JPH01292917A - Photodetecting module - Google Patents

Photodetecting module

Info

Publication number
JPH01292917A
JPH01292917A JP63121805A JP12180588A JPH01292917A JP H01292917 A JPH01292917 A JP H01292917A JP 63121805 A JP63121805 A JP 63121805A JP 12180588 A JP12180588 A JP 12180588A JP H01292917 A JPH01292917 A JP H01292917A
Authority
JP
Japan
Prior art keywords
optical
light
coupling space
input
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63121805A
Other languages
Japanese (ja)
Other versions
JPH0712158B2 (en
Inventor
Hidekazu Nishimura
英一 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP63121805A priority Critical patent/JPH0712158B2/en
Publication of JPH01292917A publication Critical patent/JPH01292917A/en
Publication of JPH0712158B2 publication Critical patent/JPH0712158B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the self-oscillation of a semiconductor optical amplifying element by respectively defining an input coupling space and an output coupling space as optical long-range coupling due to parallel rays and arranging the respective types of optical devices in these coupling spaces. CONSTITUTION:An inputted optical signal and an amplifying signal, which is outgoing from a semiconductor optical amplifying element 106, are caused to be the parallel rays respectively in the input coupling space and output coupling space. Thus, the optical coupling between an input fiber 102 and the semiconductor optical amplifying element 106 and between the output coupling space, namely, the semiconductor optical amplifying element 106 and a photo- detecting element 111 can be defined as the long-range coupling and the various optical devices, etc., can be arranged in these coupling spaces. Here, isolators 104 and 108, which are arranged in the respective input coupling space and output coupling space, transmit only a light to be emitted from an optical fiber 101 to the photo-detecting element 111. Thus, the self-oscillation of the semiconductor optical amplifying element 106 can be prevented.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、光通信、光伝送路に使用される光電気変換
部たる半導体受光モジュールに関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a semiconductor light receiving module which is a photoelectric converter used in optical communications and optical transmission lines.

(従来技術) 光信号を電気信号に変換する受光素子として、フォトダ
イオード等の光半導体素子が用いられる。
(Prior Art) Optical semiconductor elements such as photodiodes are used as light receiving elements that convert optical signals into electrical signals.

ここで、受光素子の前に半導体光増幅素子を配置し、光
信号を一度増幅してから受光素子に入力させることで、
伝送距離の増大、伝送品質の向上を図ることが考えられ
ている。
Here, by placing a semiconductor optical amplification element in front of the light receiving element and amplifying the optical signal once before inputting it to the light receiving element,
Efforts are being made to increase transmission distance and improve transmission quality.

従来、この種の装置は、たとえばELECTRONIC
8LETTER8vol、 23. A20 (198
7年9月)に開示されるものがあった。即ち、第2図に
示すように、端部をテーパ状とし、先端を半球レンズと
した光ファイバ1を、半導体光増幅素子2に光学結合さ
せる。この増幅素子2は光ファイバ1より入力された光
信号を増幅し、増幅信号として出力する。この増幅信号
は、集束レンズ3によって集光され、受光素子4に入射
する。このような構成にすることで、増幅素子2を用い
ない場合に比べてより犬きな電気信号が出力として得ら
れる。
Conventionally, devices of this type are, for example, ELECTRONIC
8LETTER8vol, 23. A20 (198
There was something that was disclosed in September 2007). That is, as shown in FIG. 2, an optical fiber 1 having a tapered end and a hemispherical lens tip is optically coupled to a semiconductor optical amplifying element 2. As shown in FIG. This amplification element 2 amplifies the optical signal input from the optical fiber 1 and outputs it as an amplified signal. This amplified signal is focused by a focusing lens 3 and is incident on a light receiving element 4. With such a configuration, a stronger electrical signal can be obtained as an output than when the amplification element 2 is not used.

(発明の解決しようとする課題) しかし、半導体光増幅素子は、入力された光を増幅する
他、自らも自然放出光を放出する。例えば、この増幅素
子の入力側面から発する自然放出光は、前記光ファイバ
1の端面で反射して前記増幅素子2に入射し、増幅され
て出力側より出射する。この出射光は、レンズ3あるい
は受光素子4の入射面で一部が反射し、再び前記増幅素
子2に入射し、増幅されて入力側面から出射する。この
ように、光ファイバ1、レンズ3や受光素子で自然放出
光が反射することにより、前記増幅素子2がレーザ発振
してしまうという課題を有する。
(Problems to be Solved by the Invention) However, in addition to amplifying input light, the semiconductor optical amplifying element also emits spontaneous emission light. For example, spontaneous emission light emitted from the input side of the amplification element is reflected by the end face of the optical fiber 1, enters the amplification element 2, is amplified, and is emitted from the output side. A portion of this emitted light is reflected by the incident surface of the lens 3 or the light receiving element 4, enters the amplification element 2 again, is amplified, and is emitted from the input side surface. As described above, there is a problem in that the amplification element 2 causes laser oscillation due to reflection of the spontaneously emitted light by the optical fiber 1, the lens 3, and the light receiving element.

