JPH0129218B2 - - Google Patents

Info

Publication number
JPH0129218B2
JPH0129218B2 JP57211870A JP21187082A JPH0129218B2 JP H0129218 B2 JPH0129218 B2 JP H0129218B2 JP 57211870 A JP57211870 A JP 57211870A JP 21187082 A JP21187082 A JP 21187082A JP H0129218 B2 JPH0129218 B2 JP H0129218B2
Authority
JP
Japan
Prior art keywords
weight
resin
impact
methacrylic resin
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57211870A
Other languages
Japanese (ja)
Other versions
JPS59102947A (en
Inventor
Kazumasa Kamata
Yasunobu Shimomura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP21187082A priority Critical patent/JPS59102947A/en
Publication of JPS59102947A publication Critical patent/JPS59102947A/en
Publication of JPH0129218B2 publication Critical patent/JPH0129218B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はメタクリル樹脂組成物に関する。メタ
クリル酸メチルを主成分とするメタクリル樹脂は
透明性ならびに耐候性に極めて優れた特性を有し
ているばかりでなく、機械的性質、熱的性質、成
形加工性などにもバランスのとれた性質を有して
おり、これらの特徴を生かしてシート材料あるい
は成形材料として看板、照明機器部品、電気機器
部品、自動車部品、雑貨など多方面に使用されて
いる。しかし市場においては耐衝撃性を向上させ
たメタクリル樹脂の要求は強い。このような背景
より現在2〜3品種の耐衝撃性メタクリル樹脂が
上市されている。しかし、これらのものは耐衝撃
性向上の観点よりゴム含量を増しているために樹
脂の流動性が悪い。一方自動車の軽量化、コスト
低減の傾向から市場では部品の薄肉が求められ、
したがつて使用する樹脂の流動性の向上が強く望
まれている。樹脂の流動性を向上させる方法とし
ては、例えばマトリツクス樹脂の分子量を小さく
する方法があるが、この方法では同時に耐衝撃性
も劣るため好ましくない。このような背景から本
発明者らは耐衝撃性でかつ流動性にすぐれたメタ
クリル樹脂を開発すべく鋭意検討した結果、架橋
アクリル酸エステル系重合体をゴム成分とした耐
衝撃性メタクリル樹脂と特定の分子量分布を有す
るメタクリル系樹脂とを特定配合することによ
り、上記の欠点が解消できることを見出し本発明
に到つた。 すなわち、本発明の要旨とするところは、架橋
アクリル酸エステル系重合体をゴム成分とした耐
衝撃性メタクリル樹脂とメタクリル酸メチル単位
を70重量%以上含有し重量平均分子量(Mw)と
数平均分子量(MN)の比(Mw/MN)が2.2〜5.0
の範囲の分子量分布を有するメタクリル系樹脂と
から成る組成物であつて、かつ該組成物中に1〜
50重量%の架橋アクリル酸エステル系重合体を含
有せしめてなるメタクリル樹脂組成物にある。 本発明の組成物を構成する架橋アクリル酸エス
テル系重合体をゴム成分とする耐衝撃性メタクリ
ル樹脂(以下、耐衝撃性樹脂と呼ぶ)は、樹脂組
成物の耐衝撃性を改良させる成分であつて、かつ
耐溶剤性も改良する成分である。この耐衝撃性樹
脂は本発明の目的を阻害しないものであれば特に
限定されず、種々の層構造をもつ架橋アクリル酸
エステル系重合体をゴム成分とする耐衝撃性のメ
タクリル樹脂が使用できる。例えば、アルキル基
の炭素数が1〜8のアクリル酸アルキルエステル
の少なくとも1種70〜90重量%とスチレン単独ま
たはスチレンとその誘導体の混合物9.9〜29.9重
量%ならびにこれと共重合可能で1分子中に2個
以上の二重結合を有する例えばアリル(メタ)ア
クリレート、トリアリルシアヌレート、ケイ皮酸
アリル等の多官能単量体0.1〜10重量%を用いて
得られた架橋アクリル酸エステル重合体ラテツク
ス、もしくは、メタクリル酸メチル単位を80重量
%以上含む硬質架橋樹脂を粒子内部に含有し、ア
ルキル基の炭素数が1〜8のアクリル酸アルキル
エステルの少なくとも1種とスチレン単独または
スチレンとその誘導体の混合物90〜99.9重量%な
らびにこれと共重合可能で1分子中に2個以上の
二重結合を有する例えばアリル(メタ)アクリレ
ート、トリアリルシアヌレート、ケイ皮酸アリル
等の多官能単量体0.1〜10重量%よりなる単量体
混合物の架橋アクリル酸エステル系共重合体が外
層を構成する多重構造アクリル系弾性体ラテツク
スの存在下に、メタクリル酸メチル80〜100重量
%、アルキルの炭素数1〜8のアクリル酸アルキ
ルエステルの少なくとも1種0〜20重量、および
これと共重合可能な他のビニル単量体0〜10重量
%以下よりなる単量体または単量体混合物を乳化
重合することにより得られる。 また本発明の組成物を構成するメタクリル酸メ
チル単位を70重量%以上含有し、重量平均分子量
(Mw)と数平均分子量(MN)の比(Mw/MN
が2.2〜5.0の範囲の分子量分布を有するメタクリ
ル系樹脂(以下、メタクリル樹脂と呼ぶ)は、透
明性、耐候性等メタクリル樹脂の特性を保持する
ものであり、特に耐衝撃性の発現性及び流動性を
向上させる成分である。しかしメタクリル樹脂の
分子量を大きくすると耐衝撃性は大となるが流動
性を低下させる。また分子量を小さくすると流動
性は向上するが耐衝撃性は低下する。そこで本発
明者らが鋭意検討した結果、耐衝撃性と流動性と
の両方を満足する分子量範囲として重量平均分子
量(Mw)/数平均分子量(MN)の比(Mw
MN)が2.2〜5.0なる範囲であることを見い出し
た。またメタクリル樹脂においては、メタクリル
酸メチル単位を70重量%以上含有することが必要
