JPH0129365B2 - - Google Patents

Info

Publication number
JPH0129365B2
JPH0129365B2 JP25219383A JP25219383A JPH0129365B2 JP H0129365 B2 JPH0129365 B2 JP H0129365B2 JP 25219383 A JP25219383 A JP 25219383A JP 25219383 A JP25219383 A JP 25219383A JP H0129365 B2 JPH0129365 B2 JP H0129365B2
Authority
JP
Japan
Prior art keywords
unsaturated polyester
temperature
acid value
mol
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP25219383A
Other languages
Japanese (ja)
Other versions
JPS60141722A (en
Inventor
Shunji Masuda
Shigeji Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP25219383A priority Critical patent/JPS60141722A/en
Publication of JPS60141722A publication Critical patent/JPS60141722A/en
Publication of JPH0129365B2 publication Critical patent/JPH0129365B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、硬化収縮率の小さな不飽和ポリエス
テル樹脂組成物に関する。 不飽和ポリエステル樹脂組成物の収縮率は、重
合性単量体の量に大きく依存し、スチレンモノマ
を50〜30%用いた場合7〜10%の収縮率を有して
おり、このため注型品のクラツクやFRP製品の
型びけ等の不良が発生するため好ましくない。こ
の収縮率を小さくする方法の一つとして、ジシク
ロペンタジエン誘導体を不飽和ポリエステル原料
として用いる方法(特公昭40−25900号公報)が
あるが、この場合の収縮率は6〜9%と約1%が
改善されるのみである。また不飽和ポリエステル
樹脂組成物にポリスチレンなどの熱可塑性重合体
を溶解させる方法が一般に知られているが、この
場合、熱可塑性重合体相が相分離するため、顔料
分散性が悪くなり成形外観が劣るという新たな欠
点が起こり、好ましくない。このように現在、収
縮率を充分小さくし、しかも他の特性を悪くしな
い方法は、まだ提案されていない。 本発明者等はジシクロペンタジエン誘導体の一
つであるトリシクロデセニルマレート及び/又は
トリシクロデセニルフマレートを全酸成分の20〜
85モル%用い、テレフタル酸成分を酸成分の15〜
80モル%用いて得られる酸価55〜40の不飽和ポリ
エステルを用いた不飽和ポリエステル樹脂組成物
は濁度が40以上となり、収縮率も3.5〜6%と小
さいことを見出した。 本発明はトリシクロデセニルマレート及び/又
はトリシクロデセニルフマレートを酸成分の20〜
85モル%用い、テレフタル酸成分を酸成分の15〜
80モル%用いて得られる酸価55〜40の不飽和ポリ
エステルと重合性単量体を含有してなる低収縮性
不飽和ポリエステル樹脂組成物に関する。 本発明においては、トリシクロデセニルマレー
ト及び/又はトリシクロデセニルフマレートの使
用量、テレフタル酸成分の使用量及び得られる不
飽和ポリエステルの酸価は、上記の範囲とされる
が、これは、低収縮性不飽和ポリエステル樹脂組
成物の濁度を40以上に保ち、これによつて得られ
る硬化物の望ましい機械強度及び収縮率を得るた
めである。 トリシクロデセニルマレート及び/又はトリシ
クロデセニルフマレートを酸成分の20〜85モル%
用いるが、テレフタル酸成分を併用しない場合
は、通常濁度が30以下と小さく、収縮率が前述た
ように6〜9%と充分でない。また不飽和ポリエ
ステルの酸価を55より高くすれば硬化物の機械強
度が低下する。さらに酸価を80以上にすれば濁度
は40以上になるがスチレンモノマとの相溶性が極
端に悪くなり2相に分離してしまう。 一方、テレフタル酸成分を15モル%未満で使用
した場合には、やはり濁度が40以上になるには不
飽和ポリエステルの酸価が55より高くなり硬化物
の機械強度が低下する。 さらにテレフタル酸成分を15〜80モル%用いた
場合でも、不飽和ポリエステルの酸価が40未満で
は急激に透明性が回復し、収縮率が大きくなる。
また不飽和ポリエステルの酸価が55より大きいと
やはり硬化物の機械強度が低下する。 次に材料について説明する。 トリシクロデセニルマレートやトリシクロデセ
ニルフマレートは、例えば特願昭54−107607号公
報に記載の方法で得ることができる。また、テレ
フタル酸成分とは、テレフタル酸、ジメチルテレ
フタレート、ポリエチレンテレフタレート等の高
分子にグリコールを加えてクラツキングしたもの
などをいう。これらの酸成分と共に、無水マレイ
ン醸、フマル酸、イタコン酸、ムコン酸等の不飽
和二塩基酸、無水フタル酸、イソフタル酸、コハ
ク酸、アジピン酸、セバシン酸、テトラヒドロ無
水フタル酸等の飽和二塩基酸などを1種或は2種
以上を使用できる。 アルコール成分としては、プロピレングリコー
ル、ジプロピレングリコール、エチレングリコー
ル、ジエチレングリコール、1,3−ブチレング
リコール、1,4−ブタンジオール、1,6−ヘ
キサンジオール、ネオペンチルグリコール、ビス
フエノールAのアルキレンオキシド付加物、グリ
セリンなどを用いることができる。 重合性単量体としては、スチレン、ビニルトル
エン、t−ブチルスチレン、クロルスチレン、ジ
ビニルベンゼンなどを単独あるいは併用して用い
ることができ、メチル(メタ)アクリレート(メ
チルメタクリレート及びメチルアクリレートの
意、以下同じ)、エチル(メタ)アクリレート、
ブチル(メタ)アクリレート、ジアリルフタレー
ト、トリアリルシアヌレート、酢酸ビニル、トリ
メチロールプロパンジ又はトリ(メタ)アクリレ
ートなどを前述重合性単量体と併用できる。その
使用量は、製品の種類、組成物の硬化方法および
要求される作業性などにより決定されるものであ
り、特に限定されない。また不飽和ポリエステル
の合成についても、通常行なわれている方法でよ
く、特に制限はない。 本発明になる低収縮性樹脂組成物の硬化に際し
ては、過酸化物等の触媒、必要により金属石けん
等の硬化促進剤により硬化される。またこの組成
物は必要に応じて重合禁止剤、消泡剤、炭酸カル
シウム等の充てん剤、顔料、染料などの公知の添
加成分を含んでもよい。 以下、実施例及び比較例により本発明を説明す
る。 実施例及び比較例において濁度は、スガ試験機
株式会社の濁度計AUD−CH−GV3−Hを用い、
純水を標準液として光の透過率を求め、100%透
過するものを濁度0とし、0%透過の場合を濁度
100とした。収縮率は、JIS K 6901ハバード比
重びん法により液比重と硬化物比重を求め
硬化物の比重−液比重/液比重×100として計算した。
曲 げ強さ及び曲げ弾性率は、不飽和ポリエステル樹
脂組成物300重量部にナフテン酸コバルト1.5重量
部及びメチルエチルケトンパーオキシド3重量部
を添加混合し、これを30×30cmのチヨツプドスト
ランドマツト(富士フアイバーグラス社製FEM
−G450)3層に含浸脱泡し、25℃で硬化した後
50℃で12時間アフタキユアして得たFRP板につ
いてJIS K 6911に準じて測定した。 実施例 1 溶剤還流管、窒素導入管、温度計、撹拌機をつ
けた2四つ口フラスコにテレフタル酸355g
(26モル%)、プロピレングリコール325g、ジブ
チルチンオキシド0.4gおよびキシレン200gを仕
込み、窒素気流下で6時間かけて200℃に昇温し、
この温度で5時間反応させ酸価が14になつたとこ
ろで100℃まで降温し、トリシクロデセニルマレ
ート493g(26モル%)、無水マレイン酸280g、
無水フタル酸159gおよびプロピレングリコール
244gを仕込み3時間で210℃に昇温した。この温
度で反応を進め、酸価50で190℃に降温しキシレ
ンを留去し、酸価45の不飽和ポリエステル1を得
た。この不飽和ポリエステル1 65重量部をハイ
ドロキノン0.02%を溶解したスチレン35重量部に
溶解して不飽和ポリエステル樹脂組成物1を得
た。この不飽和ポリエステル樹脂組成物1の特性
を表1に示した。 実施例 2 実施例1と同じフラスコにジメチルテレフタレ
ート411g(26モル%)、プロピレングリコール
325gおよび酢酸亜鉛0.4gを仕込み、窒素気流下
で6時間かけて200℃に昇温し、この温度で8時
間反応させ120gのメタノールが留出したところ
で100℃まで降温し、トリシクロデセニルマレー
ト493g(26モル%)、無水マレイン酸280g、無
水フタル酸159g、プロピレングリコール244gお
よびキシレン200gを仕込み、3時間で210℃に昇
温した。この温度で反応を進め、酸価50で190℃
に降温しキシレンを留去し、酸価43の不飽和ポリ
エステル2を得た。この不飽和ポリエステル2を
用い、実施例1と同様にして不飽和ポリエステル
樹脂組成物2を得、その特性を表1に示した。 実施例 3 実施例1と同じフラスコにポリエチレンテレフ
タレート411g(繰返し単位を1分子として26モ
ル%)、プロピレングリコール217gおよびジブチ
ルチンオキシド0.4gを仕込み、窒素気流下で4
時間かけて200℃に昇温し、この温度で4時間反
応させた後、100℃に降温した。トリシクロデセ
ニルマレート493g(26モル%)、無水マレイン酸
280g、無水フタル酸159g、プロピレングリコー
ル190gおよびキシレン200gを仕込み3時間で
210℃に昇温した。この温度で反応を進め、酸価
50で190℃に降温しキシレンを留去し、酸価45の
不飽和ポリエステル3を得た。この不飽和ポリエ
ステル3を用い、実施例1と同様にして不飽和ポ
リエステル樹脂組成物3を得た。その特性を表1
に示した。 実施例 4 実施例1と同じフラスコにジメチルテレフタレ
ート632g(40モル%)、プロピレングリコール
188g、ジプロピレングリコール331gおよび酢酸
亜鉛0.4gを仕込み窒素気流下で6時間かけて210
℃に昇温し、この温度で8時間反応させ182gの
メタノールが留出したところで100℃まで降温し、
トリシクロデセニルフマレート568g(30モル
%)、無水マレイン酸161g、無水フタル酸122g、
プロピレングリコール194gおよびキシレン200g
を仕込み3時間で210℃に昇温した。この温度で
反応を進め、酸価50で190℃に降温しキシレンを
留去し、酸価44の不飽和ポリエステル4を得た。
この不飽和ポリエステル4を用い、実施例1と同
様にして不飽和ポリエステル樹脂組成物4を得
た。その特性を表1に示した。 比較例 1 実施例1の不飽和ポリエステル1の反応をさら
に進め、酸価28の不飽和ポリエステル5を得た。
この不飽和ポリエステル5を用い、実施例1と同
様にして不飽和ポリエステル樹脂組成物5を得
た。その特性を表1に示した。 比較例 2 実施例1と同じフラスコ、合成原料で同様にし
て反応を進め、酸価が70で190℃まで降温しキシ
レンを留去し、酸価61の不飽和ポリエステル6を
得た。この不飽和ポリエステル6を用い、実施例
1と同様にして不飽和ポリエステル樹脂組成物6
を得た。その特性を表1に示した。 比較例 3 実施例1と同じフラスコにイソフタル酸534g、
プロピレングリコール489g、ジブチルチンオキ
シド0.5gおよびキシレン200gを仕込み窒素気流
下で6時間かけて200℃に昇温し、この温度で4
時間反応させて酸価10になつたところで100℃ま
で降温し、トリシクロデセニルマレート493g
(26モル%)、無水マレイン酸280gおよびプロピ
レングリコール81gを仕込み3時間で210℃に昇
温した。この温度で反応を進め酸価50で190℃に
降温しキシレンを留去し、酸価44の不飽和ポリエ
ステル7を得た。この不飽和ポリエステル7を用
い、実施例1と同様にして不飽和ポリエステル樹
脂組成物7を得た。その特性を表1に示した。 比較例 4 実施例1で用いたフラスコに無水フタル酸740
g、無水マレイン酸490gおよびプロピレングリ
コール798gを仕込み窒素気流下で5時間かけて
210℃に昇温し、この温度で6時間反応し酸価が
35の不飽和ポリエステル8を得た。この不飽和ポ
リエステル8を用い、実施例1と同様にして不飽
和ポリエステル樹脂組成物8を得た。その特性を
表1に示した。
The present invention relates to an unsaturated polyester resin composition having a small curing shrinkage rate. The shrinkage rate of unsaturated polyester resin compositions largely depends on the amount of polymerizable monomer, and when 50-30% styrene monomer is used, the shrinkage rate is 7-10%. This is undesirable because it causes defects such as cracks in the product and deformation of the FRP product. One method of reducing this shrinkage rate is to use a dicyclopentadiene derivative as a raw material for unsaturated polyester (Japanese Patent Publication No. 40-25900), but the shrinkage rate in this case is 6 to 9%, about 1. % is only improved. Additionally, a method is generally