JPH01291630A - Control method for switchgear of distribution line section - Google Patents

Control method for switchgear of distribution line section

Info

Publication number
JPH01291630A
JPH01291630A JP63120941A JP12094188A JPH01291630A JP H01291630 A JPH01291630 A JP H01291630A JP 63120941 A JP63120941 A JP 63120941A JP 12094188 A JP12094188 A JP 12094188A JP H01291630 A JPH01291630 A JP H01291630A
Authority
JP
Japan
Prior art keywords
section
relay
ground fault
switch
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63120941A
Other languages
Japanese (ja)
Other versions
JP2860477B2 (en
Inventor
Shigeru Nishikawa
茂 西川
Kazuhisa Hanakawa
花川 和久
Noboru Saito
登 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Hokuriku Electric Power Co
Original Assignee
Toyo Communication Equipment Co Ltd
Hokuriku Electric Power Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd, Hokuriku Electric Power Co filed Critical Toyo Communication Equipment Co Ltd
Priority to JP63120941A priority Critical patent/JP2860477B2/en
Publication of JPH01291630A publication Critical patent/JPH01291630A/en
Application granted granted Critical
Publication of JP2860477B2 publication Critical patent/JP2860477B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/20Systems supporting electrical power generation, transmission or distribution using protection elements, arrangements or systems

Abstract

PURPOSE:To supply power with high quality by arranging a switchgear provided with a state detecting means such as ground/shortcircuit relay at a section separating point on a distribution line and separating a faulty section prior to function of a power interrupting/protecting means based on information fed from the state detecting means. CONSTITUTION:Automatic switchgears DM1, DM2,... arranged at each section of a transmission line 41 are provided with ground fault relays T1, T2,... and relay slave stations RL1, RL2,..., where the relay slave stations are entirely connected through a communication cable 42 with a master station 43 arranged in a substation. The master station 43 judges a ground fault section based on data fed from the relay slave stations RL1, RL2,... and provides a specific signal to a section switchgear to be opened. Since the series of operation is carried out prior to function of a circuitbreaker CB arranged in the substation and the like, faulty section and following sections can be separated with no power interruption in the preceding sections.

Description

【発明の詳細な説明】 (産業1−7の利用分野) 本発明は電力送電用配電線路ヒの地絡事故に伴う停電が
他の健全区間に及ばないようにした配電線区分開閉器制
御方法に関する。
[Detailed Description of the Invention] (Field of Application for Industry 1-7) The present invention is a distribution line segment switch control method that prevents a power outage caused by a ground fault on a power transmission distribution line from extending to other healthy sections. Regarding.

(従来の技術) 送電線にの短絡、地絡μ故等の発生に伴う停電時間を極
力短時間にとどめ、安定した電力供給を行うための対策
が各種試みられ、 11つ実用に供されている。
(Prior technology) Various measures have been tried to ensure a stable power supply by minimizing power outage times due to short circuits, ground faults, etc. in power transmission lines, and 11 of them have been put to practical use. There is.

従来、この方法としては、例えば配電線路を区分開閉器
によっていくつかに区分し、故障発生時に区分開閉器を
制御して故障区間を健全区間から分離することが行われ
ている。
Conventionally, as a method for this, for example, a distribution line is divided into several sections using section switches, and when a fault occurs, the section switches are controlled to separate the faulty section from the healthy section.

区分開閉器の制御方法には、順送方式と、搬送お制御方
式とが自るが、常用されているのは、配電線路を電源端
より端末へ向かって順次所定の時限をおいて給電を行っ
てゆく時限順送方式である。
There are two methods of controlling sectional switches: the progressive method and the conveyance control method, but the commonly used method is to supply power sequentially from the power supply end to the terminal at a predetermined time interval. It is a timed sequential method.

第2図(at  (b)はこの時限順送方式の−・例を
示す構成説明図であり、第2図(alは正常時における
配電線路の各開閉器の作動、また(blは第4区間に故
障が発生した場合の前記開閉器の動作状態を示したもの
である。
FIG. 2 (at (b) is a configuration explanatory diagram showing an example of this timed sequential transmission system. It shows the operating state of the switch when a failure occurs in the section.

この方法は、変電所に設けたサーキットブレーカ30と
、各配電区間3133.35、・・・の分離点毎に設け
た開閉器32.34.36・・・とを備え、riつ該開
閉器はトリップ機能を杓し、地絡電流を検知後衛定時間
後電源が投入された際、所定時限以内にt14び地絡電
流を検出すると自動的に開放ロックされる。
This method includes a circuit breaker 30 installed in a substation and switches 32, 34, 36, etc. installed at each separation point of each distribution section 3133, 35, . When the power is turned on after a predetermined time has elapsed after the trip function is activated and a ground fault current is detected within the predetermined time period, the device will be automatically locked open if t14 and ground fault current are detected within the predetermined time period.