である。メタクリル樹脂中メタクリル酸メチル単
位が70重量%未満であるとメタクリル樹脂として
の特性が低下する、したがつてメタクリル樹脂中
のメタクリル酸メチル単位の含有量としては、好
ましくは80〜99.5重量%である。メタクリル樹脂
を得るための共重合成分としては不飽和ビニル単
量体であり、例えばアクリル酸メチル、アクリル
酸エチル、アクリル酸ブチル、アクリル酸2−エ
チルヘキシル等のアクリル酸エステル;スチレ
ン、α−メチルスチレン、アクリロニトリル等が
あげられる。 メタクリル樹脂における(Mw)/(MN)が
2.2未満であると流動性と耐衝撃性のバランスが
とれず、また(Mw)/(MN)が5.0を越えると
成形品にブツ(フイツシユアイ)が発生しやすく
なる。メタクリル樹脂を製造する方法としては、
特に限定されず公知の懸濁重合法により、上記の
単量体を用いて重合途中で重合系内のメルカプタ
ン等の連鎖移動剤添加する方法、重合初期より連
鎖移動定数の異なる2種以上の連鎖移動剤を使用
する方法、分解温度の異なる2種以上の開始剤を
使用する方法、あるいは極限粘度〔η〕の異なる
2種以上のアクリル系樹脂をブレンドする方法等
があげられる。 本発明の組成物を構成する耐衝撃性樹脂とメタ
クリル樹脂との配合割合は、耐衝撃性樹脂中の架
橋アクリル酸エステル系重合体のゴム含有量によ
り一概に決められないが、一般的には、耐衝撃性
樹脂10〜80重量%、メタクリル樹脂20〜90重量%
の範囲である。また樹脂組成物中の架橋アクリル
酸エステル系重合体ゴム量は、1〜50重量%、好
ましくは、5〜35重量%である。樹脂組成物中、
架橋アクリル酸エステル系重合体ゴム含量が1重
量%未満では耐衝撃性が十分でなく、また50重量
%を越えると流動性が低下したり、曇価が増加し
たりする。 以上が本発明を構成している必須成分とその配
合比であるが、本発明の樹脂組成物を具体的に得
るには前記した耐衝撃性樹脂とメタクリル樹脂を
本発明の範囲内に秤量した後、ヘンシエルミキサ
ーあるいはV型ブレンダーで混合した後、押出機
を用い賦形して得ることもできるし、耐衝撃性樹
脂を秤量後、メタクリル酸メチルを主成分とする
単量体混合物に溶解後公知の懸濁重合を行ない、
重合途中にメルカプタンを追加し重合を完結させ
て得ることもできる。 本発明の組成物においては、必要に応じて染顔
料、紫外線吸収剤、酸化防止剤、離型剤等を添加
することもできる。 以下、実施例により本発明の内容を更に詳しく
説明する。なお本実施例における樹脂の物性詳価
は次のような方法を用いて行なつた。 (1) メタクリル樹脂の重量平均分子量(Mw)/
数平均分子量(MN)の測定 測定装置:島津製作所製(品番 島津 LC
−3A)カラムとしてGMH−6 2本を使用
し、東洋ソーダ(株)製の標準ポリスチレンを用い
て検量線を作り、0.5重量%/容積%のメタク
リル樹脂について得られた溶出曲線を等分割
し、分割点における曲線の高さを測定して重量
平均分子量(Mw)および数平均分子量(MN
を求めた。なお、溶剤としてテトラヒドロフラ
ンを使用した。 (2) 耐衝撃性 アイゾツト−ASTM D 256 ダインスタツト−DIN 53453 (3) 曇価−ASTM D 1003 (4) FR−ASTM D 1238 (5) 耐溶剤性(カンチレバー法) 長さ10cm、巾2cm、厚さ2mmの試片の一端を
支持し、他方へ2000psiを加え、支点上部ヘイ
ソプロピルアルコールを含浸させたガーゼを置
き、破断するまでの時間を測定する。 実施例 1 5セバラブルフラスコに3.000gの純水を入
れ、これに乳化剤としてザルコシネートLN(日
光ケミカル(株)製)30g、助触媒系としてエチレン
ジアミンテトラアセテート2ナトリウム塩0.06g
およびFeSO4・7H2Oを0.015g、還元剤ロンガリ
ツト(三菱ガス化学工業(株)製)6gを溶解後、窒
素置換を行い、75℃に昇温した。一方窒素置換を
し、触媒としてt−ブチルハイドロパーオキサイ
ド3gを溶解したn−ブチルアクリレート800g、
スチレン200gおよびアリルメタクリレート15g
の単量体混合物を3時間かけて滴下重合させ、2
時間保持した。次いで窒素置換したt−ブチルハ
イドロパーオキサイド1gとn−オクチルメルカ
プタン1gを溶解したメタクリル酸メチル495g
およびメチルアクリレート5gの単量体混合物を
1時間かけて滴下した後1時間保持してラテツク
スを得た。このラテツクス4.000gを凝固剤とし
てH2SO420gを使い80℃で凝固し、洗浄、脱水、
乾燥して粉状の重合体(耐衝撃性樹脂)を得た。 一方、メタクリル酸メチル980gおよび、アク
リル酸メチル20gの単量体混合物にアゾビスイソ
ブチロニトリル1g、およびn−オクチルメルカ
プタン2.0gを溶解した後、分割剤(メタクリル
酸メチルとスルホアルキルメタクリル酸ソーダと
の共重合体)0.1gおよびNa2SO45gを溶解した
水1.500gに入れ、撹拌下80℃で重合し、昇温開
始後7.5分でn−オクチルメルカプタンを1.5g入
れて重合させ、ピーク後95℃で1時間保持した。
得られたポリマーを洗浄、脱水、乾燥して
(Mw)/(MN)=2.5および〔η〕(極限粘度)
/g=0.054のビーズ状ポリマー(メタクリル
樹脂)を得た。次にこのポリマー700gと前記の
耐衝撃性樹脂300gとをヘンシエルミキサーでブ
レンド後、255℃で賦形し、ペレツト化した。こ
のペレツトを用いて種々の物性を測定した。得ら
れた結果を表1に示す。 比較例 1 実施例1で得られた耐衝撃性樹脂300gとn−
オクチルメルカプタン2.5gをモノマーに最初溶
解させて重合させる他は実施例1と同様な方法で
製造した(Mw)/(MN)=1.9および〔η〕(極
限粘度)/g=0.054のビーズポリマー(メタ
クリル樹脂)700gとをヘンシエルミキサーでブ
レンドし、255℃で賦形しペレツト化した。この
ベレツトについても実施例1と同様に物性を測定
した。得られた結果を表1に示す。
