the pressure measuring device for the measurement of dredging water. Shows the thin conduit that transmits the information. Reference numeral 6 is a thin conduit having the same shape as conduit 4, which guides the air purge bubbles into the atmosphere, and is an indicator tube indicating that air purge is being carried out properly, and is installed along with conduit 4 on the ship's side. Further, the position of the air purge port 13, which is the pressure detection end, is located at a distance F from the bow and f from the bottom of the ship. The captain is L, and the air purge ports 13 of the other two pressure measuring devices 3 are installed at the center of the ship and at the position A from the stern, and are both m and a distance from the bottom of the ship. When the plug of the air purge box 5 is opened, seawater rises through the conduits 4 and 6 and reaches a position equal to the sea level 11. When the air purge is performed, the water column in the conduit 4 is pushed down and the air pressure is maintained at a pressure at which slight bubbles are observed in the conduit 6, and this spinal pressure is measured and becomes the hydration value. FIG. 1b is an explanatory diagram of a pressure measuring device for depth measurement. In Fig. 1b, dredging conduits 2 are lowered to the sea level 12 on both sides of the dredger 1, and a thin conduit 10 is also lowered along the dredging conduits to open air purge ports 13 at distances P and S from the seabed 12. will be installed. If the air purge is properly performed, the depth of the ocean floor 12 can be accurately measured as spinal pressure. FIG. 1c is an explanatory diagram of the pressure measuring device 3. In Fig. 1c, the spinal pressure in the conduit 4 is controlled by a pressure reducing valve and a needle valve, and is measured by a pressure transmitter 8, and the analog input signal is a direct current
The current value is converted from 4mA to 20mA and output from terminal 9. Terminal 7 is a signal input terminal that controls the solenoid valve and turns the air ON and OFF.
14 is a pressure gauge. The pressure transmitter may be a standard one, for example, one with a range of 0 to 1 Kg/cm 2 for up to 10 m, and 0 to 3 Kg/cm 2 for up to 30 m.
It is necessary to create a pressure transmitter with a special range by determining a standard range, such as a range, and correcting this range by adjusting the position of the air purge port 13, for example, distances f, m, a, p, and s, as in the past. will disappear. That is, these corrections are performed by a microcomputer, for example, as follows: df=10/f 1 ·Sω(if-f 2 )+f (1). Here, f 1 and f 2 are range values, and if is from 4mA
The pressure conversion current value of spinal pressure in the range of 20 mA, df is hiccup and Sω is seawater specific gravity. Of course, the numbers start from 0.
It was exchanged for a number of 1000. FIG. 2 is an explanatory diagram of the main processing unit showing one embodiment of the device according to the present invention. In FIG. 2, the main processing unit is composed of a main processing panel 40 and peripheral devices connected through respective terminals. The microcomputer has a central processing unit 21 and an input/output controller 2.
2. The memory device 23 and the memory controller 24 are connected by a bus. The digital switch 25 stores various setting constants and conversion constants in the memory 23 via the memory controller 24. Digital display 2
6 is a 7-digit LED display with lighting control, which digitally displays the earth and sand weight and other values set by the digital switch 25. Digital display 2
7 and 28 indicate the dredging depth of the seabed where the dredging conduit 2 is located. 29 supplies compressed air to the pressure measuring device 3, outputs an analog input signal from the pressure transmitter 8, and outputs an analog input signal to the main operation panel 40 in the remote wheelhouse.