この構成を有する配電線路において第2図(b)に、Y
(ず如くその第4区間37に地絡゛バ故が発生した場合
を考える。
In the distribution line having this configuration, as shown in FIG. 2(b), Y
(Let us now consider the case where a ground fault occurs in the fourth section 37.

地絡状態では過大な電流が大地に流れ、各開閉器の地絡
リレーが作動すると同時に前記変電所サーキットブレー
カが開放され送電が停+Izする。
In a ground fault state, an excessive current flows to the ground, and the ground fault relays of each switch are activated, and at the same time, the substation circuit breaker is opened and power transmission is stopped.

この後15秒が経過すると、変電所サーキットブレーカ
は1り閉され、第1区間31に給電され、その7秒後に
は第1区間31と第1区間3:3との間の開閉器32が
自動的に閉成されて次区間に給電される。
After 15 seconds, the substation circuit breaker is closed and power is supplied to the first section 31, and after 7 seconds, the switch 32 between the first section 31 and the first section 3:3 is closed. It is automatically closed and power is supplied to the next section.

この動作を繰返しつつ順次各区間に電力が供給されるが
、前記′バ故区間に給電されると、再び変電所サーキッ
トブレーカが開放され、全区間停電となるが、この時′
μ故区間の開閉器36は開放ロックされる。この60秒
後には]り度送電が行われ、さらに7秒おきに順次各区
間の開閉器が閉じて14秒後には第:3区間35までが
復電する。しかし、開閉器36は]−述のごとく開路状
態でロックされているため、故障が発’IIELだ第4
区間には通電が行われず、健全な第1.第2.第3区間
が復電し、11つ故障の存する第4区間以降が切離され
た状態となる。
While repeating this operation, power is supplied to each section in turn, but when power is supplied to the faulty section, the substation circuit breaker opens again, causing a power outage in all sections, but at this time,
The switch 36 in the μ failure section is locked open. After 60 seconds, the power is transmitted again, and the switches of each section are sequentially closed every 7 seconds, and after 14 seconds, the power is restored to the third section 35. However, since the switch 36 is locked in the open state as described above, the failure has occurred.
The section is not energized and the first section is healthy. Second. Power is restored to the third section, and the fourth and subsequent sections, where 11 faults exist, are disconnected.

しかしながら、ト記従来の時限順送方式の配電線区分開
閉器制御方法にあっては、 °lS故発生から健全区間
への給電までに短時間とはいえ2度の停電が発生−4゛
る。
However, in the conventional time-sequential distribution line segment switch control method, two power outages occur, albeit for a short time, between the occurrence of an S fault and the power supply to a healthy section. .

しかし、近年のOA、FA化等コンピュータシスデムを
多用した設備の11及に湿みれば、電源が瞬時とはいえ
途切れると、コンピュータの記憶内容専ソフト情報の破
壊発生にとどまらず、9↓だしくけIC等ハード而を損
傷する虞れがあって好ましくない。
However, if equipment that uses a lot of computer systems such as OA and FA in recent years gets wet, if the power supply is cut off, even if it is instantaneous, it will not only cause destruction of the software information stored in the computer, but also cause problems. This is not desirable as there is a risk of damaging the IC and other hardware.

このためより高品質の電力供給が要望されており2その
対策の・つとして配電&Q1を故時の健全区間の無停電
化の試みがなされている。
For this reason, there is a demand for a higher quality power supply, and as one of the countermeasures, attempts are being made to make the power distribution &Q1 uninterrupted in healthy sections at the time of failure.

このような無停電化の手段として、近年、前記区間毎に
設けた区分開閉器に史に通信線等を付加し、変電所等に
設けた親局コンピュータ装置と連結して、瞬時に事故区
間を検出するとともに、別ルートの電力供給用開閉器を
制御し、事故区間より末端部分への電力供給を確保した
うえで、当該]メ間m+段部の開閉器を断とする方法が
提案されている。この方法によれば、健全区間への供給
を全く瞬断することなく、i<故区間のみを切離すこと
が0I能であり、実用化へ向けての研究が進められてい
る。
In recent years, as a means of achieving uninterrupted power outages, communication lines, etc. have been added to the sectional switches installed in each section, and these are connected to the master station computer equipment installed at substations, etc., to instantly switch between faulty sections. A method has been proposed to detect this, control the power supply switch on a separate route, secure the power supply from the accident section to the terminal section, and then turn off the switch at the [m] + step section. ing. According to this method, it is possible to disconnect only the i<dead section without momentarily interrupting the supply to the healthy section, and research is underway to put it into practical use.

(発明の目的) 本発明はこれと目的を同じくするものであるが、より簡
単な装置によって健全区間の無停電化をt+7能とする
ためになされたものである。
(Objective of the Invention) The present invention has the same object as the above, but has been made in order to achieve uninterrupted power in a healthy section for t+7 using a simpler device.