The present invention relates to methacrylic resin compositions. Methyl methacrylate-based methacrylic resin not only has excellent transparency and weather resistance, but also has well-balanced properties such as mechanical properties, thermal properties, and moldability. Taking advantage of these characteristics, it is used as a sheet material or molding material in a wide variety of fields, including signboards, lighting equipment parts, electrical equipment parts, automobile parts, and miscellaneous goods. However, there is a strong demand in the market for methacrylic resins with improved impact resistance. Against this background, two to three types of impact-resistant methacrylic resins are currently on the market. However, these resins have poor resin fluidity because the rubber content is increased from the viewpoint of improving impact resistance. On the other hand, due to the trend towards lighter weight and lower cost automobiles, the market is demanding thinner parts.
Therefore, it is strongly desired to improve the fluidity of the resin used. As a method for improving the fluidity of the resin, for example, there is a method of reducing the molecular weight of the matrix resin, but this method is not preferable because it also deteriorates the impact resistance. Against this background, the present inventors conducted intensive studies to develop a methacrylic resin that is impact resistant and has excellent fluidity, and as a result, they identified an impact resistant methacrylic resin containing a crosslinked acrylic ester polymer as a rubber component. The present inventors have discovered that the above-mentioned drawbacks can be overcome by specifically blending a methacrylic resin with a molecular weight distribution of . That is, the gist of the present invention is to combine an impact-resistant methacrylic resin containing a crosslinked acrylic acid ester polymer as a rubber component and containing methyl methacrylate units in an amount of 70% by weight or more to have a weight average molecular weight (M w ) and a number average The ratio of molecular weight (M N ) (M w /M N ) is 2.2 to 5.0
A composition comprising a methacrylic resin having a molecular weight distribution in the range of
A methacrylic resin composition containing 50% by weight of a crosslinked acrylic ester polymer. The impact-resistant methacrylic resin (hereinafter referred to as impact-resistant resin) whose rubber component is a crosslinked acrylic ester polymer that constitutes the composition of the present invention is a component that improves the impact resistance of the resin composition. It is a component that also improves solvent resistance. This impact-resistant resin is not particularly limited as long as it does not impede the object of the present invention, and impact-resistant methacrylic resins whose rubber components are crosslinked acrylic acid ester polymers having various layer structures can be used. For example, 70 to 90% by weight of at least one