JPH01295175A - Current measuring circuit - Google Patents

Current measuring circuit

Info

Publication number
JPH01295175A
JPH01295175A JP12475388A JP12475388A JPH01295175A JP H01295175 A JPH01295175 A JP H01295175A JP 12475388 A JP12475388 A JP 12475388A JP 12475388 A JP12475388 A JP 12475388A JP H01295175 A JPH01295175 A JP H01295175A
Authority
JP
Japan
Prior art keywords
current
photocoupler
light emitting
circuit
emitting diodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12475388A
Other languages
Japanese (ja)
Inventor
Hidehiko Fujii
藤井 英彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP12475388A priority Critical patent/JPH01295175A/en
Publication of JPH01295175A publication Critical patent/JPH01295175A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Current Or Voltage (AREA)

Abstract

PURPOSE:To keep an insulation and to exactly measure a current by using a photo-coupler for transmitting the current to be measured and the photo- coupler for transmitting a reference current, and measuring the current in comparison with both outputs. CONSTITUTION:On connecting light emitting diodes L1 and L2 of the photo- couplers 4, 5 and 7, 8 which are formed on the same tips 3, 6, with a shunt resistance R2 in series and also connecting this with a shunt resistance R1, then half cycle currents of plus and minus are made to flow into the light emitting diodes L1, L3. Also, the light emitting diodes L2, L4 are connected through controlling resistances VR1, VR2 with a power source VCC. And, the currents flowing in the light emitting diodes L1 and L2 are read by comparing an output V11 with V12 and V21 with V22 of the photo-coupler. By this method, it is able to know a monetary absolute value of the current flowing in a load 2.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は、高電圧の印加される回路に流れる電流を、
簡単に測定し得る電流測定回路に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial application field
This invention relates to a current measurement circuit that can be easily measured.

(ロ)従来の技術 従来、高電圧の印加される回路に流れる電流を測定する
場合、第5図に示すように被測定電流iを電流検出用の
抵抗器51に流し、この抵抗器51の両端電圧を電圧検
出部52で検出し、その検出電圧をV/Fコンバータ5
3で周波数信号に変換して、ホトカプラ55により、信
号処理部56に伝達している。
(B) Prior Art Conventionally, when measuring the current flowing in a circuit to which a high voltage is applied, the current to be measured i is passed through a current detection resistor 51 as shown in FIG. The voltage at both ends is detected by the voltage detection unit 52, and the detected voltage is applied to the V/F converter 5.
3, it is converted into a frequency signal and transmitted to the signal processing section 56 by the photocoupler 55.

また、他の電流測定技術として第6図に示すように、被
測定電流iを直接ホトカプラ61の一次側に流し、ホト
カプラ61により、信号処理部62に信号伝達するもの
がある。
Another current measurement technique, as shown in FIG. 6, is one in which the current to be measured i is passed directly to the primary side of a photocoupler 61, and the photocoupler 61 transmits a signal to a signal processing section 62.

(ハ)発明が解決しようとする課題 上記従来の技術のうち、第5図に示す測定回路は、点線
で囲った回路部分、つまり電圧検出部52からホトカプ
ラ55の入力個迄を高耐圧の絶縁を保ったまま、大地か
ら浮かさねばならず、また全体を駆動する電源も高電圧
下に保たねばならず、安全上問題が多い上に、回路構成
上高価となる。
(c) Problems to be Solved by the Invention Of the above-mentioned conventional techniques, the measuring circuit shown in FIG. It has to be floated off the ground while maintaining the same temperature, and the power supply that drives the whole thing has to be kept under high voltage, which not only poses many safety problems, but also makes the circuit configuration expensive.

また、第6図に測定回路は、検出部が1個のホトカプラ
のみなので、ホトカプラの伝達特性が一定という保証が
なく、「電流検出」ができても正確な測定をなし得ない
という問題がある。
In addition, since the measurement circuit shown in Figure 6 has only one photocoupler as the detection section, there is no guarantee that the transfer characteristics of the photocoupler are constant, and even if it is possible to "detect current", there is a problem that accurate measurement cannot be made. .

この発明は、上記問題点に着目してなされたものであっ
て、高電圧の印加される回路に流れる電流を測定するの
に、回路の大部分を高圧下に浮かせることなく、精度よ
く測定をなし得る電流測定回路壱提供することを目的と
している。
This invention has been made in view of the above-mentioned problems, and it is possible to measure the current flowing in a circuit to which a high voltage is applied with high accuracy without floating most of the circuit under high voltage. The object of the present invention is to provide a current measuring circuit that can be used.

