JPH01294032A - Heat ray shield plate having low visible light transmissivity - Google Patents

Heat ray shield plate having low visible light transmissivity

Info

Publication number
JPH01294032A
JPH01294032A JP63125195A JP12519588A JPH01294032A JP H01294032 A JPH01294032 A JP H01294032A JP 63125195 A JP63125195 A JP 63125195A JP 12519588 A JP12519588 A JP 12519588A JP H01294032 A JPH01294032 A JP H01294032A
Authority
JP
Japan
Prior art keywords
film
thickness
visible light
heat ray
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63125195A
Other languages
Japanese (ja)
Inventor
Takashi Muromachi
隆 室町
Hidemi Nakai
日出海 中井
Atsushi Kawaguchi
淳 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP63125195A priority Critical patent/JPH01294032A/en
Publication of JPH01294032A publication Critical patent/JPH01294032A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3429Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
    • C03C17/3435Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a nitride, oxynitride, boronitride or carbonitride

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

PURPOSE:To obtain a heat ray shield plate having durability and low visible light transmissivity, by providing a nitride layer of a metal selected from zirconium, titanium and hafnium having a thickness of 50-600Angstrom to the single surface of a transparent substrate composed of glass or synthetic resin. CONSTITUTION:A nitride layer 12 of a metal selected from zirconium, titanium and hafnium having a thickness of 50-600Angstrom is formed to one surface of a transparent substrate 11 composed of glass or synthetic resin by a sputtering method. Whereupon, since the film 12 is composed of metal nitride, said film is not corroded in the atmosphere and has excellent abrasion resistance. By selecting the thickness of the film 12, a heat ray shield plate having solar radia tion transmissivity lower by 5% or more than visible light transmissivity within a visible light transmissivity range of 30-70% can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は建築物、または自動車の窓ガラスに用いるのに
好適な低い可視光透過率の熱線遮断板に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a heat ray shielding plate with low visible light transmittance suitable for use in window glass of buildings or automobiles.

〔従来の技術〕[Conventional technology]

従来この種の熱線遮断板としては第5図および第6図に
示すものがあった。第5図に示したものは熱線反射膜1
03を付着したクリアのフロートガラス手反101とク
リアのフロートガラス板101とを中間樹脂膜104で
接着した合せガラス105である。また、第6図に示し
たものは熱線反射膜103を付着したクリアのフロート
ガラス板101とクリアのフロートガラス板102とを
空間107を介してセパレータ106により結合した複
層ガラス108である。これらの合せガラス105およ
び複層ガラス10Bの熱線反射jl103を付着したク
リアのフロートガラス板101は第7図に示されるよう
にフロートガラス板101の上に順次膜厚300Å〜4
00人のZnO膜109、膜厚70Å〜150人のAg
膜110、膜厚300〜400人のZnO膜111の3
層をを積層している。
Conventionally, this type of heat ray shielding plate has been shown in FIGS. 5 and 6. The one shown in Figure 5 is the heat ray reflective film 1.
This is a laminated glass 105 in which a clear float glass panel 101 to which No. 03 is attached and a clear float glass plate 101 are bonded together with an intermediate resin film 104. Moreover, what is shown in FIG. 6 is a double-glazed glass 108 in which a clear float glass plate 101 having a heat ray reflecting film 103 attached thereto and a clear float glass plate 102 are combined by a separator 106 via a space 107. These laminated glass 105 and the clear float glass plate 101 to which the heat ray reflection jl 103 of the double-glazed glass 10B is attached are sequentially coated on the float glass plate 101 with a film thickness of 300 Å to 400 Å as shown in FIG.
00 people ZnO film 109, film thickness 70 Å ~ 150 people Ag
Film 110, ZnO film 111 with a film thickness of 300 to 400 people, 3
The layers are stacked.

基板101から遠い方のZnO膜111を成膜する際に
Ag成膜10が酸化されるのを防ぐためにA、膜110
とZnO膜111の間に10Å〜20人のZn膜を通常
形成するが、このZn膜は後に酸化してZnO膜となり
111のZnOと一体となるので最終的には第7図に示
した膜構成となっている。
In order to prevent the Ag film 10 from being oxidized when forming the ZnO film 111 farther from the substrate 101, the film 110 is
A Zn film of 10 Å to 20 Å is usually formed between the ZnO film 111 and the ZnO film 111, but this Zn film is later oxidized to become a ZnO film and is integrated with the ZnO of the ZnO film 111, so that the final film shown in FIG. 7 is formed. The structure is as follows.