即ち、後述するごとく、既に提案されている方法f・段
では各区間開閉器に付加すべき装置が極めて複雑になる
欠点があり、既存の施設に大幅な変更改造を施す必要性
から完全実施に至るまでにはかなりの年月を要する。
In other words, as will be explained later, the already proposed method f-stage has the disadvantage that the equipment to be added to each section switch is extremely complicated, and it is difficult to fully implement it due to the need to make major changes and modifications to existing facilities. It will take many years to reach this point.

本発明はこのよりな”lt情に鑑みてなされたものであ
って、親局装置に主たる機能をもたせることによって、
多数配置すべき子局装置(区間開閉器付加分)の構成な
iI丁能な限り簡単にし、既存の設備を最大限利用し得
る配電線区分開閉器制御方法を提供することを1−1的
としている。
The present invention has been made in view of this situation, and by providing the main function to the master station device,
A 1-1 objective is to provide a distribution line section switch control method that can simplify the configuration of a large number of slave station devices (additional sections of section switches) and make maximum use of existing equipment. It is said that

(発明の概要) 1−記]1的を達成するため、本発明の配電線区分開閉
器制御方法は、配電線路の区間分離点毎に自動開閉器(
L S )と地絡リレー(1′)及び短絡検出リレー(
X)とを含む子局装置を備えるとともにこれらを変電所
等に設置した親局制御装置(11)と通43Ii+にて
接続し、各r局装W?、n個を所定のポーリング手段に
より常時監視してその状態情報を収集する。
(Summary of the Invention) [1-] In order to achieve the first objective, the distribution line segment switch control method of the present invention provides an automatic switch (
L S ), ground fault relay (1') and short circuit detection relay (
It is equipped with a slave station device including a slave station device W? , n are constantly monitored by a predetermined polling means to collect their status information.

゛11故発生に際しては5その°1シ故の種類(地絡か
短絡か)に応じて1を故区間以I);1の前記地絡リレ
ーと短絡リレーが人々作動するから、i故の種類と発生
区間を検出することができる。
゛11 In the event of an error, 1) depending on the type of fault (earth fault or short circuit); The type and occurrence interval can be detected.

そこで、親局からはこの情報に基いて事故区間以降を切
離すべく所要の開閉器を制御する信号を送イパする。
Therefore, based on this information, the master station sends a signal to control the necessary switches in order to disconnect the area after the accident.

この−・連の操作を所定時間内1例えば変電所内のサー
キットブレーカが作動する以前(例として800+ms
以内)に行うが、このとき地絡か短絡か或は地絡におい
ても微地絡であるか若しくは−・時的な地絡であるか否
かを判定して、夫々に最適な対応を行うよう制御するこ
とを特徴とするものである。
This sequence of operations is performed within a predetermined period of time 1, for example, before the circuit breaker in the substation is activated (for example, 800+ms).
However, at this time, it is determined whether it is a ground fault, a short circuit, a slight ground fault, or a temporary ground fault, and the optimal response is taken for each case. It is characterized by the control as follows.

(実施例) 以下1本発明の配電線区分開閉器制御方法について詳細
に説明するが、それに先立って本発明の理解を助けるた
めに、既に提案されている上記従来技術について詳細に
説明する。
(Example) A distribution line sectional switch control method according to the present invention will be described in detail below, but prior to that, the above-mentioned prior art that has already been proposed will be described in detail in order to help understand the present invention.

なお、現在進められている研究の最終目的は“1!故区
間より前段部のみならず末端部への停電防+)−をも複
数の電力電力供給ルートによって行うようにした所謂異
相給電を含んだものであるが、説明を簡単にするため、
川−・ルート−ヒにおいて゛ト故区flit +iii
段区間部のみを無停電化する場合、史には地絡if故へ
の対応についてのみ説明する。
The final purpose of the research currently underway is "1! It includes so-called different-phase power supply, which prevents power outages not only in the front section but also in the terminal section from the dead section by using multiple power supply routes. However, to simplify the explanation,
On the river route, the old town flit +iii
In the case where only the stage section is made uninterrupted, only the response to a ground fault will be explained.

第3図(a)は近年既に提案されている配電線°111
区間検出方法を説明するための系統図であって、送電線
4Iの区間毎に設けた自動開閉器DM。
Figure 3 (a) shows the distribution line °111 that has already been proposed in recent years.
It is a system diagram for explaining the section detection method, and is an automatic switch DM provided for each section of the power transmission line 4I.

、DM、  ・・・に、史に地絡リレーT、、T、。, DM, ..., history ground fault relay T,,T,.