(ニ)課題を解決するだめの手段及び作用この発明の電
流測定回路は、特性が同一あるいは路間−の複数のホト
カプラを備え、少なくとも1個の第1のホトカプラで被
測定電流を伝達し、他の少なくとも1個の第2のホトカ
プラで正確に計測可能な基準電流を伝達し、前記第1の
ホトカプラと第2のホトカプラの出力に基づいて、被測
定電流を測定するように構成している。
(d) Means and operation for solving the problem The current measuring circuit of the present invention includes a plurality of photocouplers having the same characteristics or between paths, and transmits the current to be measured using at least one first photocoupler, A reference current that can be accurately measured is transmitted by at least one other second photocoupler, and the current to be measured is measured based on the outputs of the first photocoupler and the second photocoupler. .

この電流測定回路では、ボトカプラを用いて被測定電流
を伝達するので、ホトカプラの二次側以鋒、つまり、測
定回路の大部分を高圧下に浮かせる必要がない。また、
第1のホトカプラで被測定電流を伝達する一方、第2の
ホトカプラで正確に測定可能な基準電流を伝達するので
、第1及び第2のホトカプラの出力比較で、被測定電流
を正確に測定できる。
In this current measurement circuit, since the current to be measured is transmitted using a photocoupler, there is no need to float the secondary side of the photocoupler, that is, most of the measurement circuit under high voltage. Also,
Since the first photocoupler transmits the current to be measured, and the second photocoupler transmits a reference current that can be accurately measured, the current to be measured can be accurately measured by comparing the outputs of the first and second photocouplers. .

(ホ)実施例 以下、実施例により、この発明をさらに詳細に説明する
(E) Examples The present invention will be explained in more detail with reference to Examples below.

〈実施例1〉 第1図に、この発明の一実施例を示す。この実施例は、
一般商用電源(AC100V)線を流れる交流電流を測
定する回路である。第1図において、AClooVの電
源から、負荷2及び分流抵抗R3、R2に交流電流iが
流される。また、同一のチンブ3に形成された、したが
って、同一特性のホトカプラ4.5と、同じく同一のチ
ップ6に形成されたホトカプラ7.8を備え、分流抵抗
R1の両端には、分流抵抗R2にホトカプラ4.7の発
光ダイオードL+、R3の並列回路が直列に接続されて
、並列接続されている。発光ダイオードL1には、正の
半サイクルの分流電流が、また発光ダイオードL3には
負の半サイクルの分流電流が流れるように、発光ダイオ
ードL、とR3は互いに逆極性に接続されている。また
、回路の直流電源電圧■CCが、調整抵抗VR,を介し
て、ホトカプラ5の発光ダイオードL2のアノードに接
続されるとともに、調整抵抗VR2を介して、ホトカプ
ラ8の発光ダイオードL4のアノードに接続されている
。発光ダイオードL2、R4のカソードはグランドGN
Dに接続されている。一方、ホトカプラ4.5.7.8
のホトトランジスタPT、、PT2、PT3、PT4の
各コレクタに電源VcCが接続され、各エミッタとグラ
ンドGND間に対応して抵抗R,,R2、R,、R,が
接続されている。これらの抵抗R1、・・・、R4の抵
抗値は等しく設定しである。各ホトトランジスタPT、
、・・・、PT、より、ホトカプラ4.5.7.8の伝
達電流に対応した出力電圧V ll、 V I 2、■
21% ”22が導出される。
<Example 1> FIG. 1 shows an example of the present invention. This example is
This is a circuit that measures the alternating current flowing through a general commercial power supply (AC 100V) line. In FIG. 1, an alternating current i is passed from the AClooV power source to the load 2 and shunt resistors R3 and R2. Furthermore, a photocoupler 4.5 formed on the same chip 3 and therefore having the same characteristics, and a photocoupler 7.8 also formed on the same chip 6 are provided, and the shunt resistor R2 is connected to both ends of the shunt resistor R1. A parallel circuit of light emitting diodes L+ and R3 of the photocoupler 4.7 is connected in series and connected in parallel. The light emitting diodes L and R3 are connected with opposite polarities to each other so that a positive half-cycle shunt current flows through the light emitting diode L1, and a negative half-cycle shunt current flows through the light emitting diode L3. In addition, the DC power supply voltage CC of the circuit is connected to the anode of the light emitting diode L2 of the photocoupler 5 via an adjustment resistor VR, and is also connected to the anode of the light emitting diode L4 of the photocoupler 8 via an adjustment resistor VR2. has been done. The cathodes of light emitting diodes L2 and R4 are connected to ground GN.
Connected to D. On the other hand, photocoupler 4.5.7.8
A power supply VcC is connected to the collectors of each of the phototransistors PT, PT2, PT3, and PT4, and resistors R, , R2, R, , R, are connected between each emitter and the ground GND. The resistance values of these resistors R1, . . . , R4 are set to be equal. Each phototransistor PT,
,..., PT, the output voltages V ll, V I 2, ■ corresponding to the transmission currents of photocoupler 4.5.7.8
21% ”22 is derived.