これらの従来の製品はAg成膜10の持つ優れた光学的
性質、即ち高い可視光透過率、低い日射透過率を主に利
用し、更にAg成膜10の上下に設けられたZnO膜1
09,111がAg膜110とガラス板または空気、中
間膜との間の反射防止層として働くことにより可視光透
過率をより一層向上し、また同時にこのZnO膜109
,111力<Qg膜110の腐食をある程度防いでいた
。更にAg成膜10はZnO膜109,111があるに
も係らず湿気を含んだ外気中では数日〜数カ月で腐食し
てしまうため、第5図、第6図に示したように合せガラ
ス105及び複層ガラス108にし、湿気を含んだ外気
に触れないようにして数年以上経ってもAg成膜10が
腐食しないように工夫されていた。
These conventional products mainly utilize the excellent optical properties of the Ag film 10, that is, high visible light transmittance and low solar transmittance, and further utilize the ZnO films 1 provided above and below the Ag film 10.
09,111 acts as an antireflection layer between the Ag film 110 and the glass plate, air, or intermediate film, further improving the visible light transmittance, and at the same time, this ZnO film 109
, 111 force <Qg Corrosion of the film 110 was prevented to some extent. Furthermore, despite the ZnO films 109 and 111, the Ag film 10 corrodes in a few days to several months in humid outside air, so as shown in FIGS. And double-glazed glass 108 was used to prevent the Ag film 10 from being corroded even after several years by preventing exposure to humid outside air.

これら2つの従来例のAg膜を用いたものは非常に優れ
た高い可視光透過率と低い日射透過率を有する熱線遮蔽
板となる。
Those using these two conventional Ag films result in heat ray shielding plates having extremely high visible light transmittance and low solar transmittance.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、この熱線反射膜103を直接湿気を含ん
だ外気にさらす使用状況では数日〜数カ月のうちにAg
成膜10が腐食して、光学特性が変化すると可視光透過
率の減少と共に日射透過率の上昇が起こり、また外観上
も腐食個所がまだらになって見えるようになってしまう
と言う欠点があった。このため自動車のサイドウィンド
ウのようにガラス板を単板で用いその表面に形成されて
いる膜が直接外気に触れる用途には従来のAg1Ill
llOを含んだ製品を用いることはできなかった。
However, if this heat ray reflective film 103 is directly exposed to humid outside air, Ag
When the formed film 10 corrodes and its optical properties change, the visible light transmittance decreases and the solar transmittance increases, and the corrosion points also appear mottled in appearance. Ta. For this reason, in applications where a single glass plate is used, such as the side window of a car, and the film formed on the surface is in direct contact with the outside air, conventional Ag1Ill is used.
It was not possible to use products containing 11O.

しかも可視光透過率が約30%乃至70%の範囲で、日
射透過率が可視光透過率よりも少なくとも5%以上低い
ものは従来の熱線反射膜では得難い。
Moreover, it is difficult to obtain a film with a visible light transmittance in the range of about 30% to 70% and a solar light transmittance lower than the visible light transmittance by at least 5% or more with conventional heat ray reflective films.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は前記したような従来のものの欠点を除去するた
めになされたものであって、比較的可視光透過率が低く
、且つ日射通過率が可視光透過率よりも少なくとも5%
以上低い被膜をもち、該被膜が外気にさらされる環境に
おいても用いることができる耐久性のある熱線遮蔽板を
提供するものである。すなわち、本発明は、ガラス又は
合成樹脂等の透明基板と、該透明基板の一方の表面に形
成された、厚み力(50Å〜600人のジルコニウム、
チタン、およびハフニウムのいずれかの金属の窒化物層
とからなる低い可視光透過率の熱線遮蔽板である。
The present invention has been made in order to eliminate the drawbacks of the conventional ones as described above, and has a relatively low visible light transmittance and a solar radiation transmittance of at least 5% higher than the visible light transmittance.
The object of the present invention is to provide a durable heat ray shielding plate that has a low coating thickness and can be used even in an environment where the coating is exposed to the outside air. That is, the present invention provides a transparent substrate made of glass or synthetic resin, and a thickness of zirconium (50 Å to 600 Å) formed on one surface of the transparent substrate.
This is a heat ray shielding plate with low visible light transmittance that is made of a nitride layer of either titanium or hafnium.