This is an operation panel for measuring pressure to be sent to the terminal 35 of. 3
Reference numeral 0 designates a power supply device which inputs a power supply of 220 VAC and sends a current to the computer via the terminal 34 of the main processing panel 40, and also sends a driving voltage directly to the pressure transmitter 8. A trend pen recorder 31 is connected to the input/output controller 22 via a terminal 36 of the main processing panel, and graphically displays a digital output signal indicating the weight of earth and sand as an analog signal using a D/A converter. 32 is a terminal of the main processing panel that connects the digital displays 27 and 28 to the input/output controller 22. 33 is a terminal of the main processing panel 40 that connects the power switch 37 to the power supply device 30. The dredging depth of the seabed is displayed on the digital displays 27 and 28 and remotely displayed on the digital displays 38 and 39 of the pressure measurement operation panel 29. Next, the operation of this device will be explained. Power switch 37
When the drive voltage is turned ON and compressed air is sent to various locations via the pressure measurement operation panel 29, various analog input signals are input to the input/output controller 22. Here, the analog address switch and A/D
Various analog input signals are repeatedly scanned and sampled by the converter at a cycle of 10 seconds to 30 seconds and successively converted into respective digital input signals. For each stutter, each depth, and the level of the cargo in the tank from the bottom of the ship, correction calculations are performed using the air purge port installation position, range correction, and seawater specific gravity correction constant as shown in equation (1). Here, the seawater specific gravity is set by an external digital switch 25, the correction constant for the mounting position is set by an internal digital switch, and the range constant is set and stored in the PROM of the memory 23. This correction calculation is performed by the central processing unit 21.
Furthermore, since the water at the bow and stern mutually influence each other, a correlation correction is calculated using the following equation. If the bow water Df and the stern water Da are Df=(L-A)df-F・da/L-(A+F)...(2)
Da=(L-F) da-A・df/L-(A+F)...(3)
In equations (2) and (3), L, A, and F represent the aforementioned distances, and df and da represent the water intake at the bow and stern air purge ports. Next, the total displacement is calculated by a broken line approximation that shows the change in the total displacement of the ship according to the change in the corrected stuttering of the ship's midship position, and the total weight is calculated and stored by multiplying this total displacement by the corrected seawater specific gravity constant. do. Next, the weight of the ship, fresh water, fuel oil, etc.
【表】
表1でAは総排水量、Bは積載物相当排水量、
Cは排水量トン、Dは船体分排水量をそれぞれ示
す。
A=B+D+E=B+C, ……(4)
B=A−C ……(5)
すなわち式(4)から式(5)の関係が成立する。今積
載物がない状況における排水量Cは排水量Aに等
しく、また吃水から求めることが可能で、船体重
量Dと清水、燃料油等の排水量Eとの和の排水量
Cは積載物がない総重量ですなわち浚渫開始前の
総重量に等しい。この積載物がない総重量が算出
され記憶される。次に積載物には海水と土砂とが
混合しているので次式の関係が成立する。
ω=(V−Δ)Sω+ΔSm+ω0 ……(6)
式(6)においてωは総重量、ω0は積算物がない
総重量、Vは船槽の積載物容積、Δは土砂の積載
容積、Sωは海水比重定数、Smは土砂の比重定数
とすると、式6で示すように総重量は、船槽内の
海水の重量と土砂の重量と積載物がない総重量と
の和となる。従つて式(6)から次式(7)を得る。
Δ=ω−ω0−VSω/Sm−Sω ……(7)
すなわち土砂の積載容積Δが式(7)によつて求め
られ、m3の単位で表示される。以上の演算は主演
算パネル40に示されるマイクロコンピユータに
よつて行われる。土砂重量、船首と船尾の吃水、
海底の浚渫深度は演算出力として各種のデイジタ
ル表示器ならびにトレンドペンレコーダに表示さ
れ浚渫作業が円滑に行われる。
以上説明したように本考案になる積載土量の計
測装置を利用するときは計測装置の各種構成機器
及びその使用法の標準化を行い、補正等はソフト
ウエア処理とすることによつて計装作業を単純化
し、設定定数および換算定数は保守時においても