・−−−トリレーj局R1,、、Rt、 、 R1,2
・・・とが備えられ、該リレー子局は全て通信ケーブル
42によって変電所等に設置した親局装置と接続されて
いる。
・---Try relay j station R1, , Rt, , R1,2
..., and all of the relay slave stations are connected by communication cables 42 to a master station installed in a substation or the like.

この構成における各ブロックの機能を簡単に説明すると
、開閉器1) Mは白子局内の処理演算結果及び親局か
らの制御信号によって開閉するもので、該開閉器に付加
された地絡リレー]゛は当該開閉器より末端(以遠)側
における地絡に対して作動する。
To briefly explain the functions of each block in this configuration, the switch 1) M opens and closes according to the processing calculation results in the Shiroko station and the control signal from the master station, and is a ground fault relay attached to the switch. operates in response to a ground fault on the terminal (farther) side of the switch.

また、リレー子局RLは各区間開閉器DMを制御すると
ともに地絡リレーTの状態信号を監視し、夫々の状態に
対応したデータを作出し、前記通信ケーブル42を介し
て親局装置43に送致するものである。
In addition, the relay slave station RL controls each section switch DM, monitors the status signal of the ground fault relay T, creates data corresponding to each status, and sends the data to the master station device 43 via the communication cable 42. I will send it to you.

また、更に各開閉器の地絡・短絡リレーの動作は前記通
4′s線とは別個の・対の直結ケーブルによって全て接
続されており、地絡/短絡検出によって発生せしめた直
流電流/電圧を他のリレー子局に伝達するものである。
In addition, the operation of the ground fault/short circuit relay of each switch is all connected by a direct connection cable separate from the above-mentioned 4's wire, and the DC current/voltage generated by the ground fault/short circuit detection is is transmitted to other relay slave stations.

親局装置43では、各リレー子局から送付されたデータ
に基き地絡事故区間を判定すると同時に開放すべき区間
開閉器に対し所定信号を送出する。
The master station device 43 determines the ground fault section based on the data sent from each relay slave station, and at the same time sends a predetermined signal to the section switch to be opened.

これら一連の動作は変電所等のサーキット・ブレーカC
I3が作動する6iJに処理されるから事故地点よりn
1手段部分は−・度も停電することなく事故区間以遠が
切離される。
These series of operations are performed by circuit breakers C at substations, etc.
n from the accident point because it is processed by 6iJ when I3 is activated.
The area beyond the accident area was disconnected without any power outage.

なお、この説明では゛111区間以遠の健全区間救済措
置については述べなかったが、前記配電線系統が複数ル
ートにより互いに接続されたものであれば、これらルー
ト間を接続する開閉器を適宜選択して事故区間以遠部分
について前記別ルートより給電するよう構成しても良い
Although this explanation did not mention the relief measures for healthy sections beyond section 111, if the distribution line system is connected to each other by multiple routes, the switches connecting these routes should be selected as appropriate. It may be configured such that power is supplied from the separate route to the portion beyond the accident section.

前記リレー子局RLの構成としては1例えば第3図(b
l に示すものが提案されている。
The configuration of the relay slave station RL is as shown in FIG. 3(b), for example.
The following has been proposed.

この装置については昭和61年度電力中央研究所研究発
表会電力部門寄稿集に詳細に述べられているから、ここ
での説明は省略するが、同図から明らかな如く、該リレ
ー子局おいて電路に流れる零相変流成分(Z C1’の
出力)と大地に流れる無効電流成分(7,P I)出力
)とを検出し、1つ開閉器を挟んで設置した3ケの変流
器(CT)出力とを監視することによって、各開閉器部
分に流れる電流値及びその方向、史には実行/無効成分
を検出している。このことは、各開閉器に付したリレー
子局人々において1S故の種別及び開閉すべき開閉器を
リレー子局自ら識別させるためである。
This device is described in detail in the 19861 Electric Power Industry Research Presentation Contribution Collection of the Electric Power Division, so we will omit the explanation here, but as is clear from the figure, the relay slave station The zero-phase current transformer component (Z C1' output) flowing to the ground and the reactive current component (7, P I output) flowing to the ground are detected, and three current transformers ( CT) output, the value and direction of the current flowing through each switch section, as well as active/ineffective components in the history, are detected. This is to allow the relay slave stations attached to each switch to identify the type of 1S fault and the switch to be opened/closed by themselves.

また、史には]二連した如く、これらリレー子局は前記
通信線の他に配設した直結ケーブルによって、人々の地
絡/短絡リレーの動作に対応して作出した直流電圧/電
流を他の全てのリレー子局に伝達して初めて[1的を達
成するものである。
In addition, in history, these relay slave stations used a direct connection cable installed in addition to the communication line to transmit the DC voltage/current generated in response to the operation of the ground fault/short circuit relay by other people. Target 1 is achieved only by transmitting the information to all relay slave stations.