また、本発明は、前記金属の窒化物層上に屈折率が1.
8〜2.4で、且つ厚みが10Å〜600人の金属酸化
物誘電体層を形成した特許請求の範囲第1項に記載の低
い可視光透過率の熱線遮蔽板である。
Further, in the present invention, the metal nitride layer has a refractive index of 1.
8 to 2.4, and a metal oxide dielectric layer having a thickness of 10 to 600 Å.

更にまた本発明は、ガラス又は合成樹脂等の透明基板と
、該透明基板の一方の表面に形成された、屈折率が1.
8〜2.4で且つ厚みが200Å〜600人の第1の金
属酸化物誘電体層と、該金属酸化物誘電体層上に形成し
た厚みが100Å〜600人のジルコニウム、チタン、
およびハフニウムのいずれかの金属の窒化物層と、該金
属の窒化物価−ヒに形成した、屈折率が1.9〜2.1
5で且つ厚みが200Å〜600人の第2の金属酸化物
誘電体層とからなる低い可視光透過率の熱線遮蔽板であ
る。
Furthermore, the present invention provides a transparent substrate made of glass or synthetic resin, and a substrate having a refractive index of 1.
a first metal oxide dielectric layer having a thickness of 8 to 2.4 and a thickness of 200 Å to 600 Å; zirconium, titanium, and a metal oxide dielectric layer having a thickness of 100 Å to 600 Å;
and hafnium, and the nitride layer of the metal has a refractive index of 1.9 to 2.1.
5 and a second metal oxide dielectric layer having a thickness of 200 Å to 600 Å, the heat ray shielding plate has a low visible light transmittance.

本発明において、金属の窒化物層の窒化物とはMNX 
(Mはジルコニウム、チタン、およびハフニウム、X=
0.1−1.2)で表されるものを意味する。
In the present invention, the nitride of the metal nitride layer is MNX
(M is zirconium, titanium, and hafnium, X=
0.1-1.2).

また、本発明において、前記金属酸化物誘電体層として
酸化錫2M化チタン、酸化タンタル、酸化アルミニュウ
ム、酸化タングステン、酸化ジルコニュウム、酸化亜鉛
、及び錫をドープした酸化インジウムのいずれかが用い
られる。
Further, in the present invention, any one of tin oxide 2M titanium oxide, tantalum oxide, aluminum oxide, tungsten oxide, zirconium oxide, zinc oxide, and tin-doped indium oxide is used as the metal oxide dielectric layer.

〔作 用) 本発明に用いられている被膜は金属窒化物、あるいは金
属窒化物と金属酸化物誘電体層からなるため、従来用い
られていたAg簿膜のように大気中で腐食することがな
く、耐摩耗性に優れている。
[Function] Since the film used in the present invention is composed of a metal nitride or a metal nitride and a metal oxide dielectric layer, it does not corrode in the atmosphere like the conventionally used Ag film. It has excellent wear resistance.

また、本発明に用いられている被膜の厚みを選ぶことに
より、可視光線透過率を30%〜70%の範囲で、且つ
日射透過率が可視光線透過率よりも5%以上低い熱線遮
断板を得ることができる。
In addition, by selecting the thickness of the coating used in the present invention, it is possible to create a heat ray shielding plate that has a visible light transmittance in the range of 30% to 70% and a solar transmittance that is 5% or more lower than the visible light transmittance. Obtainable.

以下、本発明を図面に示した実施例について説明する。Embodiments of the present invention shown in the drawings will be described below.

〔実施例1〕 11は屈折率が1.51の5龍厚さのクリアのフロート
ガラス板であって、ガラス板11の表面に、厚みが25
0人の窒化ジルコニウム(ZrN、、、 xは0.1〜
1.2のいずれかの値)膜工2をスパッタリング法で形
成される(第1図)。
[Example 1] Reference numeral 11 is a clear float glass plate having a refractive index of 1.51 and a thickness of 5 mm.
Zirconium nitride (ZrN,, x is 0.1~
1.2) The membrane 2 is formed by a sputtering method (FIG. 1).