known in which a thermoplastic polymer such as polystyrene is dissolved in an unsaturated polyester resin composition, but in this case, the thermoplastic polymer phase undergoes phase separation, resulting in poor pigment dispersibility and poor molded appearance. A new disadvantage of inferiority arises, which is not desirable. As described above, no method has yet been proposed to sufficiently reduce the shrinkage rate without degrading other properties. The present inventors added tricyclodecenyl maleate and/or tricyclodecenyl fumarate, which is one of the dicyclopentadiene derivatives, to 20 to 20% of the total acid component.
Using 85 mol%, the terephthalic acid component is 15 to 15% of the acid component.
It has been found that an unsaturated polyester resin composition using an unsaturated polyester with an acid value of 55 to 40 obtained by using 80 mol% has a turbidity of 40 or more and a small shrinkage rate of 3.5 to 6%. The present invention uses tricyclodecenyl maleate and/or tricyclodecenyl fumarate as an acid component.
Using 85 mol%, the terephthalic acid component is 15 to 15% of the acid component.
The present invention relates to a low-shrinkage unsaturated polyester resin composition containing an unsaturated polyester having an acid value of 55 to 40 obtained by using 80 mol % and a polymerizable monomer. In the present invention, the amount of tricyclodecenyl maleate and/or tricyclodecenyl fumarate used, the amount of terephthalic acid component used, and the acid value of the resulting unsaturated polyester are within the above ranges, This is to maintain the turbidity of the low-shrinkage unsaturated polyester resin composition at 40 or higher, thereby obtaining desirable mechanical strength and shrinkage of the resulting cured product. Tricyclodecenyl maleate and/or tricyclodecenyl fumarate in an amount of 20 to 85 mol% of the acid component
However, when the terephthalic acid component is not used in combination, the turbidity is usually as low as 30 or less, and the shrinkage rate is 6 to 9%, which is not sufficient as described above. Furthermore, if the acid value of the unsaturated polyester is made higher than 55, the mechanical strength of the cured product will decrease. Furthermore, if the acid value is increased to 80 or higher, the turbidity becomes 40 or higher, but the compatibility with the styrene monomer becomes extremely poor and the product separates into two phases. On the other hand, when the terephthalic acid component is used in an amount less than 15 mol %, the acid value of the unsaturated polyester becomes higher than 55 in order for the turbidity to become 40 or more, and the mechanical strength of the cured product decreases. Further, even when 15 to 80 mol% of the terephthalic acid component is used, if the acid value of the unsaturated polyester is less than 40, transparency will rapidly recover and the shrinkage rate will increase.
Furthermore, if the acid value of the unsaturated polyester is greater than 55, the mechanical strength of the cured product will decrease. Next, the materials will be explained. Tricyclodecenyl maleate and tricyclodecenyl fumarate can be obtained, for example, by the method described in Japanese Patent Application No. 107607/1983. Moreover, the terephthalic acid component refers to polymers such as terephthalic acid, dimethyl terephthalate, and polyethylene terephthalate, which are cracked by adding glycol. In addition to these acid components, unsaturated dibasic acids such as maleic anhydride, fumaric acid, itaconic acid, and muconic acid, and saturated dibasic acids such as phthalic anhydride, isophthalic acid, succinic acid, adipic acid, sebacic acid, and tetrahydrophthalic anhydride, One type or two or more types of basic acids can be used. Alcohol components include propylene glycol, dipropylene glycol, ethylene glycol, diethylene glycol, 1,3-butylene glycol, 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, and alkylene oxide adducts of bisphenol A. , glycerin, etc. can be used. As the polymerizable monomer, styrene, vinyltoluene, t-butylstyrene, chlorostyrene, divinylbenzene, etc. can be used alone or in combination, and methyl (meth)acrylate (hereinafter referred to as methyl methacrylate and methyl acrylate) can be used. same), ethyl (meth)acrylate,
Butyl (meth)acrylate, diallyl phthalate, triallyl cyanurate, vinyl acetate, trimethylolpropane di- or tri(meth)acrylate, and the like can be used in combination with the above polymerizable monomer. The amount used is determined by the type of product, the curing method of the composition, the required workability, etc., and is not particularly limited. Further, the synthesis of unsaturated polyester may be carried out by a commonly used method and is not particularly limited. When curing the low-shrinkage resin composition of the present invention, it is cured using a catalyst such as peroxide and, if necessary, a curing accelerator such as metal soap. The composition may also contain known additive components such as a polymerization inhibitor, an antifoaming agent, a filler such as calcium carbonate, a pigment, and a dye, if necessary. The present invention will be explained below with reference to Examples and Comparative Examples. In the Examples and Comparative Examples, turbidity was measured using a turbidity meter AUD-CH-GV 3 -H manufactured by Suga Test Instruments Co., Ltd.
Determine the transmittance of light using pure water as a standard solution, and 100% transmission is considered 0 turbidity, and 0% transmission is turbidity.
It was set as 100. The shrinkage rate was calculated by determining the specific gravity of the liquid and the specific gravity of the cured product using the JIS K 6901 Hubbard pycnometer method, and calculating the specific gravity of the cured product - specific gravity of the liquid/specific gravity of the liquid x 100.
The flexural strength and flexural modulus were determined by adding and mixing 1.5 parts by weight of cobalt naphthenate and 3 parts by weight of methyl ethyl ketone peroxide to 300 parts by weight of an unsaturated polyester resin composition, and mixing this into a 30 x 30 cm chopped strand mat ( FEM manufactured by Fuji Fiber Glass Co., Ltd.
-G450) After impregnation and degassing in 3 layers and curing at 25℃
The FRP board obtained by after-curing at 50°C for 12 hours was measured according to JIS K 6911. Example 1 355 g of terephthalic acid was placed in a 2-four-necked flask equipped with a solvent reflux tube, a nitrogen inlet tube, a thermometer, and a stirrer.
(26 mol%), 325 g of propylene glycol, 0.4 g of dibutyltin oxide and 200 g of xylene were charged, and the temperature was raised to 200°C over 6 hours under a nitrogen stream.
After reacting at this temperature for 5 hours, when the acid value reached 14, the temperature was lowered to 100°C, and 493 g (26 mol%) of tricyclodecenyl maleate, 280 g of maleic anhydride,
159g phthalic anhydride and propylene glycol
244g was charged and the temperature was raised to 210°C in 3 hours. The reaction proceeded at this temperature, and when the acid value was 50, the temperature was lowered to 190°C, and xylene was distilled off to obtain unsaturated polyester 1 with an acid value of 45. Unsaturated polyester resin composition 1 was obtained by dissolving 65 parts by weight of this unsaturated polyester 1 in 35 parts by weight of styrene in which 0.02% of hydroquinone was dissolved. The properties of this unsaturated polyester resin composition 1 are shown in Table 1. Example 2 In the same flask as in Example 1, 411 g (26 mol%) of dimethyl terephthalate and propylene glycol were added.
325 g of methanol and 0.4 g of zinc acetate were charged, heated to 200°C over 6 hours under a nitrogen stream, reacted at this temperature for 8 hours, and when 120g of methanol had been distilled off, the temperature was lowered to 100°C, and tricyclodecenyl 493 g (26 mol %) of acid, 280 g of maleic anhydride, 159 g of phthalic anhydride, 244 g of propylene glycol, and 200 g of xylene were charged, and the temperature was raised to 210° C. over 3 hours. Proceed the reaction at this temperature, and at an acid value of 50, 190℃
The temperature was lowered to , and xylene was distilled off to obtain unsaturated polyester 2 having an acid value of 43. Using this unsaturated polyester 2, an unsaturated polyester resin composition 2 was obtained in the same manner as in Example 1, and its properties are shown in Table 1. Example 3 Into the same flask as in Example 1, 411 g of polyethylene terephthalate (26 mol % with the repeating unit as one molecule), 217 g of propylene glycol, and 0.4 g of dibutyltin oxide were charged, and the mixture was heated under a nitrogen stream.
The temperature was raised to 200°C over time, and after reacting at this temperature for 4 hours, the temperature was lowered to 100°C. Tricyclodecenyl maleate 493g (26 mol%), maleic anhydride
280g, phthalic anhydride 159g, propylene glycol 190g and xylene 200g in 3 hours.
The temperature was raised to 210℃. The reaction proceeds at this temperature and the acid value
At 50°C, the temperature was lowered to 190°C, and xylene was distilled off to obtain unsaturated polyester 3 with an acid value of 45. Using this unsaturated polyester 3, an unsaturated polyester resin composition 3 was obtained in the same manner as in Example 1. Table 1 shows its characteristics.
It was shown to. Example 4 In the same flask as in Example 1, 632 g (40 mol%) of dimethyl terephthalate and propylene glycol were added.
188g, dipropylene glycol 331g and zinc acetate 0.4g were prepared and heated to 210g over 6 hours under a nitrogen stream.
The temperature was raised to 100°C, and when 182g of methanol was distilled out, the reaction was continued at this temperature for 8 hours, and the temperature was lowered to 100°C.
Tricyclodecenyl fumarate 568g (30 mol%), maleic anhydride 161g, phthalic anhydride 122g,
194g propylene glycol and 200g xylene
The temperature was raised to 210°C in 3 hours. The reaction proceeded at this temperature, and when the acid value was 50, the temperature was lowered to 190°C, and xylene was distilled off to obtain unsaturated polyester 4 with an acid value of 44.
Using this unsaturated polyester 4, an unsaturated polyester resin composition 4 was obtained in the same manner as in Example 1. Its characteristics are shown in Table 1. Comparative Example 1 The reaction of unsaturated polyester 1 of Example 1 was further advanced to obtain unsaturated polyester 5 having an acid value of 28.
Using this unsaturated polyester 5, an unsaturated polyester resin composition 5 was obtained in the same manner as in Example 1. Its characteristics are shown in Table 1. Comparative Example 2 The reaction proceeded in the same manner as in Example 1 using the same flask and synthetic raw materials, and when the acid value was 70, the temperature was lowered to 190°C and xylene was distilled off to obtain unsaturated polyester 6 with an acid value of 61. Using this unsaturated polyester 6, an unsaturated polyester resin composition 6 was prepared in the same manner as in Example 1.
I got it. Its characteristics are shown in Table 1. Comparative Example 3 In the same flask as in Example 1, 534 g of isophthalic acid was added.
489 g of propylene glycol, 0.5 g of dibutyltin oxide, and 200 g of xylene were charged and the temperature was raised to 200°C over 6 hours under a nitrogen stream.
When the acid value reached 10 after a period of reaction, the temperature was lowered to 100℃, and 493g of tricyclodecenyl malate was added.
(26 mol%), 280 g of maleic anhydride, and 81 g of propylene glycol were charged, and the temperature was raised to 210° C. over 3 hours. The reaction proceeded at this temperature, and when the acid value reached 50, the temperature was lowered to 190°C, and the xylene was distilled off, yielding unsaturated polyester 7 with an acid value of 44. Using this unsaturated polyester 7, an unsaturated polyester resin composition 7 was obtained in the same manner as in Example 1. Its characteristics are shown in Table 1. Comparative Example 4 Phthalic anhydride 740 was added to the flask used in Example 1.
g, 490 g of maleic anhydride and 798 g of propylene glycol and heated under a nitrogen stream for 5 hours.
Raise the temperature to 210℃ and react at this temperature for 6 hours to increase the acid value.
35 unsaturated polyester 8 was obtained. Using this unsaturated polyester 8, an unsaturated polyester resin composition 8 was obtained in the same manner as in Example 1. Its characteristics are shown in Table 1.

【表】 本発明になる不飽和ポリエステル樹脂組成物は
その硬化物の収縮率が通常の不飽和ポリエステル
樹脂組成物よりも約3%小さくなり、しかも経日
による2相分離もなく硬化物の機械特性も劣らな
い不飽和ポリエステル樹脂組成物である。
[Table] The unsaturated polyester resin composition of the present invention has a shrinkage rate of the cured product that is about 3% smaller than that of ordinary unsaturated polyester resin compositions, and there is no two-phase separation over time, and the cured product can be easily machined. It is an unsaturated polyester resin composition with comparable properties.

Claims (1)

【特許請求の範囲】[Claims] 1 トリシクロデセニルマレート及び/又はトリ
シクロデセニルフマレートを酸成分の20〜85モル
%を用い、テレフタル酸成分を酸成分の15〜80モ
ル%用いて得られる酸価55〜40の不飽和ポリエス
テルと重合性単量体を含有してなる低収縮性不飽
和ポリエステル樹脂組成物。
1 An acid value of 55 to 40 obtained by using tricyclodecenyl maleate and/or tricyclodecenyl fumarate in an amount of 20 to 85 mol% of the acid component and a terephthalic acid component of 15 to 80 mol% of the acid component. A low shrinkage unsaturated polyester resin composition comprising an unsaturated polyester and a polymerizable monomer.
JP25219383A 1983-12-28 1983-12-28 Low-shrinkage unsaturated polyester resin composition Granted JPS60141722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25219383A JPS60141722A (en) 1983-12-28 1983-12-28 Low-shrinkage unsaturated polyester resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25219383A JPS60141722A (en) 1983-12-28 1983-12-28 Low-shrinkage unsaturated polyester resin composition

Publications (2)

Publication Number Publication Date
JPS60141722A JPS60141722A (en) 1985-07-26
JPH0129365B2 true JPH0129365B2 (en) 1989-06-09

Family

ID=17233791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25219383A Granted JPS60141722A (en) 1983-12-28 1983-12-28 Low-shrinkage unsaturated polyester resin composition

Country Status (1)

Country Link
JP (1) JPS60141722A (en)

Also Published As

Publication number Publication date
JPS60141722A (en) 1985-07-26

Similar Documents

Publication Publication Date Title
JP3288143B2 (en) Thermosetting resin molding material and artificial marble comprising the molding material
US3814724A (en) Polymerizable liquid compositions for unsaturated polyester resins
JPH0129365B2 (en)
JP2554403B2 (en) Transparent low shrinkage polymerized composition
US4539349A (en) Unsaturated polyester compositions comprising carboxylated cellulose ester
JPS6317098B2 (en)
JP3919894B2 (en) Unsaturated polyester resin composition
JP2794802B2 (en) Low shrinkage unsaturated polyester resin composition
JPH11240931A (en) Unsaturated polyester resin composition and its molding
JP3542095B2 (en) Unsaturated polyester and unsaturated polyester resin composition using the same
JPH04246414A (en) Shrinking inhibitor for unsaturated polyester resin
JPS59122514A (en) Low shrinkage unsaturated polyester resin composition
KR100236669B1 (en) Unsaturated polymer for use in molding compounds and molding compounds produced from the same
JPS60248772A (en) Unsaturated polyester resin composition
JPS6227102B2 (en)
JP2592024B2 (en) Resin composition for artificial marble
JPH06843B2 (en) Unsaturated polyester resin composition
JP3017523B2 (en) Dicyclopentadiene-modified unsaturated polyester resin, composition thereof, fiber-reinforced laminated cured product using the same, and method for producing the same
JP3163710B2 (en) Room temperature low shrinkage unsaturated polyester resin composition
JP2001131247A (en) Thermosetting resin composition
JPH1046035A (en) Thermosetting resin composition and molding material containing the same composition
JPS6351451A (en) Unsaturated polyester resin composition
JPS58183719A (en) Unsaturated polyester resin composition
JP2527505B2 (en) Method for producing unsaturated polyester
JPS6227103B2 (en)