今、ホトカプラ4.5に着目して出力電圧■18、V1
2をオシロスコープで観測すると、第2図に示す波形と
なる。ここで、調整抵抗VR,を変化させると、同図に
おいて■1□は上下するが、このとき、ホトカプラ5の
一次側、つまり発光ダイオード上2側を流れる電流は、
簡単にはVcc”0.7/VR,(ただし、0.7:発
光ダイオードの接触電位差〕で求められるが、より詳細
にlJ、調整抵抗VR,に直列に電流計を挿入すること
により、容易に求められる。この電流を基準(基準電流
)として、ホトカプラ4.5の出力電圧V1、V12の
比較から、ホトカプラ4の発光ダイオードL1側を流れ
る電流の瞬時値を知ることができる。ホトカプラ7.8
についても以上と同様にみることにより、目的とする電
源AC100Vラインを流れる電流の波形とその瞬時絶
対値を知ることができる。
Now, focusing on the photocoupler 4.5, the output voltage ■18, V1
2 is observed with an oscilloscope, the waveform shown in FIG. 2 is obtained. Here, when the adjustment resistor VR is changed, ■1□ in the same figure goes up and down, but at this time, the current flowing through the primary side of the photocoupler 5, that is, the upper 2 side of the light emitting diode, is
It can be easily determined by Vcc"0.7/VR (where 0.7 is the contact potential difference of the light emitting diode), but it can be easily determined by inserting an ammeter in series with lJ and the adjustment resistor VR. Using this current as a reference (reference current), the instantaneous value of the current flowing through the light emitting diode L1 side of the photocoupler 4 can be found by comparing the output voltages V1 and V12 of the photocoupler 4.5. 8
By looking in the same manner as above, it is possible to know the waveform of the current flowing through the target AC 100V line and its instantaneous absolute value.

〈実施例2〉 第3図は、この発明の他の実施例を示す電流測定回路の
回路接続図である。同図において、同一チップ3に形成
されるホトカプラ4の発光ダイオードL1を、測定電流
i+が流れる電源ラインに接続し、他方のホトカプラ5
の発光ダイオードL2のアノードを+V ec電源に接
続し、発光ダイオードL2のカソードとグランドGND
間に、トランジスタTr及び抵抗Reを接続している。
<Embodiment 2> FIG. 3 is a circuit connection diagram of a current measuring circuit showing another embodiment of the present invention. In the same figure, the light emitting diode L1 of the photocoupler 4 formed on the same chip 3 is connected to the power supply line through which the measurement current i+ flows, and the other photocoupler 5
Connect the anode of the light emitting diode L2 to the +V ec power supply, and connect the cathode of the light emitting diode L2 to the ground GND.
A transistor Tr and a resistor Re are connected between them.

また、ホトカプラ4.5のホトトランジスタPT、 、
PT2のコレクタに+V cc電源を接続するとともに
、ホトトランジスタPT1、PT2のエミッタとグラン
ド間に同値の抵抗R,、R4をそれぞれ接続している。
In addition, phototransistor PT of photocoupler 4.5, ,
A +V cc power supply is connected to the collector of PT2, and resistors R, R4 of the same value are connected between the emitters of phototransistors PT1 and PT2 and the ground, respectively.

ホトトランジスタPT、のエミッタは、誤差増幅器9の
十入力端に接続され、ホトトランジスタPT2のエミッ
タが誤差増幅器9の一入力端に接続されている。誤差増
幅器9の出力端は抵抗R7を介して、トランジスタTr
のベースに接続されている。
The emitter of the phototransistor PT is connected to one input terminal of the error amplifier 9, and the emitter of the phototransistor PT2 is connected to one input terminal of the error amplifier 9. The output terminal of the error amplifier 9 is connected to the transistor Tr via the resistor R7.
connected to the base of.