また、この自然放出光は入力される光信号以外の波長を
多く含んでいるため、この自然放出光が受光素子に入射
したとき、光−電気変換されて出力された電気信号には
、前記自然放出光が原因のビート雑音が多く含まれるこ
とになる。このため、出力電気信号のS/N比が低下し
てしまうという課題がちった。
In addition, this spontaneous emission light contains many wavelengths other than the input optical signal, so when this spontaneous emission light enters the light receiving element, the electric signal outputted by optical-to-electrical conversion includes the above-mentioned natural emission light. This will include a lot of beat noise caused by the emitted light. For this reason, there was a problem that the S/N ratio of the output electric signal decreased.

この発明は上記課題を除去し、半導体光増幅素子の自己
発振を防ぐことができ、出力電気信号のS/N比の低下
を抑えた受光モジュールを提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a light-receiving module that can eliminate the above-mentioned problems, prevent self-oscillation of a semiconductor optical amplification element, and suppress a decrease in the S/N ratio of an output electric signal.

(課題を解決するための手段) 上記課題を解決するため、本発明は、入力される光信号
を入力結合空間を介して、半導体光増幅素子に光学結合
し、この増幅素子により増幅された増幅信号を、出力結
合空間を介して受光素子に光学結合し、この受光素子て
より前記増幅信号を電気信号に変換する受光モジー−ル
において、前記光信号及び前記増幅信号をそれぞれ平行
光線とする手段を有し、 前記入力結合空間には第1のアイソレータを設け、前記
出力結合空間には、 第2のアイソレータと、 前記増幅素子の自然放出光を除去するフィルタとを設け
たものである。
(Means for Solving the Problems) In order to solve the above problems, the present invention optically couples an input optical signal to a semiconductor optical amplification element via an input coupling space, and amplifies the amplified signal by the amplification element. In a light-receiving module that optically couples a signal to a light-receiving element via an output coupling space and converts the amplified signal into an electrical signal by the light-receiving element, means for converting the optical signal and the amplified signal into parallel beams, respectively. A first isolator is provided in the input coupling space, and a second isolator is provided in the output coupling space, and a filter for removing spontaneously emitted light from the amplification element.

(作用) 受光モジュールに入力された光信号、及び半導体光増幅
素子から出射する増幅信号は、それぞれ入力結合空間、
出力結合空間において平行光線とされる。このため、入
力結合空間、即ち入力ファイ・ぐと半導体光増幅素子の
間、及び出力結合空間、即ち半導体光増幅素子と受光素
子との間の光学結合を遠距離結合とすることができ、こ
れらの結合空間内に様々な光デバイス等を配置すること
ができる。
(Function) The optical signal input to the light receiving module and the amplified signal output from the semiconductor optical amplification element are respectively input to the input coupling space and
Parallel rays are formed in the output coupling space. Therefore, the optical coupling between the input coupling space, that is, between the input fiber and the semiconductor optical amplifier element, and the output coupling space, that is, between the semiconductor optical amplifier element and the light receiving element, can be made into a long-distance coupling. Various optical devices and the like can be arranged within the coupling space of.

入力結合空間及び出力結合空間のそれぞれに配置される
アイソレータは、光ファイバから受光素子への向きの光
のみを透過させる。このため半導体光増幅素子の自己発
振を防止することができる。
The isolators arranged in each of the input coupling space and the output coupling space transmit only light directed from the optical fiber to the light receiving element. Therefore, self-oscillation of the semiconductor optical amplification element can be prevented.

また、出力結合空間に配置されるフィルタは、増幅信号
より、半導体光増幅素子の自然放出光を除去する。
Further, the filter disposed in the output coupling space removes the spontaneous emission light of the semiconductor optical amplification element from the amplified signal.

(実施例) 第1図は、この発明の実施例を表す構成図である。10
0は、受光モノニールの各構成部品を収容する・gノケ
ージである。図示しない光伝送路を伝搬してきた光信号
は、入力ファイバ101より受光モジュールに入力され
る。この光信号は入力ファイバのパッケージ内端面10
2よりパッケージ100内に出射する。第1のレンズ1
03は、この出射した光信号を平行光線とするレンズで
ある。平行光線となった光信号は、第1のアイソレータ
104を通過し、第2のレンズ105により集光されて
半導体光増幅素子(以下、「増幅素子」という)106
に入射する。この増幅素子106は、入射した光信号を
増幅し、増幅信号として出射する。
(Example) FIG. 1 is a block diagram showing an example of the present invention. 10
0 is a gnocage that accommodates each component of the light-receiving monomer. An optical signal propagated through an optical transmission line (not shown) is input to the light receiving module through an input fiber 101. This optical signal is transmitted to the input fiber package inner end surface 10.
2 into the package 100. first lens 1
03 is a lens that converts the emitted optical signal into parallel light beams. The parallel optical signal passes through the first isolator 104, is focused by the second lens 105, and is sent to a semiconductor optical amplification element (hereinafter referred to as "amplification element") 106.
incident on . This amplification element 106 amplifies the incident optical signal and outputs it as an amplified signal.

第3のレンズ107は、この出射された増幅信号を平行
光線とするものである。平行光線となった増幅信号は、
第2のアイソレータ10gを通過し、フィルタ109に
入射する。このフィルタ109は、増幅信号よシ前記増
幅素子106の自然放出光を除去するためのものである
。このフィルタ109を通過した増幅信号は、第4のレ
ンズ110に入射し、受光素子111に入射する。この
受光素子111は入射した増幅信号を電流に変換し、電
気信号という形で受光モジー−ルの出力とする。
The third lens 107 converts the emitted amplified signal into parallel light beams. The amplified signal, which has become a parallel beam, is
The light passes through the second isolator 10g and enters the filter 109. This filter 109 is for removing the spontaneously emitted light from the amplification element 106 as well as the amplified signal. The amplified signal that has passed through this filter 109 enters the fourth lens 110 and then enters the light receiving element 111. This light-receiving element 111 converts the input amplified signal into a current, and outputs it from the light-receiving module in the form of an electric signal.

前記、第1より第4のレンズには、球レンズやセルフォ
ラ久しンズ等が用いられる。これらのレンズによシ、光
信号、及び増幅信号を平行光線とすることで、前記入力
ファイバ端面102と前記増幅素子106との間、及び
前記増幅素子106と前記受光素子111との間の光学
結合を光遠距離結合とすることができる。これら第1よ
り第4のレンズには、表面に無反射コーティングが施さ
れ、光信号あるいは増幅信号の入出射時の反射を少なく
するものであることが望ましい。
For the first to fourth lenses, ball lenses, Cellfora lenses, or the like are used. By converting the optical signal and the amplified signal into parallel light beams through these lenses, the optical signals between the input fiber end face 102 and the amplification element 106 and between the amplification element 106 and the light receiving element 111 are The coupling can be an optical long-range coupling. It is desirable that the surfaces of the first to fourth lenses be coated with anti-reflection coating to reduce reflection when the optical signal or amplified signal enters and exits.

第1及び第2のアイソレータは、前記増幅素子106が
レーザ発振してしまうことを防止するために配置される
ものである。即ち、これらのアイソレータは、入力ファ
イバ102から受光素子111への向きを正方向、その
反対の向きを逆方向とし、正方向にのみ光を通過させる
。これらのアイソレータを配置することで、たとえば増
幅素子106の入射面より発する自然放出光は前記アイ
ソレータ104で阻止されて入力ファイバ端面102に
は届かず、従ってこの入力ファイバ端面102で反射し
て前記増幅素子106に再入射することはない。一方前
記増幅素子106の出射面よシ発する自然放出光はフィ
ルタ109、第4のレンズ110を通過して受光素子1
11に達する。
The first and second isolators are arranged to prevent the amplification element 106 from laser oscillating. That is, these isolators allow light to pass only in the forward direction, with the direction from the input fiber 102 to the light receiving element 111 being the forward direction, and the opposite direction being the reverse direction. By arranging these isolators, for example, spontaneous emission light emitted from the incident surface of the amplification element 106 is blocked by the isolator 104 and does not reach the input fiber end face 102, and therefore is reflected by the input fiber end face 102 and is emitted from the amplification element 106. It does not enter the element 106 again. On the other hand, the spontaneously emitted light emitted from the output surface of the amplifying element 106 passes through a filter 109 and a fourth lens 110, and then passes through the light receiving element 1.
Reach 11.