随時、容易に修正可能であるから補正も容易で、
総重量も折線近似が可能になり著るしく計測精度
が向上し、経済性も向上するという大きな実用効
果を挙げることができる。[Table] In Table 1, A is the total displacement, B is the displacement equivalent to the load,
C indicates the displacement in tons, and D indicates the displacement of the hull. A=B+D+E=B+C, ...(4) B=A-C ...(5) That is, the relationship from equation (4) to equation (5) holds true. The displacement C in the situation where there is no cargo is equal to the displacement A, and can be determined from the water intake.The displacement C, which is the sum of the ship weight D and the displacement E of fresh water, fuel oil, etc., is the total weight without any cargo. In other words, it is equal to the total weight before dredging begins. The total weight without the loaded items is calculated and stored. Next, since seawater and earth and sand are mixed in the cargo, the following relationship holds true. ω=(V−Δ)Sω+ΔSm+ω 0 ...(6) In equation (6), ω is the total weight, ω 0 is the total weight without loaded objects, V is the cargo volume of the ship's tank, Δ is the cargo volume of earth and sand, Assuming that Sω is the specific gravity constant of seawater and Sm is the specific gravity constant of earth and sand, the total weight is the sum of the weight of seawater in the tank, the weight of earth and sand, and the total weight without cargo, as shown in equation 6. Therefore, the following equation (7) is obtained from equation (6). Δ=ω−ω 0 −VSω/Sm−Sω (7) In other words, the loading volume Δ of earth and sand is determined by equation (7) and is expressed in units of m 3 . The above calculations are performed by a microcomputer shown on the main calculation panel 40. Sediment weight, bow and stern water,
The dredging depth of the seabed is displayed as a calculation output on various digital displays and trend pen recorders to facilitate dredging work. As explained above, when using the loaded soil volume measuring device of the present invention, the various components of the measuring device and their usage are standardized, and corrections etc. are performed by software processing, so that instrumentation work can be performed easily. The setting constants and conversion constants can be easily modified at any time during maintenance, making corrections easy.
The total weight can be approximated by a broken line, which significantly improves measurement accuracy and improves economic efficiency, which is a great practical effect.
第1図は本考案になる装置の一実施例を示す吃
水および深度測定を行う圧力測定装置の説明図、
第2図は本考案になる装置の一実施例を示す主演
算装置の説明図である。
1……浚渫船、2……浚渫導管、3……圧力測
定装置、4と6と10……導管、7と9……端
子、11……海面、12……海底、13……エア
パージ口、14……圧力計、5……エアパージ
箱、21……中央演算器、22……入出力制御
器、23……記憶器、24……記憶制御器、25
……デイジタルスイツチ、29……圧力測定操作
パネル、26と27と28と38と39……デイ
ジタル表示器、30……電源装置、31……トレ
ンドペンレコーダ、32と33と34と35と3
6……端子、37……電源スイツチ、40……主
演算パネル。
FIG. 1 is an explanatory diagram of a pressure measuring device for measuring stuttering and depth, showing an embodiment of the device according to the present invention;
FIG. 2 is an explanatory diagram of the main processing unit showing one embodiment of the device according to the present invention. 1... dredger, 2... dredging conduit, 3... pressure measuring device, 4, 6 and 10... conduit, 7 and 9... terminal, 11... sea surface, 12... seabed, 13... air purge port, 14... Pressure gauge, 5... Air purge box, 21... Central processing unit, 22... Input/output controller, 23... Memory device, 24... Memory controller, 25
... Digital switch, 29 ... Pressure measurement operation panel, 26 and 27 and 28 and 38 and 39 ... Digital display, 30 ... Power supply device, 31 ... Trend pen recorder, 32 and 33 and 34 and 35 and 3
6...terminal, 37...power switch, 40...main operation panel.