しかしながら、]−述したような従来の方法では−した
るデータ処理及び各区間開閉器の状態監視をリレー子局
にて行っているため、第3図(blからも明らかな如く
、多数配置するリレー子局の構成が複雑高価となる欠点
があったことト述した通りである。
However, in the conventional method as described above, data processing and status monitoring of each section switch are performed by relay slave stations, so as is clear from Figure 3 (bl), a large number of As mentioned above, the structure of the relay slave station is complicated and expensive.

第1図は本発明の詳細な説明するための概要構成図であ
る。
FIG. 1 is a schematic diagram for explaining the present invention in detail.

同図において符号lは変電所等において配電線路2に挿
入設置したサーキットブレーカであって該配電線の区間
分離点に自動開閉器LS1.LS8、・・・を備えると
ともに、各々の開閉器には地絡リレー1’、 、 l’
、 、  ・・・と短絡リレーX。
In the figure, reference numeral 1 denotes a circuit breaker inserted into the distribution line 2 at a substation or the like, and an automatic switch LS1. LS8,..., and each switch is equipped with a ground fault relay 1', , l'
, , ... and short-circuit relay X.

、X、、−−・とを含む子局装置3−1.3−2.3−
3、・・・を付加する。
, X, , ---.
3. Add...

史に、この子局装置の制御部con しは変電所等当該
配電線の統制所に設置された親局装置M P【」と通信
ケーブル4によって接続するよう構成したものである。
Historically, the control unit of this slave station device was configured to be connected via a communication cable 4 to a master station device MP installed at a control center of the distribution line such as a substation.

この構成においてその動作概要を説明すると。An overview of the operation in this configuration will be explained.

通常時は親局装置M P Uは通信ケーブルを介して各
区間子局装置コ号−1,3−2,:S−:S・・・・を
ポーリングし、各々のr局からの情報を収集する。
Normally, the master station device MPU polls the slave station device codes -1, 3-2, :S-:S, etc. in each section via the communication cable, and receives information from each r station. collect.

各子局装置6では、親局からのポーリングのタイミング
に合せてその時の地絡リレー]゛及び短絡リレーXの状
態変化を符号化して送出するが、該地絡リレーと短絡リ
レーは従来のものと特に異なるところはない。
Each slave station device 6 encodes and transmits the state change of the current ground fault relay and short-circuit relay X according to the polling timing from the master station, but the ground fault relay and short-circuit relay are conventional ones. There is nothing particularly different.

即ち、地絡リレーは、配電線と大地との間に絶縁不良等
にて流れる数アンペア程度の電流(地絡電rIL)を検
出するものであり、他方短絡リレーは配電線間或は配電
線と大地とが低抵抗値にて接続された結果流れる過大電
流に応答するものであって1人々作動電流が異なるよう
に設定されている。
In other words, a ground fault relay detects a current of several amperes (earth fault current rIL) flowing between a distribution line and the ground due to poor insulation, etc., whereas a short circuit relay detects a current of several amperes flowing between distribution lines or between distribution lines. It responds to the excessive current that flows as a result of connecting the ground and the ground with a low resistance value, and the operating current is set to be different for each person.

かくして収集された各−r局からのデータは、親局装置
において監視され、異常ないfrJ1間は順次ポーリン
グを続ける。
The thus collected data from each -r station is monitored in the master station device, and polling is continued sequentially as long as there is no abnormality frJ1.

次に、例えば前記第1図(a)における第4区間に地絡
′li故が生じた場合の対応について第1図(bl に
示したフローチャート図を参照しつつ説明する。
Next, what to do when a ground fault occurs in the fourth section in FIG. 1(a), for example, will be explained with reference to the flowchart shown in FIG. 1(bl).

地絡′ド故に対しては、当、該事故地点以前区間の地絡
゛リレーが作動し、その結果は各々のr局ポーリングタ
イミングに合せて親局装置において検知される。
In response to a ground fault, the ground fault relay in the section before the fault point is activated, and the result is detected by the master station device in accordance with the polling timing of each r station.

1S故区間が判別されると1表示装置に区間表示すると
同時にその事故が短絡か否かを識別する。
When the 1S fault section is determined, the section is displayed on the 1 display device, and at the same time it is determined whether the fault is a short circuit or not.

この判断は開閉器に付属した短絡リレーの動作の有無に
よって行うが j%i絡Is故と判断された場合は速や
かに変電所のサーキットブレーカCBを開成してこの系
統への電力供給を遮断する。この理由は短絡に伴う過大
電流を区間開閉器で行うと。
This judgment is made based on the operation of the short-circuit relay attached to the switch, but if it is determined that the short-circuit has occurred, the substation's circuit breaker CB is immediately opened to cut off the power supply to this system. . The reason for this is that the section switch handles excessive current due to short circuits.