窒化ジルコニウム膜には5 X 10−”Torrに減
圧された5、4容量%の窒素ガスを含むアルゴンガス中
でジルコニウムターゲットに一330vを印加して、1
.9Aの電流を流すことによる反応性直流スパッタリン
グでガラス板11上に形成される。
The zirconium nitride film was prepared by applying -330 V to the zirconium target in argon gas containing 5.4% by volume nitrogen gas and reduced pressure to 5 x 10-'' Torr.
.. It is formed on the glass plate 11 by reactive direct current sputtering using a current of 9 A.

このスパッタリング中アルゴンガスと酸素ガスを夫々4
7.5 SCCM及び2.5 SCCMの流量で供給し
ながら、スパッタリング雰囲気5 X 10−’Tor
rに保った。得られた熱線遮蔽ガラスの光学特性を第1
表及び第4図に示した。
During this sputtering, argon gas and oxygen gas were
Sputtering atmosphere 5 x 10-'Tor while feeding at flow rates of 7.5 SCCM and 2.5 SCCM
I kept it at r. The optical properties of the obtained heat ray shielding glass were
It is shown in the table and Figure 4.

〔実施例2〕 21は屈折率力月、51の5酊厚さのクリアのフロート
ガラス板であって、ガラス板21の表面に順次、厚みが
250人の窒化ジルコニウム(Z r N )l %X
は0.1〜1.2のいずれかの値)膜22と、厚みが1
00人の酸化錫(SnOz)膜23とが夫々スパッタリ
ング法で形成される(第2図)。窒化ジルコニウム膜2
2は実施例1と同様に付着され、酸化錫膜23は2.5
 X 10−3Torrに減圧された80容量%の酸素
ガスを含むアルゴンガス中で金属錫ターゲットに一40
0Vを印加して、2.5Aの電流を流すことによる反応
性直流スパッタリングで形成される。このスパッタリン
グ中アルゴンガスと酸素ガスを夫々10. OSCCM
及び40. OSCCMの流量で供給しながら、スパッ
タリング雰囲気を2.5X 10 ”’Torrに保っ
た。得られた熱線遮断ガラスの光学特性を第1表及び第
4図に示した。この熱線遮断ガラスは二層膜の光干渉に
よって光学特性を向上し、且つ酸化錫膜23により、実
施例1のものより、耐摩耗性と化学的安定性等の耐久性
が向上する。
[Example 2] Reference numeral 21 is a clear float glass plate with a refractive index of 5.5 mm and a thickness of 51. Zirconium nitride (ZrN) 1% in thickness is sequentially coated on the surface of the glass plate 21. X
is a value from 0.1 to 1.2) The film 22 and the thickness are 1
A tin oxide (SnOz) film 23 of 0.00 mm is formed by sputtering (FIG. 2). Zirconium nitride film 2
2 is deposited in the same manner as in Example 1, and the tin oxide film 23 is 2.5
A metallic tin target was heated at 140°C in argon gas containing 80% by volume oxygen gas at a reduced pressure of 10-3 Torr.
It is formed by reactive direct current sputtering by applying 0V and flowing a current of 2.5A. During this sputtering, argon gas and oxygen gas were added for 10 minutes each. OSCCM
and 40. The sputtering atmosphere was maintained at 2.5 x 10''' Torr while supplying at the flow rate of OSCCM. The optical properties of the obtained heat ray blocking glass are shown in Table 1 and Figure 4. This heat ray blocking glass has two layers. The optical properties of the film are improved by optical interference, and the tin oxide film 23 improves durability such as wear resistance and chemical stability compared to that of Example 1.

〔実施例3〕 31は屈折率が1.51の51園厚さのクリアのフロー
トガラス板であって、ガラス板31の表面に順次、厚み
が460人の酸化錫膜32と、厚みが450人の窒化ジ
ルコニウム(ZrNx、Xは0.1〜1.2のいずれか
の値)膜33と、厚みが390人の酸化錫膜34とが夫
々スパッタリング法で形成される(第3図)。窒化ジル
コニウム膜33及び酸化錫膜32及び34は実施例2と
同様に形成された、得られた熱線遮断ガラスの光学特性
を第1表及び第4図に示した。
[Example 3] Reference numeral 31 denotes a clear float glass plate having a refractive index of 1.51 and a thickness of 51mm, and a tin oxide film 32 with a thickness of 460mm and a tin oxide film 32 with a thickness of 45mm thick are sequentially formed on the surface of the glass plate 31. A 390 mm thick zirconium nitride (ZrNx, X has a value between 0.1 and 1.2) film 33 and a 390 mm thick tin oxide film 34 are each formed by sputtering (FIG. 3). The zirconium nitride film 33 and the tin oxide films 32 and 34 were formed in the same manner as in Example 2. The optical properties of the obtained heat ray blocking glass are shown in Table 1 and FIG. 4.