しかし、これらフィルタ109、あるいは第4のレンズ
110、受光素子111にてこの自然放出光が反射した
としても、この反射光は第2のアイソレータ108で阻
止され、前記増幅素子106に再入射することはない。
However, even if this spontaneously emitted light is reflected by these filters 109, the fourth lens 110, or the light receiving element 111, this reflected light is blocked by the second isolator 108 and does not enter the amplifying element 106 again. There isn't.

尚、前記増幅素子106よりの自然放出光は、前記第2
及び第3のレンズでも反射するので、これらの反射光は
前記増幅素子106に再入射することになる。しかし、
これらの反射光の光量はごくわずかであり、前記増幅素
子1060機能に影響を及ぼすことはない。前記第2及
び第3のレンズに無反射コーティングが施されていれば
、この反射光量はさらに低下することになる。
Note that the spontaneous emission light from the amplification element 106 is
Since the reflected light is also reflected by the third lens, these reflected lights enter the amplification element 106 again. but,
The amount of these reflected lights is very small and does not affect the function of the amplification element 1060. If anti-reflection coating is applied to the second and third lenses, the amount of reflected light will be further reduced.

前記フィルタ109は、入力信号の波長を中心波長とし
、増幅信号中に含まれる自然放出光を除去し、入力信号
の波長以外の波長が前記受光素子111に入射すること
を防ぐ。
The filter 109 has the wavelength of the input signal as its center wavelength, removes spontaneous emission light included in the amplified signal, and prevents wavelengths other than the wavelength of the input signal from entering the light receiving element 111.

(発明の効果) 以上、詳細に説明したように本発明によれば、入力ファ
イバと半導体光増幅素子の間の入力結合空間、及び半導
体光増幅素子と受光素子との間の出力結合空間をそれぞ
れ、平行光線による光遠距離結合とし、入力結合空間に
は第1のアイソレータ、出力結合空間には第2のアイソ
レータ及びフィルタを配置したことにより、半導体光増
幅素子の自己発振を防止することができ、さらに半導体
光増幅素子の自然放出光が光−電気変換されて生じるビ
ート雑音を低減し、出力電気信号のS/N比を向上させ
ることができる。
(Effects of the Invention) As described above in detail, according to the present invention, the input coupling space between the input fiber and the semiconductor optical amplification element and the output coupling space between the semiconductor optical amplification element and the light receiving element are respectively By using long-distance optical coupling using parallel light beams and arranging the first isolator in the input coupling space and the second isolator and filter in the output coupling space, self-oscillation of the semiconductor optical amplification element can be prevented. Furthermore, it is possible to reduce the beat noise generated by optical-to-electrical conversion of the spontaneously emitted light of the semiconductor optical amplification element, and to improve the S/N ratio of the output electrical signal.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の受光モジー−ルの構成図であり、第2
図は従来の受光モジュールの構成を表わす図である。 101・・・光ファイバ、102・・・入力ファイバ端
面、103・・・第1のレンズ、104・・・第1のア
イソレータ、105・・・第2のレンズ、106・・・
半導体光増幅素子、107・・・第3のレンズ、10B
・・・第2のアイソレータ、109・・・フィルタ、1
10・・・第4のレンズ、111・・・受光素子。 特許出願人  沖電気工業株式会社 品v、− KQ 手続補正書(睦) l 事件の表示 昭和63年 特  許 照温121805号2発明の名
称 受光モソユール 3 補正をする者 事件との関係        特許用 願 人任 所(
〒105)   東京都港区虎ノ門1丁目7番12号電
話(454)2111犬頽・ 6 補正の内容 t’s−・4皇0シ1
FIG. 1 is a configuration diagram of the light receiving module of the present invention, and the second
The figure is a diagram showing the configuration of a conventional light receiving module. 101... Optical fiber, 102... Input fiber end face, 103... First lens, 104... First isolator, 105... Second lens, 106...
Semiconductor optical amplification element, 107...Third lens, 10B
...Second isolator, 109...Filter, 1
10... Fourth lens, 111... Light receiving element. Patent Applicant Oki Electric Industry Co., Ltd. Product v, - KQ Procedural Amendment (Mutsu) l Indication of the case 1988 Patent Teruon No. 1218052 Name of the invention Photoreceptor Mosoul3 Relationship with the person making the amendment Application for patent Personnel office (
Address: 105) 1-7-12 Toranomon, Minato-ku, Tokyo Telephone: (454) 2111 Inugo ・ 6 Contents of the amendment t's- 4 Ko 0 Shi 1

Claims (1)

【特許請求の範囲】  入力される光信号を、入力結合空間を介して半導体光
増幅素子に光学結合し、この増幅素子により増幅された
増幅信号を、出力結合空間を介して受光素子に光学結合
し、この受光素子により前記増幅信号を電気信号に変換
する受光モジュールにおいて、 前記光信号及び前記増幅信号をそれぞれ平行光線とする
手段を有し、 前記入力結合空間には、第1のアイソレータを設け、 前記出力結合空間には、 第2のアイソレータと、 前記増幅素子の自然放出光を除去するフィルタとを、 設けたことを特徴とする受光モジュール。
[Claims] An input optical signal is optically coupled to a semiconductor optical amplification element via an input coupling space, and an amplified signal amplified by this amplification element is optically coupled to a light receiving element via an output coupling space. The light-receiving module converts the amplified signal into an electrical signal by the light-receiving element, further comprising means for converting the optical signal and the amplified signal into parallel beams, and a first isolator is provided in the input coupling space. . A light receiving module, wherein the output coupling space includes: a second isolator; and a filter for removing spontaneously emitted light from the amplification element.
JP63121805A 1988-05-20 1988-05-20 Light receiving module Expired - Lifetime JPH0712158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63121805A JPH0712158B2 (en) 1988-05-20 1988-05-20 Light receiving module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63121805A JPH0712158B2 (en) 1988-05-20 1988-05-20 Light receiving module

Publications (2)

Publication Number Publication Date
JPH01292917A true JPH01292917A (en) 1989-11-27
JPH0712158B2 JPH0712158B2 (en) 1995-02-08

Family

ID=14820364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63121805A Expired - Lifetime JPH0712158B2 (en) 1988-05-20 1988-05-20 Light receiving module

Country Status (1)

Country Link
JP (1) JPH0712158B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0980272A (en) * 1995-09-13 1997-03-28 Nec Corp Photoelectric converting circuit
JP2012242540A (en) * 2011-05-18 2012-12-10 Sumitomo Electric Device Innovations Inc Optical semiconductor device and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52155901A (en) * 1976-06-21 1977-12-24 Nippon Telegr & Teleph Corp <Ntt> Transmission system for optical fiber
JPS57100410A (en) * 1980-12-15 1982-06-22 Fujitsu Ltd Optical isolator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52155901A (en) * 1976-06-21 1977-12-24 Nippon Telegr & Teleph Corp <Ntt> Transmission system for optical fiber
JPS57100410A (en) * 1980-12-15 1982-06-22 Fujitsu Ltd Optical isolator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0980272A (en) * 1995-09-13 1997-03-28 Nec Corp Photoelectric converting circuit
JP2012242540A (en) * 2011-05-18 2012-12-10 Sumitomo Electric Device Innovations Inc Optical semiconductor device and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0712158B2 (en) 1995-02-08

Similar Documents

Publication Publication Date Title
US4995696A (en) Optical amplifier module
US5552918A (en) Transmission and reception module for a bidirectional optical communication and signal transmission
KR950014912A (en) Optical module for two-way transmission
CN110459956B (en) Narrow linewidth tunable laser
US4427261A (en) Optical transmission system having reduced modal noise
CN110794529B (en) Optical assembly and system thereof
US5414554A (en) Optical semiconductor amplifier
GB2267779A (en) Optical amplifier with a filter
US6330117B1 (en) Optical isolator module and optical amplifier using the same
JP3269540B2 (en) Optical amplifier
JPH01292917A (en) Photodetecting module
JP7418725B2 (en) Vacuum fluctuation quantum random number generator chip based on photon integration technology
JPS58211119A (en) Photocoupler for bus transmission
CN112073125B (en) Device for adjusting wavelength
CN112073124B (en) Device for adjusting wavelength
US6879784B1 (en) Bi-directional optical/electrical transceiver module
JPH03261191A (en) Laser amplifying system
JP3435287B2 (en) Optical components
JPH0272335A (en) Dual balance type light receiving device
JPH063720A (en) Optical-signal-beam detecting device
CN112054842B (en) Device for adjusting wavelength
JPH04114524A (en) Optical beam communication equipment and system
JPS60258993A (en) Semiconductor light emitting device
JP3062060B2 (en) Photoelectric conversion circuit
JPH06125115A (en) Light transmitting/receiving module

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090208

Year of fee payment: 14