接点界19不足のため焼損する虞れがあるためで。This is because there is a risk of burnout due to insufficient contact field 19.

その後、 −μブレーカを復11]せしめて、前記短絡
が一時的なものか否かを判断する。尚、短絡′ド故につ
いての対応は省略する。
Thereafter, the -μ breaker is turned on again to determine whether the short circuit is temporary. Note that the response to the short-circuit failure will be omitted.

次に、短絡事故でないと判断されれば地絡検出リレーの
動作の有無を判別し、地絡“μ故の場合はこれが一時的
な地絡か継続的なものかを判定するため所定時間経過後
+tjU地絡現象の有無を検出する。
Next, if it is determined that there is no short circuit, it is determined whether or not the ground fault detection relay is activated, and if it is a ground fault "μ", a predetermined period of time has elapsed to determine whether this is a temporary ground fault or a continuous one. Detect the presence or absence of a +tjU ground fault phenomenon.

・時的な地絡’7!故の例としては内部開閉器或は局部
サーキットブレーカを内蔵する電力需要家設備内の地絡
1を故において、当該保護装置が作動して配電系統から
自発的に切離される場合がある。
・Temporal ground fault '7! An example of this is when a ground fault 1 in a power customer equipment containing an internal switch or local circuit breaker activates the protection device and spontaneously disconnects it from the power distribution system.

これによって1故故障が除去された場合には、この制御
1・、開閉器の操作を行わず初期状態に戻る。
If the first fault is removed by this, control 1 returns to the initial state without operating the switch.

引き続き地絡状態にある場合には、史に、短絡リレーの
動作の有無を識別する。この理由は、地絡is故から短
絡−1!故に進展する割合が極めて大きいため、+11
に開閉器を制御するだけであるとl述した理由で開vj
4器を損なう虞れがあるためで、その可能性が高いのは
地絡事故発生後的500〜600 m s間と一般にい
われている。
If the ground fault condition continues, it will be necessary to identify whether the short circuit relay is activated or not. The reason for this is short circuit -1 because the ground fault is! Therefore, the rate of progress is extremely large, so +11
For the reason stated above, it is only necessary to control the switch.
This is because there is a risk of damage to the 4 equipment, and it is generally said that the possibility of this happening is high for 500 to 600 ms after the ground fault occurs.

従って、この時間内に短絡■故の発生を監視した後、当
該・ド故区間を切離すべく所要の開閉器に対して制御信
号を送出する。
Therefore, after monitoring the occurrence of a short circuit fault within this time, a control signal is sent to the required switch to disconnect the relevant short circuit fault section.

また、この指令信号が誤り無く伝達され、1つ開閉器が
作動したか否かを確認するために、再び地絡リレーの動
作状況を検出し、いづれの地絡リレーも作動していなけ
れば制御が完rしたものとして初期状態に移動するが、
依然地絡リレー作動中であれば再度指令信号を送出する
か或は初期状態に移行して再度事故区間の検出を行う。
In addition, in order to confirm whether this command signal has been transmitted without error and whether one switch has operated, the operating status of the ground fault relays is detected again, and if none of the ground fault relays has operated, the control moves to the initial state assuming that it has been completed, but
If the ground fault relay is still operating, the command signal is sent again, or the relay returns to the initial state and the fault area is detected again.

また、史に確実を期すため11度短絡リレーの動作を確
認して所要の処理をしてもよい。
Further, in order to ensure accuracy, the operation of the 11-degree short circuit relay may be checked and necessary processing performed.

この−例の動作は、例えば800m5に完了するように
設計され、変電所のサーキットブレーカが゛ド故発生か
ら作動して断となるまでに要する時間、−・般的に約1
秒以内に所要の処理を完rして゛1?1区間を切離すた
めである。
The operation of this example is designed to be completed in, say, 800 m5, and the time it takes for a substation circuit breaker to trip after a fault occurs - typically about 1
This is to complete the necessary processing within seconds and separate the 1-1 section.

この時間制御は、例えば1Mbpsの伝送速度で行えば
子局当りのポーリング時間はl0m5程度でnl能であ
り、現在のシーケンサ技術を用いれば複数の速制御装置
を配設しても十分実用に供することができる。
For example, if this time control is performed at a transmission speed of 1 Mbps, the polling time per slave station is about 10 m5, which is nl capability, and if current sequencer technology is used, it can be put to practical use even if multiple speed control devices are installed. be able to.

以りの構成によれば、サーキットブレーカが作動する前
に°li故区間を判別し、必要な開閉器を開放して゛)
故区間以降を切離すことになるから、°■故より11?
手段部分の健全区間は・度も停電することがない。
According to the above configuration, before the circuit breaker is activated, the faulty section is determined and the necessary switches are opened.
Since we will be separating the section after the previous section, 11?
There are no power outages in the healthy sections of the system.