この実施例回路において、電源ライン、つまりホトカプ
ラ4の一次側に測定電流ilを流し、ホトカプラ5の一
次側に基準電流12を流すと、各電流+1.12はホト
カプラ4.5で、それぞれ二次側に伝達され、電流11
、+2に応じた電圧が出力され、誤差増幅器9に入力さ
れる。誤差増幅器9は再入力の差に応じた電圧を出力し
、この差電圧がOとなるようにトランジスタTrが制御
される。この自動制御機能により、トランジスタTrに
流れる電流12は求めようとする測定電流il と常に
一致するように保たれる。したがって、電流12を、例
えば電流計で計測することにより、測定電流11を知る
ことができる。
In this example circuit, when the measurement current il is passed through the power supply line, that is, the primary side of the photocoupler 4, and the reference current 12 is passed through the primary side of the photocoupler 5, each current +1.12 is caused by the photocoupler 4.5, and the secondary Transmitted to the side, the current 11
, +2 is output and input to the error amplifier 9. The error amplifier 9 outputs a voltage according to the difference between the re-inputs, and the transistor Tr is controlled so that this difference voltage becomes O. Due to this automatic control function, the current 12 flowing through the transistor Tr is always kept equal to the desired measurement current il. Therefore, by measuring the current 12 with, for example, an ammeter, the measured current 11 can be determined.

〈実施例3〉 第4図は、この発明のさらに他の実施例を示す電流測定
回路の回路接続図である。この実施例は、本発明を電気
泳動用定電流電源に適用した例である。この実施例で、
負荷2に定電流を流すための、DC入力を交流信号に変
換するチョッピング用トランジスタ回路11、チョッピ
ング動作を行わせるための発振器13、トランスT、ト
ランスTで変換された交流電圧を整流する整流回路12
からなる回路部分は、通常のスイッチングレギュレータ
である。その他の回路部分は、本実施例の特徴部分であ
る電気泳動実験用の装置であり、出力は高電圧で、電源
極性は実験条件によって相違するので、任意に選択でき
るようになっている必要がある。この実施例における電
流信号伝達系は、第3図と同様、同一のチップ3に形成
される2個のホトカプラ4.5を使用しており、ホトカ
プラ4の発光ダイオードL1には、負荷電流iIが流さ
れ、この電流11がホトカプラ4で伝達され、電流iI
に応じた電圧に変換されて、出力され誤差増幅器9の一
方の入力端に加えられている。一方、ホトカプラ50発
光ダイオードL2には、+Vcc電源が調整抵抗(設定
器)VR,を介して印加されており、流れる電流12が
ホトカプラ5で伝達され、電源12に対応した電圧に変
換されて出力され、誤差増幅器9の他方の入力端に加え
られている。誤差増幅器9は再入力の差電圧を増幅し、
パルス幅変調回路14にフィードバックしている。
<Embodiment 3> FIG. 4 is a circuit connection diagram of a current measuring circuit showing still another embodiment of the present invention. This embodiment is an example in which the present invention is applied to a constant current power supply for electrophoresis. In this example,
A chopping transistor circuit 11 that converts DC input into an AC signal in order to flow a constant current to the load 2, an oscillator 13 that performs the chopping operation, a transformer T, and a rectifier circuit that rectifies the AC voltage converted by the transformer T. 12
The circuit section consisting of is a normal switching regulator. The other circuit parts are equipment for electrophoresis experiments, which is a characteristic part of this example, and the output is high voltage, and the power supply polarity differs depending on the experimental conditions, so it is necessary to be able to select it arbitrarily. be. The current signal transmission system in this embodiment uses two photocouplers 4.5 formed on the same chip 3, as in FIG. This current 11 is transmitted by the photocoupler 4, and the current iI
The voltage is converted into a voltage according to the voltage, outputted, and applied to one input terminal of the error amplifier 9. On the other hand, +Vcc power is applied to the photocoupler 50 light-emitting diode L2 via the adjustment resistor (setting device) VR, and the flowing current 12 is transmitted by the photocoupler 5, converted to a voltage corresponding to the power supply 12, and output. and is applied to the other input terminal of the error amplifier 9. The error amplifier 9 amplifies the re-input differential voltage,
It is fed back to the pulse width modulation circuit 14.

この実施例回路では、調整抵抗VR,を調整して、負荷
2に流すべき電流が設定される。設定された電流12は
、発光ダイオードL2からホトトランジスタP T 2
に伝達され、ホトカプラ5の出。
In this embodiment circuit, the current to be passed through the load 2 is set by adjusting the adjustment resistor VR. The set current 12 is transferred from the light emitting diode L2 to the phototransistor P T 2
is transmitted, and the output of photocoupler 5 is transmitted.

力が誤差増幅器9に入力される。一方、負荷2を流れる
電流11は、発光ダイオードL、からホトトランジスタ
PT、に伝達され、ホトカプラ4の出力が誤差増幅器9
に入力される。誤差増幅器9はホトカプラ4と5の出力
の差電圧を増幅し、パルス幅変調回路14に入力する。
The power is input to an error amplifier 9. On the other hand, the current 11 flowing through the load 2 is transmitted from the light emitting diode L to the phototransistor PT, and the output of the photocoupler 4 is transmitted to the error amplifier 9.
is input. The error amplifier 9 amplifies the difference voltage between the outputs of the photocouplers 4 and 5 and inputs it to the pulse width modulation circuit 14.

設定電流12と負荷電流11の値が相違すると、ホトカ
プラ4と5は同特性であり、また抵抗R3とR4を同値
に設定しであるから、ホトカプラ4と5の出力はそれぞ
れ一次側に流れる電流に対応し、したがって、誤差増幅
器9は、設定電流12と負荷電流i+の差に応じた電圧
を出力し、パルス幅変調回路14・に入力され、結局チ
ョッピング用トランジスタの位相幅にフィードバックさ
れ、最終的に負荷電流11はf’t L t、 2とな
るように、つまり目的の設定電流となやように制御され
る。
If the values of the set current 12 and the load current 11 are different, since the photocouplers 4 and 5 have the same characteristics and the resistors R3 and R4 are set to the same value, the output of the photocouplers 4 and 5 will be the current flowing to the primary side, respectively. Therefore, the error amplifier 9 outputs a voltage according to the difference between the set current 12 and the load current i+, which is input to the pulse width modulation circuit 14, which is eventually fed back to the phase width of the chopping transistor, and finally In other words, the load current 11 is controlled so that it becomes f't L t,2, that is, the target set current.

なお、上記各実施例において、被測定電流伝達用のホト
カプラと基準電流伝達用のホトカプラは、同一チップに
形成されるものを使用し、両者を同特性としたが、この
発明では上記両ホトカプラとして、予め略同特性の独立
部品を選定しておいて使用してもよい。
In each of the above embodiments, the photocouplers for transmitting the current to be measured and the photocouplers for transmitting the reference current are formed on the same chip and have the same characteristics. However, in this invention, both photocouplers are , independent parts having substantially the same characteristics may be selected in advance and used.

また、上記実施例3で設定電流を一定値にし、出力を一
定に制御しているが、設定電流として、ゆるやかな交流
とすることで任意のゆるやかな波形の絶縁された高電圧
や大電流とすることもできる。
In addition, in Example 3, the set current is set to a constant value and the output is controlled to be constant, but by using a gentle alternating current as the set current, it can be used to control isolated high voltages and large currents with arbitrary gentle waveforms. You can also.

(へ)発明の効果 この発明によれば、高電圧が印加される回路に流れる電
流をポトカプラを用いて伝達しているので電気的に高電
圧回路に絶縁を保った状態で、大部分の計測回路を構成
でき、したがって安全な測定装置を安価に実現できる。
(F) Effects of the Invention According to this invention, since the current flowing in the circuit to which high voltage is applied is transmitted using a potocoupler, most of the measurements can be performed while electrically insulating the high voltage circuit. A circuit can be configured, and therefore a safe measuring device can be realized at low cost.