acrylic acid alkyl ester having an alkyl group having 1 to 8 carbon atoms, 9.9 to 29.9% by weight of styrene alone or a mixture of styrene and its derivatives, and copolymerizable with this in one molecule. A crosslinked acrylic acid ester polymer obtained using 0.1 to 10% by weight of a polyfunctional monomer having two or more double bonds, such as allyl (meth)acrylate, triallyl cyanurate, allyl cinnamate, etc. Latex or a hard crosslinked resin containing 80% by weight or more of methyl methacrylate units is contained inside the particles, and at least one acrylic acid alkyl ester having an alkyl group of 1 to 8 carbon atoms and styrene alone or styrene and its derivatives are used. 90 to 99.9% by weight of a mixture of and polyfunctional monomers copolymerizable with this and having two or more double bonds in one molecule, such as allyl (meth)acrylate, triallyl cyanurate, allyl cinnamate, etc. In the presence of a multilayer acrylic elastic latex whose outer layer is a crosslinked acrylic ester copolymer of a monomer mixture of 0.1 to 10% by weight, 80 to 100% by weight of methyl methacrylate and a carbon number of alkyl Emulsion polymerization of a monomer or a monomer mixture consisting of 0 to 20% by weight of at least one of the acrylic acid alkyl esters 1 to 8 and 0 to 10% by weight or less of other vinyl monomers copolymerizable therewith. It can be obtained by Furthermore, the composition of the present invention contains 70% by weight or more of methyl methacrylate units, and has a ratio of weight average molecular weight (M w ) to number average molecular weight (M N ) (M w /M N ).
Methacrylic resins (hereinafter referred to as methacrylic resins) with a molecular weight distribution in the range of 2.2 to 5.0 retain the properties of methacrylic resins such as transparency and weather resistance, and in particular have excellent impact resistance and fluidity. It is an ingredient that improves sex. However, when the molecular weight of the methacrylic resin is increased, the impact resistance increases, but the fluidity decreases. Furthermore, when the molecular weight is decreased, fluidity improves, but impact resistance decreases. As a result of intensive study by the present inventors, the ratio of weight average molecular weight (M w )/number average molecular weight (M N ) (M w /
M N ) was found to be in the range of 2.2 to 5.0. Furthermore, the methacrylic resin needs to contain 70% by weight or more of methyl methacrylate units. If the content of methyl methacrylate units in the methacrylic resin is less than 70% by weight, the properties as a methacrylic resin will deteriorate. Therefore, the content of methyl methacrylate units in the methacrylic resin is preferably 80 to 99.5% by weight. . Copolymerization components for obtaining methacrylic resin include unsaturated vinyl monomers, such as acrylic esters such as methyl acrylate, ethyl acrylate, butyl acrylate, and 2-ethylhexyl acrylate; styrene, α-methylstyrene. , acrylonitrile, etc. (M w )/(M N ) in methacrylic resin is