尚、以りの実施例では1を故区間より端末部分の救済方
法について述べていないが、従来の提案と同じく別ルー
トから電力供給を行うよう予め系統間開閉器が設けられ
たものである場合は、この開閉器をも自動的に制御する
ことによって竺i故区間のみを除いた健全区間の全てを
無停電化することも口■能である。
In addition, in the following examples, the method for repairing the terminal part from the failed section is not described in 1, but as in the previous proposal, if an inter-grid switch is installed in advance to supply power from a different route. It is also possible to automatically control this switch to make all healthy sections, excluding only the failed sections, uninterrupted.

以1−の説明から明らかなように、本発明では各開閉器
からの情報を主として親局装置において処理することが
できる。その理由は、各開閉器に関して抽出すべきデー
タは、地絡リレーまたは短絡リレーの動作状態のみだか
らであり、従って区間開閉器に付加すべきr・局装置(
区間開閉器に付加するもの)の構成は、第ご3図に示し
た従来のものに比して大幅に簡1iにすることができる
。また、子局から送付すべき信号は地絡/短絡リレーの
ON −Or: F或は電路に流れる電流範囲のみを表
わずもので良いからデータ量は極めて少ない。従って、
極めて高いボーレートにてポーリングが可能であること
容易に理解できよう。
As is clear from the description in 1- below, in the present invention, information from each switch can be processed mainly in the master station device. The reason for this is that the data to be extracted for each switch is only the operating status of the ground fault relay or short circuit relay, and therefore the r/station equipment (
The configuration of the section switch (added to the section switch) can be significantly simplified compared to the conventional one shown in FIG. In addition, the amount of data is extremely small because the signal to be sent from the slave station need only represent the ON-Or:F of the ground fault/short circuit relay or the range of current flowing in the electrical path. Therefore,
It is easy to see that polling is possible at extremely high baud rates.

−r局装置は、開閉器に付加して多数用いられるもので
あり、また電柱等に架設されるから構成の簡略化に伴う
子局の小型化は極めて都合が良い。
-r station devices are used in large numbers in addition to switches, and are installed on utility poles, etc., so it is extremely convenient to downsize the slave stations due to the simplification of the configuration.

なお1本発明方法は故障区間を切離するため開閉器に地
絡リレー及び短絡リレーを連設し、制御線を介して故障
内容を制御局(親局)で判断し、地絡及び短絡時に必要
な制御を行うことを要旨としている。従って、変電所の
サーキットブレーカの作動後に、即ち全区間停止1−後
に作動[ijに人手した情報に基いて開閉器の制御を行
う構成も特許請求の範囲に含まれるものである。
In addition, in the method of the present invention, a ground fault relay and a short circuit relay are connected to the switch in order to isolate the faulty section, and the details of the fault are determined by the control station (master station) via the control line, and the fault is detected in the event of a ground fault or short circuit. The purpose is to carry out necessary controls. Therefore, a configuration in which the switch is controlled based on information manually inputted into operation [ij] after the circuit breaker of the substation is operated, that is, after the entire section is stopped 1-, is also included in the scope of the claims.

(発明の効果) 以1゛のように本発明の配電線区分開閉器制御方法によ
れば、配電線の区間分離点に設けた開閉器とこれに付属
せしめた地絡/短絡リレー等の状態検出手段からの情報
をもとに地絡/短絡或はその他の゛111区間を検出し
て、サーキットブレーカ等の電力遮断保護丁−段が作動
する以11iiに1を故区間を切離すようにしたもので
あるから、健全区間へのif故綽害の波及を防1トシ、
高品質の電力供給を行うことができる。
(Effects of the Invention) As described in 1 below, according to the distribution line segment switch control method of the present invention, the status of the switch provided at the segment separation point of the distribution line and the ground fault/short circuit relay attached thereto can be controlled. Based on the information from the detection means, a ground fault/short circuit or other 111 section is detected, and a power interruption protection stage such as a circuit breaker is activated to disconnect the faulty section. Therefore, if the accident spreads to the healthy section, it is possible to prevent it from spreading.
High quality power can be supplied.