その上、被測定電流伝達用の第1のホトカプラの他に測
定可能な基準電流を伝達する第2のホトカプラを備え、
両ホトカプラ出力の比較により電流測定を行うものであ
るから、比較的正確な計測が容易にできる。
Furthermore, in addition to the first photocoupler for transmitting the current to be measured, a second photocoupler for transmitting a measurable reference current is provided,
Since current is measured by comparing the outputs of both photocouplers, relatively accurate measurements can be easily made.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の一実施例を示す回路接続図、第2
図は、同実施例回路の動作を説明するための波形図、第
3図は、この発明の他の実施例を示す回路接続図、第4
図はこの発明のさらに他の実施例を示す回路接続図、第
5図及び第6図は従来例を示す回路ブロック図である。 2:負荷、 4・5・7・8:ホトカプラ、 VR,・VRz:gllll抗抵 抗3・R4・R6・R6:ホトカプラ出力用抵抗。 特許出願人     株式会社島津製作所代理人  弁
理士  中 村 茂 信
FIG. 1 is a circuit connection diagram showing one embodiment of the present invention, and FIG.
3 is a waveform diagram for explaining the operation of the circuit of the embodiment, FIG. 3 is a circuit connection diagram showing another embodiment of the present invention, and FIG.
The figure is a circuit connection diagram showing still another embodiment of the present invention, and FIGS. 5 and 6 are circuit block diagrams showing a conventional example. 2: Load, 4, 5, 7, 8: Photocoupler, VR, ・VRz: gllll resistance 3, R4, R6, R6: Photocoupler output resistor. Patent applicant Shimadzu Corporation Representative Patent attorney Shigeru Nakamura

Claims (1)

【特許請求の範囲】[Claims] (1)特性が同一あるいは略同一の複数のホトカプラを
備え、少なくとも1個の第1のホトカプラで被測定電流
を伝達し、他の少なくとも1個の第2のホトカプラで正
確に計測可能な基準電流を伝達し、前記第1のホトカプ
ラと第2のホトカプラの出力に基づいて、被測定電流を
測定することを特徴とする電流測定回路。
(1) A reference current that includes a plurality of photocouplers with the same or substantially the same characteristics, in which at least one first photocoupler transmits the current to be measured, and at least one other second photocoupler can accurately measure the current. 1. A current measuring circuit that transmits a current and measures a current to be measured based on the outputs of the first photocoupler and the second photocoupler.
JP12475388A 1988-05-20 1988-05-20 Current measuring circuit Pending JPH01295175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12475388A JPH01295175A (en) 1988-05-20 1988-05-20 Current measuring circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12475388A JPH01295175A (en) 1988-05-20 1988-05-20 Current measuring circuit

Publications (1)

Publication Number Publication Date
JPH01295175A true JPH01295175A (en) 1989-11-28

Family

ID=14893265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12475388A Pending JPH01295175A (en) 1988-05-20 1988-05-20 Current measuring circuit

Country Status (1)

Country Link
JP (1) JPH01295175A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007336683A (en) * 2006-06-14 2007-12-27 Shimadzu Corp Power unit and electrophoresis apparatus equipped with the power unit
JP2009500998A (en) * 2005-07-08 2009-01-08 バイオ−ラッド ラボラトリーズ,インコーポレイティド Wide area power supply

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009500998A (en) * 2005-07-08 2009-01-08 バイオ−ラッド ラボラトリーズ,インコーポレイティド Wide area power supply
JP2007336683A (en) * 2006-06-14 2007-12-27 Shimadzu Corp Power unit and electrophoresis apparatus equipped with the power unit

Similar Documents

Publication Publication Date Title
US5572416A (en) Isolated input current sense means for high power factor rectifier
CN100421341C (en) Switching regulator and image forming apparatus and its control method
KR100418623B1 (en) Switching mode power supply with constant power control circuit
US3959724A (en) Electronic wattmeter
JPH01295175A (en) Current measuring circuit
US5471134A (en) Measuring apparatus with adjustable indicator for measuring the real load factor on an electricity source
JP2001511892A (en) Current sensor based on compensation principle
US4038594A (en) Distortionless sine wave amplification
EP0089415A1 (en) Apparatus for measuring flow velocity
JPH0712938Y2 (en) Transmission line fault current detector
JPH076539Y2 (en) Transmission line fault current detector
JP2010078579A (en) Dc voltage detection circuit
JPH0664120B2 (en) Method for measuring dv / dt tolerance of thyristor
JPH0320785Y2 (en)
JPH0254574B2 (en)
SU1205058A1 (en) Ohmmeter
JPH0665994B2 (en) Peak value detection circuit
JPH0424283Y2 (en)
US7235985B2 (en) Method and device for signal amplitude detection
JPH06261547A (en) High voltage power source apparatus
SU1597867A1 (en) Thyristor a.c.voltage stabilizer for active-inductive load
JPS6133523Y2 (en)
SU1138848A1 (en) Device for testing incandescent lamps
JP2650334B2 (en) Output voltage monitoring device for series resonant converter
SU862338A1 (en) Differential rectifier