表1 光学特性 この熱線遮断ガラスは三層膜の光干渉によって光学特性
を更に向上し、且つ耐摩耗性と科学的安定性等の耐久性
が向上する。
Table 1 Optical Properties This heat-shielding glass further improves its optical properties due to the optical interference of the three-layer film, and also improves its durability such as abrasion resistance and scientific stability.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明によれば被膜の厚みを所定の値に
選ぶことにより、可視光、緑透過率を30%〜70%と
比較的低い範囲で、且つ日射透過率が可視光js透過率
よりも5%以上、通常10%以上低い熱線遮断板を得る
ことができる。また、本発明に用いられる被膜は金属窒
化物、あるいは金属窒化物と金属酸化物誘電体層からな
るため大気中で耐久性があり、且つ耐摩耗性に優れてい
る。
As described above, according to the present invention, by selecting the thickness of the coating to a predetermined value, visible light and green transmittance can be kept in a relatively low range of 30% to 70%, and solar transmittance can be reduced to visible light js transmittance. It is possible to obtain a heat ray shielding plate that has a heat ray shielding rate lower than that by 5% or more, usually by 10% or more. Further, since the coating used in the present invention is made of a metal nitride or a metal nitride and a metal oxide dielectric layer, it is durable in the atmosphere and has excellent wear resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第3図は夫々本発明の熱線遮断ガラスの部分
断面図、第4図は本発明の熱線遮断ガラスの分光透過率
曲線、第5図乃至第6図は従来の熱線遮断ガラス、第7
図は従来の熱線遮断ガラスの部分拡大断面図である。 11.21,31ニガラス板 12.22,33:窒化ジルコニウム膜23.32,3
4:酸化錫膜 第1図 第2図     第3図 第4図 第5図 第6図 第7図
1 to 3 are partial cross-sectional views of the heat ray blocking glass of the present invention, FIG. 4 is the spectral transmittance curve of the heat ray blocking glass of the present invention, and FIGS. 5 to 6 are the conventional heat ray blocking glass, 7th
The figure is a partially enlarged sectional view of a conventional heat-shielding glass. 11.21, 31 Glass plate 12.22, 33: Zirconium nitride film 23.32, 3
4: Tin oxide film Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7

Claims (3)

【特許請求の範囲】[Claims] (1)ガラス又は合成樹脂等の透明基板と、該透明基板
の一方の表面に形成された、厚みが50Å〜600Åの
ジルコニウム、チタン、およびハフニウムのいずれかの
金属の窒化物層とからなる低い可視光透過率の熱線遮蔽
板。
(1) A transparent substrate made of glass or synthetic resin, and a metal nitride layer of zirconium, titanium, or hafnium with a thickness of 50 Å to 600 Å formed on one surface of the transparent substrate. Heat ray shielding plate with visible light transmittance.
(2)前記金属の窒化物層上に屈折率が1.8〜2.4
で、且つ厚みが10Å〜600Åの金属酸化物誘電体層
を形成した特許請求の範囲第一項に記載の、低い可視光
透過率の熱線遮蔽板。
(2) A refractive index of 1.8 to 2.4 on the metal nitride layer
A heat ray shielding plate with low visible light transmittance according to claim 1, wherein a metal oxide dielectric layer having a thickness of 10 Å to 600 Å is formed.
(3)ガラス又は合成樹脂等の透明基板と、該透明基板
の一方の表面に形成された、屈折率が1.8〜2.4で
且つ厚みが200Å〜600Åの第1の金属酸化物誘電
体層と、該金属酸化物誘電体層上に形成した厚みが10
0Å〜600Åのジルコニウム、チタンおよびハフニウ
ムのいずれかの金属の窒化物層と、該金属の窒化物層上
に形成した、屈折率が1.8〜2.4で且つ厚みが20
0Å〜600Åの第2の金属酸化物誘電体層とからなる
低い可視光透過率の熱線遮断板。
(3) A transparent substrate such as glass or synthetic resin, and a first metal oxide dielectric having a refractive index of 1.8 to 2.4 and a thickness of 200 Å to 600 Å, formed on one surface of the transparent substrate. The thickness formed on the body layer and the metal oxide dielectric layer is 10
A metal nitride layer of zirconium, titanium, or hafnium with a thickness of 0 Å to 600 Å, and a refractive index of 1.8 to 2.4 and a thickness of 20 nm formed on the metal nitride layer.
A heat ray shielding plate with low visible light transmittance comprising a second metal oxide dielectric layer with a thickness of 0 Å to 600 Å.
JP63125195A 1988-05-23 1988-05-23 Heat ray shield plate having low visible light transmissivity Pending JPH01294032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63125195A JPH01294032A (en) 1988-05-23 1988-05-23 Heat ray shield plate having low visible light transmissivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63125195A JPH01294032A (en) 1988-05-23 1988-05-23 Heat ray shield plate having low visible light transmissivity

Publications (1)

Publication Number Publication Date
JPH01294032A true JPH01294032A (en) 1989-11-28

Family

ID=14904273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63125195A Pending JPH01294032A (en) 1988-05-23 1988-05-23 Heat ray shield plate having low visible light transmissivity

Country Status (1)

Country Link
JP (1) JPH01294032A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2722775A1 (en) * 1994-07-25 1996-01-26 Glaverbel GLAZING WITH PYROLYTIC COATING
CN102432190A (en) * 2011-09-22 2012-05-02 浙江大学 Method for preparing high transmissivity titanium nitride coated glass

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2722775A1 (en) * 1994-07-25 1996-01-26 Glaverbel GLAZING WITH PYROLYTIC COATING
NL1000882C2 (en) * 1994-07-25 1996-04-15 Glaverbel Pyrolytic coated glazing panel.
BE1008681A3 (en) * 1994-07-25 1996-07-02 Glaverbel Glass carrying pyrolytic coating.
ES2123387A1 (en) * 1994-07-25 1999-01-01 Glaverbel A pyrolytically coated glazing panel
AT408980B (en) * 1994-07-25 2002-04-25 Glaverbel PYROLYTICALLY COATED GLAZING WINDOW
CN102432190A (en) * 2011-09-22 2012-05-02 浙江大学 Method for preparing high transmissivity titanium nitride coated glass

Similar Documents

Publication Publication Date Title
JP2888507B2 (en) Metal vacuum-coated article and method for producing the same
JP3446833B2 (en) Conductive light attenuating anti-reflection coating and article provided with the same
JPH06510382A (en) Conductive light-attenuating anti-reflection coating
JPS63206333A (en) Heat ray reflecting glass of single plate
JPH0522657B2 (en)
WO2008065962A1 (en) Visible light transparent and heat reflective sheet
PL336905A1 (en) Transparent coated substrate of high reflectivity
JP2535350B2 (en) High transmission solar control glass
JPH01294032A (en) Heat ray shield plate having low visible light transmissivity
JP2811885B2 (en) Heat shielding glass
JPH0764598B2 (en) Infrared blocking glass
JPH01138159A (en) Heat ray shielding plate having high visible ray transmittance
JP2906524B2 (en) Infrared reflective article
JPH0682163B2 (en) Optical body with excellent durability
JPH0764599B2 (en) An optical body with excellent durability and heat ray reflectivity
JPH01314163A (en) Heat ray shielded glass
JP2576662B2 (en) Heat blocking glass
JP2531734B2 (en) Transparent body with anti-reflection coating including metal film
JP2518116B2 (en) Method for manufacturing an optical body with excellent durability
JPH03178430A (en) Infrared ray reflecting article
JPH0243487A (en) Board for shielding heat ray having high visible radiation permeability
JPS63315541A (en) Heat ray reflecting glass of half mirror
JP3357087B2 (en) Glow prevention transparent body
JPH01208344A (en) Transparent plate with gold reflected color
JP2565538B2 (en) Transparent body with anti-reflection coating including metal film