Claims (1)
ように浚渫導管を海底に降下し上記船槽に土砂を
海水とともに吸上げて海底の浚渫を行う浚渫船に
おいて、 船首、船尾および船腹中央の各位置の吃水なら
びに上記左右両舷の浚渫導管の位置が示す深度を
それぞれ計測するエアパージ式の圧力測定装置
と、 該圧力測定装置における標準レンジを有する各
圧力発信器から伝送されたアナログ入力信号をア
ナログアドレススイツチとA/D変換器により一
定周期でスイツチ走査しサンプリングしてそれぞ
れデイジタル変換された入力信号を中央演算器へ
入力せしめる入出力制御器と、この入力された各
デイジタル入力信号はエアパージ口の取付位置に
よる誤差定数とレンジ補正定数および海水比重補
正定数とにより補正演算され、さらに船体構造に
よる船首と船尾位置の吃水の相関補正を行い、船
腹中央位置の補正吃水の変化に応じて本船の総排
水量の変化を示した折線近似による総排水量を演
算し、この総排水量より上記補正海水比重定数お
よび土砂比重定数をもちいて土砂重量を演算する
中央演算器を有するマイクロコンピユータとを具
備し、 上記マイクロコンピユータの各種デイジタル出
力信号を表示し、土砂重量をトレンドペンレコー
ダによりグラフイク表示するようにした浚渫船の
積載土量計測装置。[Scope of Claim for Utility Model Registration] A dredger that dredges the seabed by descending dredging conduits from the ship's tank over the decks on both sides of the ship to the seabed like arms, and sucking up earth and sand along with seawater into the tank. , an air purge type pressure measuring device that measures the depth indicated by the dredging conduit at each position at the bow, stern, and midship, and the dredging conduit on both port and starboard sides, and each pressure transmitter having a standard range in the pressure measuring device. an input/output controller that scans and samples the analog input signal transmitted from the device at a constant cycle using an analog address switch and an A/D converter, and inputs the digitally converted input signal to the central processing unit; Each digital input signal is corrected using an error constant due to the installation position of the air purge port, a range correction constant, and a seawater specific gravity correction constant. Furthermore, the correlation between the stuttering at the bow and stern positions due to the hull structure is corrected, and the A central computing unit that calculates the total displacement by a broken line approximation that shows the change in the total displacement of the ship according to changes in the corrected stanchion, and calculates the sediment weight from this total displacement using the above-mentioned corrected seawater specific gravity constant and sediment specific gravity constant. A device for measuring the amount of loaded earth on a dredger, comprising: a microcomputer having a microcomputer;
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18701680U JPH0129542Y2 (en) | 1980-12-25 | 1980-12-25 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18701680U JPH0129542Y2 (en) | 1980-12-25 | 1980-12-25 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57108130U JPS57108130U (en) | 1982-07-03 |
JPH0129542Y2 true JPH0129542Y2 (en) | 1989-09-08 |
Family
ID=29989470
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18701680U Expired JPH0129542Y2 (en) | 1980-12-25 | 1980-12-25 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0129542Y2 (en) |
-
1980
- 1980-12-25 JP JP18701680U patent/JPH0129542Y2/ja not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS57108130U (en) | 1982-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
GB1579191A (en) | Stabilizing system on a semi-submerisible crane vessel | |
CN104238584B (en) | System and method for controlling water feeding and water discharging of water ballast space of underwater operation platform | |
JPH0129542Y2 (en) | ||
CN115265724A (en) | Liquid level meter field calibration device and method for obtaining calibration result | |
CN204788367U (en) | From lift -type platform levelness measurement system | |
Zheng et al. | New level sensor system for ship stability analysis and monitor | |
US6256585B1 (en) | Method for measuring depths of a waterway and for determining vertical positions of a waterborne vessel | |
CN210822675U (en) | Automatic ship trim adjusting system based on optimal trim | |
CN111735517A (en) | Liquid level measuring method | |
JPH09142374A (en) | Shipping support device and hull condition data determining method | |
US2471026A (en) | Device for determining the depth of liquids | |
US3190119A (en) | Apparatus for determining the weight of cargo on board a ship | |
GB2179749A (en) | Determination of the stability of floating structures | |
US2658389A (en) | Pressure responsive device for determining the depth of liquids | |
CN209446028U (en) | The flat measurement of higher degree system of vibro-rammer based on mangneto displacement sensor | |
US1131412A (en) | Pneumatic depth-indicator. | |
JPS6015285A (en) | Monitoring system for bulk cargo work for floating substance on sea | |
JPS61247592A (en) | Automatic ship steering system | |
CN115009470B (en) | Surrounding well structure and sounding method for sounding ship cabin | |
JPS63222224A (en) | Apparatus for measuring loadage of freight vessel | |
CN212747977U (en) | Liquid level measuring device | |
CN209858028U (en) | Ship measuring device | |
FI84039B (en) | System for automatic monitoring of the trim and stability of a ship | |
CA1167162A (en) | Method and device for measuring the density of fluids, particularly dredgings | |
CN211810119U (en) | High-precision hull sinking measurement, display and recording device |