When it is less than 2.2, fluidity and impact resistance cannot be balanced, and when (M w )/(M N ) exceeds 5.0, spots (sticky eyes) are likely to occur in the molded product. The method for producing methacrylic resin is as follows:
A method in which a chain transfer agent such as a mercaptan is added to the polymerization system during polymerization using the above-mentioned monomers by a known suspension polymerization method without particular limitation, or two or more chains with different chain transfer constants from the early stage of polymerization. Examples include a method of using a transfer agent, a method of using two or more types of initiators having different decomposition temperatures, and a method of blending two or more types of acrylic resins having different intrinsic viscosities [η]. Although the blending ratio of the impact-resistant resin and methacrylic resin constituting the composition of the present invention cannot be determined unconditionally depending on the rubber content of the crosslinked acrylic ester polymer in the impact-resistant resin, it is generally , impact resistant resin 10-80% by weight, methacrylic resin 20-90% by weight
is within the range of The amount of crosslinked acrylic ester polymer rubber in the resin composition is 1 to 50% by weight, preferably 5 to 35% by weight. In the resin composition,
If the content of the crosslinked acrylic ester polymer rubber is less than 1% by weight, the impact resistance will not be sufficient, and if it exceeds 50% by weight, the fluidity will decrease or the haze value will increase. The above are the essential components constituting the present invention and their blending ratios. In order to specifically obtain the resin composition of the present invention, the above-mentioned impact resistant resin and methacrylic resin are weighed within the range of the present invention. After mixing with a Henschel mixer or a V-type blender, it can be shaped using an extruder, or after weighing the impact-resistant resin, it is dissolved in a monomer mixture containing methyl methacrylate as the main component. After that, a known suspension polymerization is carried out,
It can also be obtained by adding mercaptan during polymerization and completing the polymerization. In the composition of the present invention, dyes and pigments, ultraviolet absorbers, antioxidants, mold release agents, etc. can also be added as necessary. Hereinafter, the content of the present invention will be explained in more detail with reference to Examples. The detailed physical properties of the resin in this example were determined using the following method. (1) Weight average molecular weight of methacrylic resin (M w )/
Measurement of number average molecular weight (M N ) Measuring device: Shimadzu Corporation (product number Shimadzu LC)
-3A) Using two GMH-6 columns, a calibration curve was created using standard polystyrene manufactured by Toyo Soda Co., Ltd., and the elution curve obtained for 0.5% by weight/volume methacrylic resin was divided into equal parts. , measure the height of the curve at the split point to determine the weight average molecular weight (M w ) and number average molecular weight (M N )
I asked for Note that tetrahydrofuran was used as a solvent. (2) Impact resistance Izotsu - ASTM D 256 Dyn Stat - DIN 53453 (3) Haze value - ASTM D 1003 (4) FR - ASTM D 1238 (5) Solvent resistance (cantilever method) Length 10 cm, width 2 cm, thickness Support one end of a 2 mm thick specimen, apply 2000 psi to the other end, place gauze impregnated with heisopropyl alcohol above the fulcrum, and measure the time until it breaks. Example 1 3.000g of pure water was placed in a 5-separable flask, and 30g of Sarcosinate LN (manufactured by Nikko Chemical Co., Ltd.) was added as an emulsifier, and 0.06g of ethylenediaminetetraacetate disodium salt was added as a cocatalyst.
After dissolving 0.015 g of FeSO 4 .7H 2 O and 6 g of the reducing agent Rongalit (manufactured by Mitsubishi Gas Chemical Industries, Ltd.), the solution was purged with nitrogen and the temperature was raised to 75°C. On the other hand, the atmosphere was replaced with nitrogen, and 800 g of n-butyl acrylate in which 3 g of t-butyl hydroperoxide was dissolved as a catalyst,
200g styrene and 15g allyl methacrylate
A monomer mixture of 2
Holds time. Next, 495 g of methyl methacrylate in which 1 g of nitrogen-substituted t-butyl hydroperoxide and 1 g of n-octyl mercaptan were dissolved.
A monomer mixture containing 5 g of methyl acrylate was added dropwise over 1 hour, and the mixture was kept for 1 hour to obtain a latex. 4.000g of this latex was coagulated at 80℃ using 20g of H 2 SO 4 as a coagulant, washed, dehydrated,
After drying, a powdery polymer (impact resistant resin) was obtained. On the other hand, 1 g of azobisisobutyronitrile and 2.0 g of n-octyl mercaptan were dissolved in a monomer mixture of 980 g of methyl methacrylate and 20 g of methyl acrylate. 0.1 g of copolymer (copolymer with copolymer) and 5 g of Na 2 SO 4 were dissolved in 1.500 g of water, and polymerized at 80°C with stirring. 7.5 minutes after the start of heating, 1.5 g of n-octyl mercaptan was added and polymerized. After the peak, the temperature was kept at 95°C for 1 hour.
The obtained polymer was washed, dehydrated, and dried to obtain (M w )/(M N ) = 2.5 and [η] (intrinsic viscosity).