また1本発明による方法では、このために各開閉器に関
して収集すべきデータは極めて単純なものであるから、
r局の構成が簡単で済み、これを小型化するにで効果が
ある。
Furthermore, in the method according to the present invention, the data to be collected for each switch is extremely simple;
The structure of the r station is simple, and it is effective in reducing its size.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(al は本発明の・実施例によって健全区間を
停電させることなく故障区間以降を切離する構成を模式
的に示したブロック図、第1図(b)は本発明の作動を
示すフローチャート、第2図(alは従来の配電線路の
各開閉器の作動を示す構成図、第2図(blは第2図(
alの配電線路において第4区間に故障が生じた場合に
おける配電線路の各開閉器の作動を示した構成図、第3
図(al及び(b)は従来の無停電化システムの系統図
及びその子局装置のブロック図である。 第1図 第2図 (Q) (b) 0 閏状5 ■開状悪 第3に 通値線
Fig. 1 (al) is a block diagram schematically showing a configuration for disconnecting the faulty section and subsequent sections without causing a power outage in the healthy section according to an embodiment of the present invention, and Fig. 1 (b) shows the operation of the present invention. Flowchart, Fig. 2 (al is a block diagram showing the operation of each switch of a conventional power distribution line, Fig. 2 (bl is Fig. 2)
A configuration diagram showing the operation of each switch of the distribution line when a failure occurs in the fourth section of the distribution line of Al, 3rd
Figures (al and (b)) are a system diagram of a conventional uninterruptible system and a block diagram of its slave station equipment. average price line

Claims (1)

【特許請求の範囲】[Claims] (1)地絡リレーと短絡リレーとを含む区間開閉器を介
して配設された配電線路において、各開閉器には前記地
絡リレーと短絡リレーの動作状態を検出する子局装置を
備え、該子局装置を通信線を介して変電所等に設けた親
局装置と接続するとともに、該親局装置によって前記各
子局をポーリングして収集した情報に基いて事故発生区
間を検出し、変電所等の電力遮断手段が作動する以前に
当該事故発生区間を切離したことを特徴とする配電線区
分開閉器制御方法。
(1) In a power distribution line arranged via a section switch including a ground fault relay and a short circuit relay, each switch is equipped with a slave station device that detects the operating state of the ground fault relay and the short circuit relay, Connecting the slave station device to a master station device installed in a substation or the like via a communication line, and detecting the section where the accident occurred based on information collected by polling each of the slave stations by the master station device, A distribution line segment switch control method characterized in that the section where the accident occurred is disconnected before a power cutoff means such as a substation is activated.
JP63120941A 1988-05-18 1988-05-18 Distribution line switch control method Expired - Fee Related JP2860477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63120941A JP2860477B2 (en) 1988-05-18 1988-05-18 Distribution line switch control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63120941A JP2860477B2 (en) 1988-05-18 1988-05-18 Distribution line switch control method

Publications (2)

Publication Number Publication Date
JPH01291630A true JPH01291630A (en) 1989-11-24
JP2860477B2 JP2860477B2 (en) 1999-02-24

Family

ID=14798758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63120941A Expired - Fee Related JP2860477B2 (en) 1988-05-18 1988-05-18 Distribution line switch control method

Country Status (1)

Country Link
JP (1) JP2860477B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04251521A (en) * 1990-12-28 1992-09-07 Ngk Insulators Ltd Rapid isolating system for accident section

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04251521A (en) * 1990-12-28 1992-09-07 Ngk Insulators Ltd Rapid isolating system for accident section

Also Published As

Publication number Publication date
JP2860477B2 (en) 1999-02-24

Similar Documents

Publication Publication Date Title
US20200412167A1 (en) Method and system for fast reconfiguration of power supply network in tens of milliseconds after power grid failure
EP0554553B1 (en) Method of and system for disconnecting faulty distribution line section from power distribution line
CN106370975B (en) A kind of pinpoint method of electrical power distribution automatization system single-phase earthing section
CN109713794B (en) Distributed intelligent self-recovery system and method
EP2206208B1 (en) Differential protection method, system and device
CN106058829A (en) Fault protection system for distribution system
US11489365B2 (en) Non-three-phase fault isolation and restoration systems
CN204651919U (en) A kind of 10kV neutral point of electric network joint grounding device
CN205811531U (en) A kind of fault protection system for distribution system
CN106340954A (en) Method for identifying line breaking of power supply line and switching to standby power supply
CN111817353B (en) Power distribution network equipment fault processing method
JPH01291630A (en) Control method for switchgear of distribution line section
CN108279360A (en) Singlephase earth fault circuit monitoring system
CN111224384B (en) Method for comparing line voltage vector difference on two sides of line and protecting line breakage by adopting loop closing and opening operation
CN103018631A (en) System for 10kV fault line detection
CN105449835B (en) A kind of region spare power automatic switching method
Teo A computer aided system to automate the restoration of electrical power supply
CN207992363U (en) Singlephase earth fault circuit monitoring system
JP3169976B2 (en) Distribution line ground fault protection system
JP3041632B2 (en) Distribution line accident section separation method
JPS63287321A (en) Fault section detecting/separating device for distribution line
JP2558350B2 (en) How to disconnect the faulty section of the distribution line
JPH01180469A (en) Accident section detecting device for power transmission line
Genji et al. Development of a high-speed switching system for distribution networks
JP2856543B2 (en) Distribution line automation

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees