JPH01294560A - Production of compound oxide superconducting material - Google Patents

Production of compound oxide superconducting material

Info

Publication number
JPH01294560A
JPH01294560A JP63123185A JP12318588A JPH01294560A JP H01294560 A JPH01294560 A JP H01294560A JP 63123185 A JP63123185 A JP 63123185A JP 12318588 A JP12318588 A JP 12318588A JP H01294560 A JPH01294560 A JP H01294560A
Authority
JP
Japan
Prior art keywords
container
vapor pressure
compound
raw material
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63123185A
Other languages
Japanese (ja)
Other versions
JP2509672B2 (en
Inventor
Toshihiro Kotani
敏弘 小谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP63123185A priority Critical patent/JP2509672B2/en
Publication of JPH01294560A publication Critical patent/JPH01294560A/en
Application granted granted Critical
Publication of JP2509672B2 publication Critical patent/JP2509672B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To obtain a superconducting material rich in the phase having high critical temperature by carrying out the sintering treatment in an atmosphere containing an element or compound having the highest vapor pressure among those included in the raw material powder of a compound oxide superconducting material at a partial pressure higher than a prescribed level. CONSTITUTION:A compound oxide superconducting material having the objective composition is produced by (1) preparing a raw material powder consisting of a powdery mixture produced by mixing powder of elements included in the group consisting of the elements included in the objective composition and/or compounds containing one or more elements selected from the above element group in such a manner as to give a mixture containing all the above elements constituting the element group at prescribed ratios, (2) forming the raw material powder and (3) subjecting the formed material to treatments including sintering treatment. The above sintering treatment is carried out in an atmosphere containing the element or compound having the highest vapor pressure among the elements or compounds included in the above raw material powder (e.g., Tl for a Tl-Ca-Ba-Cu system) at a partial pressure higher than a prescribed level.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は複合酸化物系超電導材料の製造方法に関する。[Detailed description of the invention] Industrial applications The present invention relates to a method for manufacturing a composite oxide superconducting material.

より詳細には、本発明は、100に以上の臨界温度を有
するものと考えられているTl−Ba一Ca−Cu系の
複合酸化物超電導材料の製造に有利に適用することがで
き、特にその高い超電導臨界温度を示す相を高い割合で
含有する焼結体を製造することのできる新規な方法に関
する。
More specifically, the present invention can be advantageously applied to the production of Tl-Ba-Ca-Cu-based composite oxide superconducting materials, which are thought to have a critical temperature of 100° C. or higher, and in particular, The present invention relates to a novel method capable of producing a sintered body containing a high proportion of a phase exhibiting a high superconducting critical temperature.

従来の技術 ベドノルッ(Bednorz)およびミュラー(Mul
ler)等によってLa−Ba−Cu系の極めて高い臨
界温度を有する酸化物超電導材料が発見されて以来、よ
り優れた超電導物質の探索が続けられている。更に、B
a−Y−Cu系の超電導材料が90にという液体窒素温
度以上の臨界温度を有していることが見出され、これを
もって高温超電導材料の探索は一段落したかにみえたが
、科学技術庁金属材料研究所の前出等により100に以
上で超電導現象の兆候を呈するBi −Sr −Ca−
Cu系の超電導材料が発見されるに及んで、再び新しい
高温超電導物質を模索する試みが盛んになっている。そ
の結果、120に級の臨界温度を有するものとみられる
Tl −Ba −Ca−Cu系の超電導材料が、昭和6
3年2月のヒユーストンにおけるアーカンサス(Ark
ansas)大学の発表に端を発する一連の発表によっ
て注目されている。即ち、臨界温度が120に以上にな
れば、液体窒素の沸点である77Kに対して50°以上
の余裕がとれ、超電導の実用化を大きく推進するものと
考えられるからである。
Conventional technology Bednorz and Muller
Since the discovery of a La-Ba-Cu-based oxide superconducting material having an extremely high critical temperature by E.L.R. et al., the search for superior superconducting materials has continued. Furthermore, B
It was discovered that the a-Y-Cu-based superconducting material has a critical temperature of 90°C, which is higher than the liquid nitrogen temperature, and the search for high-temperature superconducting materials seemed to have come to an end, but the Science and Technology Agency Bi-Sr-Ca- which exhibits signs of superconducting phenomenon at 100 or higher according to the National Institute for Metals and Materials
With the discovery of Cu-based superconducting materials, attempts to find new high-temperature superconducting materials are once again gaining momentum. As a result, a Tl-Ba-Ca-Cu-based superconducting material, which is thought to have a critical temperature of about 120°C, was discovered in 1986.
Arkansas in Hyuston, February 3
(ansas) It has been attracting attention due to a series of announcements that originated from university announcements. That is, if the critical temperature becomes 120 degrees or higher, there will be a margin of 50 degrees or more relative to the boiling point of liquid nitrogen, 77 K, and it is thought that this will greatly promote the practical application of superconductivity.

このTl −Ba−Ca−Cu系の超電導材料は、昭和
63年3月のIBM等の発表によれば少なくとも125
にの臨界温度を有する超電導物質を含んでいるものと考
えられるが、実際にはこの物質の結晶の中には複数の相
が混在しており、上記の高臨界温度相以外に、臨界温度
108に等の低臨界温度相をも含んでいることが判明し
ている。
According to an announcement by IBM and others in March 1988, this Tl-Ba-Ca-Cu-based superconducting material has at least 125
Although it is thought to contain a superconducting material with a critical temperature of 108, in reality, multiple phases coexist in the crystal of this material, and in addition to the above-mentioned high critical temperature phase, there is a superconducting material with a critical temperature of 108. It has been found that it also contains low critical temperature phases such as .

発明が解決しようとする課題 米IBM等によって発表されたように、上述のTl −
Ba −Ca−Cu系の超電導材料は、Tl2Ca2B
azCusOyおよびTlsCatBazCu30,に
代表される少なくとも2種の相を主に含んでおり、高臨
界温度の発現には主に前者が寄与しているものと考えら
れている。しかしながら、現状では前者の単相生成はお
ろか高含有率の試料の作製さえ困難であり、高臨界温度
相の含有は20%程度に止まっている。このため焼結体
として得られる試料全体の電気抵抗が零(10−@Ω以
下)となる臨界温度Tciは100に程度と比較的平凡
な範囲に止まっている。
Problems to be Solved by the Invention As announced by IBM and others, the above-mentioned Tl -
Ba-Ca-Cu based superconducting material is Tl2Ca2B
It mainly contains at least two types of phases represented by azCusOy and TlsCatBazCu30, and it is thought that the former mainly contributes to the development of a high critical temperature. However, at present, it is difficult to produce a single phase of the former, let alone to prepare a sample with a high content, and the content of the high critical temperature phase remains at about 20%. Therefore, the critical temperature Tci at which the electrical resistance of the entire sample obtained as a sintered body becomes zero (10@Ω or less) remains in a relatively ordinary range of about 100.

そこで、本発明の目的は、上記従来技術の課題を解決し
、高い臨界温度を有する相が高い割合で含まれるような
複合酸化物を作製することのできる新規な複合酸化物系
超電導材料の製造方法を提供することにある。
Therefore, the purpose of the present invention is to solve the above-mentioned problems of the prior art and to produce a novel composite oxide-based superconducting material that can produce a composite oxide containing a high proportion of a phase with a high critical temperature. The purpose is to provide a method.

課題を解決するための手段 本発明者等は、特にTl −Ca−Ba−Cu系超電導
材料において、Tlの蒸気圧のみが他の元素に比較して
極端に高いことに着目し、これが複合酸化物の高臨界温
度相の生成に障害となっていることを見出して本発明を
完成した。
Means for Solving the Problems The present inventors have focused on the fact that, especially in Tl-Ca-Ba-Cu-based superconducting materials, only the vapor pressure of Tl is extremely high compared to other elements. The present invention was completed by discovering that this is an obstacle to the formation of a high critical temperature phase in substances.

即ち、本発明に従い、目的とする組成に含有される元素
からなる群に含まれる各元素の単体および/または該元
素群から選択された1種以上の元素を含有する化合物粉
末を、該元素群を構成する元素が所定の割合で全て含ま
れるように混合して得られる粉末混合物を原料粉末とし
、該原料粉末を成形して成形体とした後焼結処理を含む
処理によって前記目的とする組成を有する複合酸化物系
超電導材料を製造する方法であって、前記原料粉末に含
まれる元素または化合物のうち最も蒸気圧の高いものが
所定の分圧以上で含有される雰囲気下において前記焼結
処理を実施することを特徴とする上記複合酸化物系超電
導材料の製造方法が提供される。
That is, according to the present invention, a compound powder containing each element included in the group consisting of elements contained in the target composition and/or one or more elements selected from the element group is combined with the compound powder containing one or more elements selected from the element group. A powder mixture obtained by mixing all of the constituent elements in a predetermined ratio is used as a raw material powder, and the raw material powder is molded to form a compact, and then processed to obtain the desired composition by a process including a sintering process. A method for producing a composite oxide-based superconducting material having a sintering process in an atmosphere in which an element or compound having the highest vapor pressure among the elements or compounds contained in the raw material powder is contained at a predetermined partial pressure or higher. There is provided a method for producing the above composite oxide-based superconducting material, which is characterized by carrying out the following steps.

作用 本発明に係る複合酸化物系超電導材料の製造方法は、原
料粉末に含まれる元素または化合物のうち最も蒸気圧の
高いものが所定の分圧以上で含有される雰囲気下におい
て前記焼結処理を実施することをその主要な特徴として
いる。
Function The method for producing a composite oxide superconducting material according to the present invention includes performing the sintering treatment in an atmosphere in which the element or compound with the highest vapor pressure contained in the raw material powder is contained at a predetermined partial pressure or higher. Its main feature is implementation.

即ち、本発明者等は、前記Tl −Ca−Ba−Cu系
の複合酸化物において特にTlのみが極端に高い揮発性
を有することに着目し、従来の固相法では十分な組成制
御が達成されないことを見出した。
That is, the present inventors focused on the fact that only Tl in particular has extremely high volatility in the Tl-Ca-Ba-Cu-based composite oxide, and found that sufficient composition control could be achieved using the conventional solid-phase method. I found out that it is not.

Tl −Ca−Ba−Cu系の複合酸化物は、この複合
酸化物に含まれる各元素の化合物粉末、例えばTl20
s 、CabSBaOlCuO等の粉末を混合した原料
粉末を成形体とした後、この成形体を700乃至910
℃の範囲の温度で焼結して焼結体として得られる。
The Tl-Ca-Ba-Cu-based composite oxide is a compound powder of each element contained in the composite oxide, such as Tl20.
s, CabSBaOlCuO, etc. is mixed into a molded body, and then the molded body is heated to a temperature of 700 to 910.
It is obtained as a sintered body by sintering at a temperature in the range of °C.

しかしながら、この焼結温度領域ではTlの蒸気圧が極
めて高く、大気中で焼結した場合にはTlの含有量が非
常に低くなってしまい、高臨界温度相の形成に不利であ
る。一方、T1の蒸発を防止するために焼結温度を低く
設定すると、原料粉末の面相反応が十分に行われず、超
電導現象に寄与する特定の結晶構造が形成されなくなる
。このため、従来は高い焼結温度で焼結を行い、成形体
中には僅かな高臨界温度相のみしか形成されなかった。
However, in this sintering temperature range, the vapor pressure of Tl is extremely high, and when sintered in the atmosphere, the Tl content becomes extremely low, which is disadvantageous to the formation of a high critical temperature phase. On the other hand, if the sintering temperature is set low in order to prevent evaporation of T1, the phase reaction of the raw material powder will not occur sufficiently, and a specific crystal structure contributing to the superconducting phenomenon will not be formed. For this reason, conventionally, sintering was performed at a high sintering temperature, and only a small high critical temperature phase was formed in the compact.

そこで、本発明者等は、雰囲気中のTl蒸気圧を高くし
た状態で焼結を行うことによって、高い焼結温度と焼結
体の有利な組成制御とを両立させ得ることを見出した。
Therefore, the present inventors have discovered that by performing sintering while increasing the Tl vapor pressure in the atmosphere, it is possible to achieve both a high sintering temperature and advantageous composition control of the sintered body.

尚、実際にこのような焼結環境を実現するためには、焼
結に付す成形体を気密な容器中に収容し、この容器内を
高い分圧、好ましくは焼結温度におけるTlの蒸気圧以
上の分圧のTl蒸気によって満たして焼結を行うことに
より、焼結体中からのTlの揮散を防止することができ
る。
In order to actually achieve such a sintering environment, the compact to be sintered is housed in an airtight container, and the interior of the container is kept at a high partial pressure, preferably the vapor pressure of Tl at the sintering temperature. By performing sintering by filling with Tl vapor at the above partial pressure, it is possible to prevent Tl from volatilizing from within the sintered body.

尚、Tlおよびその化合物の多くは極めて強い毒性を有
することが知られており、この点からも成形体を密封し
て焼結を行うことが好ましい。
Note that it is known that Tl and many of its compounds have extremely strong toxicity, and from this point of view as well, it is preferable to perform sintering with the molded body sealed.

また、具体的には後述するように、成形体を封じた容器
と連通ずるTl蒸気供給手段を別途設けることも好まし
い。これによって、雰囲気中のT1分圧を精密に制御す
ることが可能となる。
Furthermore, as will be specifically described later, it is also preferable to separately provide Tl vapor supply means that communicates with the container in which the molded body is sealed. This makes it possible to precisely control the T1 partial pressure in the atmosphere.

尚、上記本発明に係る方法は、上述のようにTl−Ca
−Ba−Cu系複合酸化物超電導材料の製造に有利に適
用できるが、原料粉末中に極端に揮発性の高い物質、例
えば、B1−Pb−3r−Ca−Cu系の複合酸化物に
おけるpb等のような元素が含まれるような他の超電導
材料の製造においても応用可能であることはいうまでも
ない。
Incidentally, the method according to the present invention can be applied to Tl-Ca as described above.
- It can be advantageously applied to the production of Ba-Cu based composite oxide superconducting materials, but extremely volatile substances are included in the raw material powder, such as pb in B1-Pb-3r-Ca-Cu based composite oxides. Needless to say, it can also be applied to the production of other superconducting materials containing elements such as.

また、上述のような本発明に係る方法を利用して、Tl
が過剰に含有された焼結体を作製し、これをターゲット
としてスパッタリング法等の各種物理蒸着法を実施する
ことにより、好ましい組成の薄膜を作製することも考え
られる。
Furthermore, by using the method according to the present invention as described above, Tl
It is also conceivable to prepare a thin film with a preferable composition by preparing a sintered body containing an excessive amount of and performing various physical vapor deposition methods such as sputtering using this as a target.

以下に実施例を挙げて本発明をより具体的に詳述するが
、以下に開示するものは本発明の一実施例に過ぎず、本
発明の技術的範囲を何ら限定するものではない。
The present invention will be described in more detail with reference to examples below, but what is disclosed below is only one example of the present invention and does not limit the technical scope of the present invention in any way.

実施例 3N以上のTl201、CaO1Bad、およびCuO
の各粉末を、原子比Tl :Ca :Ba :Cuが2
:5:2:6となるように混合しで良く撹拌した。この
原料粉末を3つに分け、各々を成形して各々重さ400
mgの3個の成形体を作製した。
Example 3 N or higher Tl201, CaO1Bad, and CuO
The atomic ratio Tl :Ca :Ba :Cu is 2.
:5:2:6 and stirred well. Divide this raw material powder into three parts, mold each part, and each part weighs 400.
Three molded bodies were prepared.

第1の成形体は、890℃15分/酸素気流中の条件で
焼結し、得られた焼結体を試料■として後述するように
超電導臨界温度の測定並びに組成分析に付した。
The first molded body was sintered at 890° C. for 15 minutes in an oxygen stream, and the resulting sintered body was subjected to superconducting critical temperature measurement and composition analysis as sample ① as described below.

第2の成形体は、890℃/30分/酸素気流中の条件
で焼結し、得られた焼結体を試料■として後述するよう
な超電導臨界温度の測定並びに組成分析に付した。
The second molded body was sintered at 890° C. for 30 minutes in an oxygen stream, and the resulting sintered body was subjected to measurement of superconducting critical temperature and composition analysis as described below as sample ①.

第3の成形体は、本発明に従って、後述するようにTl
を含む蒸気中で焼結して試料■とした。
According to the present invention, the third molded body is made of Tl as described below.
The sample was sintered in steam containing .

第1図は、本発明による製造方法に実施するために使用
した機具の構成を橙略的に示す図である。
FIG. 1 is an orange diagram schematically showing the configuration of equipment used to carry out the manufacturing method according to the present invention.

この機具は、焼結に付す成形体を収容する石英製の容器
1と、この容器1にTlを含む蒸気を供給する連通管2
と、該連通管2の他端に設けられた蒸発室3と、更に、
容器1と蒸発室3とをそれぞれ個別に加熱することので
きる加熱手段4a、%4bとを備えている。尚、容器1
、連通管2および蒸発室3を併せた容積は60c!+i
であった。
This equipment includes a quartz container 1 that houses a molded body to be sintered, and a communication pipe 2 that supplies steam containing Tl to the container 1.
, an evaporation chamber 3 provided at the other end of the communication pipe 2, and further,
It is equipped with heating means 4a and 4b that can individually heat the container 1 and the evaporation chamber 3, respectively. In addition, container 1
, the combined volume of the communication pipe 2 and evaporation chamber 3 is 60c! +i
Met.

蒸発室3に、1”1203粉末6を収容し、これを加熱
手段4bによって加熱することによってTlを含む蒸気
を任意の蒸気圧で発生することができる。
By storing 1''1203 powder 6 in the evaporation chamber 3 and heating it with the heating means 4b, vapor containing Tl can be generated at any vapor pressure.

一方、容器1側には成形体5が収容されており、蒸発室
3において発生した蒸気は連通管2を介して容器1内に
供給されるので、容器1内ではT1を含む蒸気中で成形
体を焼結することができる。尚、この試料の焼結時の条
件は以下の通りである。
On the other hand, a molded body 5 is housed on the side of the container 1, and the steam generated in the evaporation chamber 3 is supplied into the container 1 through the communication pipe 2, so that the molded body is molded in the steam containing T1 in the container 1. The body can be sintered. The conditions for sintering this sample were as follows.

焼結温度=890℃ 焼結時間:4時間 蒸発室に入れたTl2O3の量: 30mg蒸発室の加
熱温度=950℃ 各試料の評価は、以下のようにして行った。
Sintering temperature = 890°C Sintering time: 4 hours Amount of Tl2O3 placed in the evaporation chamber: 30 mg Heating temperature of the evaporation chamber = 950°C Evaluation of each sample was performed as follows.

まず、得られた各試料から、それぞれ3mmX5mrn
の測定用試料を切出し、^Uペーストにより端子を設け
て4端子法による臨界温度の測定を行った。
First, from each sample obtained, 3 mm x 5 mrn
A sample for measurement was cut out, terminals were provided with ^U paste, and the critical temperature was measured using the four-terminal method.

続いて、プラズマ発光分析法により試料の組成分析を行
った。これらの測定結果を第1表に示す。
Subsequently, the composition of the sample was analyzed by plasma emission spectrometry. The results of these measurements are shown in Table 1.

第1表 発明の効果 以上詳述の如く、本発明の方法によれば、複合酸化物中
に含まれる揮発性の高い元素に対しても有効な組成制御
が可能となり、高い超電導特性を有する相を高い割合で
生成することが可能となるこうして得られる複合酸化物
系超電導材料は、例えばTl −Ca −Ba−Cu系
では、その高臨界温度相の超電導臨界温度は120に以
上にも達するものと見られでおり、液体窒素温度との差
が50°近くある実用的な超電導物質である。
Table 1 Effects of the Invention As detailed above, according to the method of the present invention, effective composition control is possible even for highly volatile elements contained in composite oxides, and phase formation with high superconducting properties is possible. The composite oxide-based superconducting material obtained in this way is capable of producing a high proportion of , for example, in the Tl-Ca-Ba-Cu system, the superconducting critical temperature of the high critical temperature phase reaches 120 or more. It is a practical superconducting material with a temperature difference of nearly 50° from liquid nitrogen.

また、焼結体を容器内に密封して焼結を行うことから、
Tlのように毒性の強い物質も安全に取り扱うことがで
きる。
In addition, since the sintered body is sealed in a container and sintered,
Even highly toxic substances such as Tl can be handled safely.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明による複合酸化物系超電導材料の製造
方法の一実施態様を示す図である。 〔主な参照番号〕 1・・・・・・容  器、 2・・・・・・連通管、 3・・・・・・蒸発室、 4a、4b・・加熱手段、 5・・・・・・成形体、 6・・・・・・Tl2O3粉末 特許出願人  住友電気工業株式会社
FIG. 1 is a diagram showing an embodiment of the method for manufacturing a composite oxide superconducting material according to the present invention. [Main reference numbers] 1... Container, 2... Communication pipe, 3... Evaporation chamber, 4a, 4b... Heating means, 5...・Molded body, 6...Tl2O3 powder patent applicant Sumitomo Electric Industries, Ltd.

Claims (1)

【特許請求の範囲】 (1)目的とする組成に含有される元素からなる群に含
まれる各元素の単体および/または該元素群から選択さ
れた1種以上の元素を含有する化合物粉末を、該元素群
を構成する元素が所定の割合で全て含まれるように混合
して得られる粉末混合物を原料粉末とし、該原料粉末を
成形して成形体とした後焼結処理を含む処理によって前
記目的とする組成を有する複合酸化物系超電導材料を製
造する方法であって、 前記原料粉末に含まれる元素または化合物のうち最も蒸
気圧の高いものが所定の分圧以上で含有される雰囲気下
において前記焼結処理を実施することを特徴とする上記
複合酸化物系超電導材料の製造方法。 (2)前記所定の分圧が、前記最も蒸気圧の高い元素ま
たは化合物の飽和蒸気圧であることを特徴とする第1請
求項に記載の方法。 (3)前記成形体が、前記最も蒸気圧の高い元素または
化合物の蒸気が充填された気密な容器内に収容されて焼
結処理に付されることを特徴とする第1請求項または第
2請求項に記載の方法。 (4)容器内が飽和蒸気圧に達するに足るだけ、前記最
も蒸気圧の高い元素または化合物を予め過剰に容器内に
収容することを特徴とする第3請求項に記載の方法。 (5)前記気密な容器が、該容器に前記蒸気を供給する
手段を備えていることを特徴とする第3請求項に記載の
方法。 (6)前記複合酸化物系超電導材料が、 一般式:Tl_xBa_yCa_zCu_mO_n〔但
し、x、y、z、m、nはそれぞれ 0.5≦x≦2.5 0.5≦y≦2.5 0.5≦z≦2.5 1.5≦m≦3.5を満たす数である〕 で示される組成を形成するように前記原料粉末が調製さ
れていることを特徴とする第1請求項から第5請求項ま
での何れか1項に記載の方法。 (7)前記雰囲気に含有される蒸気が、Tlを含有する
蒸気であることを特徴とする第6請求項に記載の方法。 (8)蒸気焼結処理が、Tlを含有する蒸気を含む雰囲
気を充填された石英容器に収容された成形体に対して実
施されることを特徴とする第7請求項に記載の方法。 (9)前記容器にTl蒸気を供給する手段が、該容器の
内部と連通するキャビティを有するTl_2O_3を収
容した第2の容器であることを特徴とする第8請求項の
記載の方法。 (10)前記第2の容器を加熱することによって、供給
するTlを含む蒸気の蒸気圧を制御することを特徴とす
る第9請求項に記載の方法。
[Scope of Claims] (1) A compound powder containing each element included in a group consisting of elements contained in the target composition and/or one or more elements selected from the element group, A powder mixture obtained by mixing all the elements constituting the element group in a predetermined ratio is used as a raw material powder, and the raw material powder is molded to form a compact, and then subjected to a process including a sintering process to achieve the above-mentioned purpose. A method for producing a composite oxide-based superconducting material having a composition of The method for producing the composite oxide superconducting material described above, which comprises performing a sintering treatment. (2) The method according to claim 1, wherein the predetermined partial pressure is the saturated vapor pressure of the element or compound having the highest vapor pressure. (3) The molded body is housed in an airtight container filled with vapor of the element or compound having the highest vapor pressure and subjected to a sintering process. A method as claimed. (4) The method according to claim 3, characterized in that the element or compound having the highest vapor pressure is previously stored in excess in the container to an extent sufficient to reach a saturated vapor pressure in the container. 5. The method of claim 3, wherein said airtight container is provided with means for supplying said steam to said container. (6) The composite oxide superconducting material has the general formula: Tl_xBa_yCa_zCu_mO_n [where x, y, z, m, and n are each 0.5≦x≦2.5 0.5≦y≦2.5 0. 5≦z≦2.5 1.5≦m≦3.5] The raw material powder is prepared to form a composition represented by the following. 5. The method according to any one of claims 5 to 5. (7) The method according to claim 6, wherein the vapor contained in the atmosphere is a vapor containing Tl. (8) The method according to claim 7, wherein the steam sintering treatment is performed on a molded body housed in a quartz container filled with an atmosphere containing steam containing Tl. (9) The method according to claim 8, wherein the means for supplying Tl vapor to the container is a second container containing Tl_2O_3 and having a cavity communicating with the interior of the container. (10) The method according to claim 9, characterized in that the vapor pressure of the vapor containing Tl to be supplied is controlled by heating the second container.
JP63123185A 1988-05-20 1988-05-20 Method for producing complex oxide superconducting material Expired - Lifetime JP2509672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63123185A JP2509672B2 (en) 1988-05-20 1988-05-20 Method for producing complex oxide superconducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63123185A JP2509672B2 (en) 1988-05-20 1988-05-20 Method for producing complex oxide superconducting material

Publications (2)

Publication Number Publication Date
JPH01294560A true JPH01294560A (en) 1989-11-28
JP2509672B2 JP2509672B2 (en) 1996-06-26

Family

ID=14854295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63123185A Expired - Lifetime JP2509672B2 (en) 1988-05-20 1988-05-20 Method for producing complex oxide superconducting material

Country Status (1)

Country Link
JP (1) JP2509672B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01305816A (en) * 1988-06-01 1989-12-11 Agency Of Ind Science & Technol High-temperature superconductor
JPH0222126A (en) * 1988-07-08 1990-01-25 Matsushita Electric Ind Co Ltd Production of superconductor
JPH02217316A (en) * 1988-12-22 1990-08-30 General Electric Co <Ge> High-temperature superconductive material and its manufacture
JPH0397622A (en) * 1989-09-11 1991-04-23 Matsushita Electric Ind Co Ltd Oxide superconducting material and production thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01239051A (en) * 1988-03-18 1989-09-25 Fujitsu Ltd Production of superconducting ceramic
JPH01264930A (en) * 1988-04-15 1989-10-23 Hitachi Ltd Production of oxide superconductor and applied product of said oxide superconductor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01239051A (en) * 1988-03-18 1989-09-25 Fujitsu Ltd Production of superconducting ceramic
JPH01264930A (en) * 1988-04-15 1989-10-23 Hitachi Ltd Production of oxide superconductor and applied product of said oxide superconductor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01305816A (en) * 1988-06-01 1989-12-11 Agency Of Ind Science & Technol High-temperature superconductor
JPH0574531B2 (en) * 1988-06-01 1993-10-18 Kogyo Gijutsuin
JPH0222126A (en) * 1988-07-08 1990-01-25 Matsushita Electric Ind Co Ltd Production of superconductor
JPH02217316A (en) * 1988-12-22 1990-08-30 General Electric Co <Ge> High-temperature superconductive material and its manufacture
JPH0397622A (en) * 1989-09-11 1991-04-23 Matsushita Electric Ind Co Ltd Oxide superconducting material and production thereof

Also Published As

Publication number Publication date
JP2509672B2 (en) 1996-06-26

Similar Documents

Publication Publication Date Title
KR910007382B1 (en) Superconductor material and method of manufacturing super-conductor film
EP0292958B1 (en) Method for preparing thin film of compound oxide superconductor
JPS63206462A (en) Production of thin conductive or superconductive film
JPH01294560A (en) Production of compound oxide superconducting material
JPS6224605A (en) Amorphous magnetic thin film
EP0342039B1 (en) Josephson device and method of making same
JPH02167820A (en) Method for forming tl-base multiple oxide superconducting thin film
JPH0825742B2 (en) How to make superconducting material
JPH02221125A (en) Oxide superconductor and its production
JPH01203258A (en) Production of oxide superconducting sintered body
JPS6414820A (en) Manufacture of superconductor thin film
JPH01286926A (en) Production of superconductor thin film
Kopf Superconducting Homogeneous InTl and PbBi Films Evaporated from a Single Source
JP2557446B2 (en) Method for producing complex oxide-based superconducting thin film
JPH0365513A (en) Raw material for superconductor, production thereof and production of superconductor using the same raw material
JPH01252526A (en) Production of oxide superconductor film containing copper
JPH0292827A (en) Production of bi oxide superconductor
JPH01115014A (en) Manufacture of superconducting thin film
JPH09508344A (en) Superconducting material and method of manufacturing superconducting material
JPS63292525A (en) Manufacture of superconductive film
JPH01160826A (en) Preparation of oxide superconducting thin film
JPH0495351A (en) Lithium ion conductive solid electrolyte
JPH0517147A (en) Production of thin compound oxide film containing lead
JPS63304525A (en) Manufacture of ceramic superconductive thin film
JPH03205308A (en) Production of oxide superconducting thin film