A bead-like polymer (methacrylic resin) having a weight of 0.054/g was obtained. Next, 700 g of this polymer and 300 g of the above-mentioned impact-resistant resin were blended in a Henschel mixer, shaped at 255° C., and pelletized. Various physical properties were measured using this pellet. The results obtained are shown in Table 1. Comparative Example 1 300g of impact resistant resin obtained in Example 1 and n-
Beads with (M w )/(M N )=1.9 and [η] (intrinsic viscosity)/g=0.054 were produced in the same manner as in Example 1, except that 2.5 g of octyl mercaptan was first dissolved in the monomer and polymerized. The mixture was blended with 700 g of polymer (methacrylic resin) using a Henschel mixer, and shaped into pellets at 255°C. The physical properties of this beret were also measured in the same manner as in Example 1. The results obtained are shown in Table 1.

【表】 実施例 2 実施例1で得られた耐衝撃性樹脂300gと、n
−オクチルメルカプタンの量を1.65gに変更する
以外は実施例1と同様な方法をくり返して得た
(Mw)/(MN)=1.9で〔η〕(極限粘度)/g
=0.070のビーズ状のメタクリル樹脂〔〕400g
およびn−オクチルメルカプタンの量を6.5gに
変更する以外は実施例1と同様な方法をくり返し
て得た(Mw)/(WN)=1.9で〔η〕(極限粘度)
/g=0.030のビーズ状メタクリル樹脂〔2〕
300gとをブレンドした樹脂〔(Mw)/(MN)=
2.7、〔η〕(極限粘度)/g=0.054〕とをブレ
ンド賦形してペレツト化した。このペレツトにつ
いて実施例1と同様物性を測定した。得られた結
果を表2に示す。 比較例 2〜3 実施例1で得られた耐衝撃性樹脂300gと実施
例2のメタクリル樹脂〔1〕700gとをブレンド
賦形した樹脂(比較例2)及び実施例1の耐衝撃
性樹脂と実施例2のメタクリル樹脂〔2〕700g
とをブレンド賦形した樹脂についても実施例2と
同様物性を評価した。得られた結果を表2に示
す。
[Table] Example 2 300g of impact-resistant resin obtained in Example 1 and n
- Obtained by repeating the same method as in Example 1 except that the amount of octyl mercaptan was changed to 1.65 g (M w )/(M N ) = 1.9 [η] (limiting viscosity)/g
=0.070 bead-shaped methacrylic resin []400g
and [η] (intrinsic viscosity) obtained by repeating the same method as in Example 1 except that the amount of n-octyl mercaptan was changed to 6.5 g (M w )/(W N ) = 1.9.
/g=0.030 bead-shaped methacrylic resin [2]
300g of resin [(M w )/(M N )=
2.7 and [η] (intrinsic viscosity)/g=0.054] were blended and formed into pellets. The physical properties of this pellet were measured in the same manner as in Example 1. The results obtained are shown in Table 2. Comparative Examples 2-3 Resin obtained by blending 300 g of the impact-resistant resin obtained in Example 1 and 700 g of methacrylic resin [1] of Example 2 (Comparative Example 2) and the impact-resistant resin of Example 1 Methacrylic resin of Example 2 [2] 700g
The physical properties of the blend-shaped resin were also evaluated in the same manner as in Example 2. The results obtained are shown in Table 2.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 架橋アクリル酸エステル系重合体をゴム成分
とした耐衝撃性メタクリル樹脂とメタクリル酸メ
チル単位を70重量%以上含有し重量平均分子量
(Mw)と数平均分子量(MN)の比(Mw/MN
が2.2〜5.0の範囲の分子量分布を有するメタクリ
ル系樹脂とから成る組成物であつて、かつ該組成
物中に1〜50重量%の架橋アクリル酸エステル系
重合体を含有せしめてなるメタクリル樹脂組成
物。
1 Impact-resistant methacrylic resin containing a crosslinked acrylic acid ester polymer as a rubber component and containing methyl methacrylate units in an amount of 70% by weight or more, and having a ratio of weight average molecular weight (M w ) to number average molecular weight (M N ) (M w /M N )
and a methacrylic resin having a molecular weight distribution in the range of 2.2 to 5.0, and the composition contains 1 to 50% by weight of a crosslinked acrylic ester polymer. thing.
JP21187082A 1982-12-02 1982-12-02 Methacrylic resin composition Granted JPS59102947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21187082A JPS59102947A (en) 1982-12-02 1982-12-02 Methacrylic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21187082A JPS59102947A (en) 1982-12-02 1982-12-02 Methacrylic resin composition

Publications (2)

Publication Number Publication Date
JPS59102947A JPS59102947A (en) 1984-06-14
JPH0129218B2 true JPH0129218B2 (en) 1989-06-08

Family

ID=16612975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21187082A Granted JPS59102947A (en) 1982-12-02 1982-12-02 Methacrylic resin composition

Country Status (1)

Country Link
JP (1) JPS59102947A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000204220A (en) * 1999-01-13 2000-07-25 Kanegafuchi Chem Ind Co Ltd Modifier for methacrylic resin
DE19927769A1 (en) * 1999-06-17 2000-12-21 Roehm Gmbh Polymethacrylate molding composition, useful for the production of molded articles, is prepared by mixing toughened polymethacrylate and low mol. wt. polymethacrylate
US9605121B2 (en) * 2013-05-16 2017-03-28 Kuraray Co., Ltd. Film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54112987A (en) * 1978-02-22 1979-09-04 Asahi Chem Ind Co Ltd Solvent-resistant acrylic resin
JPS5527576A (en) * 1978-06-23 1980-02-27 Griswold Controls Counter flow preventing device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54112987A (en) * 1978-02-22 1979-09-04 Asahi Chem Ind Co Ltd Solvent-resistant acrylic resin
JPS5527576A (en) * 1978-06-23 1980-02-27 Griswold Controls Counter flow preventing device

Also Published As

Publication number Publication date
JPS59102947A (en) 1984-06-14

Similar Documents

Publication Publication Date Title
CA2868779C (en) Polycarbonate blend and method of producing the same
JPS60192754A (en) Thermoplastic resin composition
JPH06157688A (en) Graft polymer of granular material and molding compound containing same
KR100626955B1 (en) Styrene-based Thermoplastic Resin Compositions with Very Low Gloss and High Impact Strength
US5250617A (en) Polymer blends containing ethylene polymers for flexible films
US4902745A (en) Rubber-like thermoplastic polymer mixtures
US4778850A (en) Thermoplastic moulding materials made from vinyl chloride polymers and graft polymers and having improved properties
WO2020095622A1 (en) Graft copolymer, thermoplastic resin composition, and molded article thereof
JPH0129218B2 (en)
JPS6256171B2 (en)
JPH0417230B2 (en)
US3192178A (en) Blends of rubbery diene polymers, resinous styrene-acrylonitrile polymers, and a sulfone
JPS5924711A (en) Rubber-modified graft thermoplastic resin composition
JPH0324105A (en) Vinyl chloride resin
JP3538489B2 (en) Thermoplastic resin composition
JPS61143459A (en) Flame-retardant thermoplastic resin composition with high heat and impact resistance
JPH0143779B2 (en)
JPH04146910A (en) Multilayer graft copolymer
JPS63304042A (en) Heat-resistant thermoplastic polymer composition
JPS6323221B2 (en)
KR940005111B1 (en) Preparation method of comb copolymer, acrylic comb copolymer, and impact resistant resin composition
JPH0665321A (en) Heat stabilizer and thermoplastic resin composition
JP2003213071A (en) Thermoplastic resin composition and method for producing the same
JP2001131298A (en) Molded article of rubber modified styrenic polymer
JPS619459A (en) Thermoplastic resin composition