JPH01291149A - Detecting method for defect of material to be inspected - Google Patents

Detecting method for defect of material to be inspected

Info

Publication number
JPH01291149A
JPH01291149A JP12029988A JP12029988A JPH01291149A JP H01291149 A JPH01291149 A JP H01291149A JP 12029988 A JP12029988 A JP 12029988A JP 12029988 A JP12029988 A JP 12029988A JP H01291149 A JPH01291149 A JP H01291149A
Authority
JP
Japan
Prior art keywords
temperature
defect
detected
inspected
defects
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12029988A
Other languages
Japanese (ja)
Other versions
JP2501869B2 (en
Inventor
Toshio Sakamoto
坂本 俊夫
Eisuke Yamanaka
山中 栄輔
Mikio Sasada
笹田 幹雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP63120299A priority Critical patent/JP2501869B2/en
Publication of JPH01291149A publication Critical patent/JPH01291149A/en
Application granted granted Critical
Publication of JP2501869B2 publication Critical patent/JP2501869B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE:To detect a defect of a material to be inspected by on-line with high accuracy by detecting a surface temperature of the material to be inspected before the material to be inspected which has been brought to quenching is recuperated and the surface temperature is equalized. CONSTITUTION:In order to detect a surface defect of a wire rod 16, a surface temperature of the wire rod 16 which has been brought to quenching in a water cooling zone is detected by a temperature detector 24, while tracking, and recorded in a recorder 28. In this state, in case when a temperature fall exceeding a prescribed threshold has been generated against an average value of the surface temperature, it is decided that a defect exists, and by allowing the tracking length and a temperature fall position to correspond to each other, a position of a defect part is specified. Also, in case when a surface defect exists in the wire rod 16, and the surface defect is a local flaw, a temperature falls within a short range, and in case of a continuous flaw, a temperature falls within a long range. Accordingly, whether the flaw is a local flaw or a continuous flaw can be known from the width of the temperature fall. In such a way, a defect of a material to be inspected can be detected with high accuracy by on-line.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、被検材の欠陥検出方法に係り、特に、熱間圧
延された線材、棒鋼、形鋼の、へげ庇等の表面欠陥や非
金属系介在物等の巻き込みによる内部欠陥を検出する除
用いるのに好適な、被検材の欠陥検出方法に関する。
The present invention relates to a method for detecting defects in materials to be inspected, and in particular detects surface defects such as bald eaves and internal defects caused by entrainment of non-metallic inclusions in hot-rolled wire rods, steel bars, and shaped steel. The present invention relates to a method for detecting defects in materials to be inspected, which is suitable for use in many cases.

【従来の技術】[Conventional technology]

熱間圧延ラインにおいて製造された線材、棒鋼又は形鋼
等の圧延材は、その成品表面に疵を有するものの場合、
後のラインでその疵を修正する必要があり、又、この庇
が修正不能なものの場合、成品をラインから除去する必
要がある。従って、前記成品の該表面疵は圧延後に精度
良く検出しなければならない。 上記のような線材や棒鋼等の金属材料の表面疵を検出す
る技術に、特開昭53−13977号公報で示された如
き熱間渦流探傷装置を用いた表面疵検出方法がある。 即ち、この方法においては、まず、金属材料の疵の深さ
に相当する程度の表面層に誘導加熱コイル(探傷コイル
)により誘導電流を流すことにより前記表面層を加熱す
る。そして、探傷コイルあるいは金属材料を相対的に移
動して前記金属材料表面を順次誘導加熱する。この場合
に、金属材料の表面疵の存在する部分は、狭い範囲に誘
導電流が集中し池の正常な部分と比較して高温となるた
め、表面の温度上昇を捕らえてその各部温度差により表
面の疵を検知するようにしている。 従って、熱間渦流探傷装置を用いれば圧延材の表面疵を
オンラインで探傷することができるものである。
If rolled materials such as wire rods, steel bars, or shaped steel manufactured on a hot rolling line have flaws on the surface of the product,
The defect must be corrected in a subsequent line, and if the eaves cannot be corrected, the finished product must be removed from the line. Therefore, the surface flaws on the product must be detected accurately after rolling. As a technique for detecting surface flaws in metal materials such as wire rods and steel bars as described above, there is a surface flaw detection method using a hot eddy current flaw detection device as disclosed in Japanese Patent Application Laid-Open No. 53-13977. That is, in this method, first, the surface layer is heated by passing an induced current through an induction heating coil (flaw detection coil) to a depth corresponding to the depth of a flaw in the metal material. Then, the flaw detection coil or the metal material is moved relatively to sequentially inductively heat the surface of the metal material. In this case, in the part of the metal material where the surface flaw exists, the induced current concentrates in a narrow area and the temperature becomes higher than that of the normal part of the metal material. The system is designed to detect flaws. Therefore, if a hot eddy current flaw detection device is used, surface flaws in a rolled material can be detected online.

【発明が解決しようとする課題】[Problem to be solved by the invention]

I−かしながら、前記の如き熱間渦流探傷装置による圧
延材等の探傷には、次の如き種々の問題点がある。 即ち、探傷精度を保つには、探傷コイルと被検材間の距
離を一定に、且つ、極めて短く(例えば1〜3■程度)
保たねばならないことから、圧延成品にすり疵や欠き疵
等が生じる場合がある。又、被検材の寸法が変更される
毎に精度を保つため探傷コイルを径の違うものに交換す
る必要があるが、この交換作業は手間がかかり作業負荷
が大きなものである。更に、高速圧延されている圧延成
品を被検材とする場合、連続した疵の検出については精
度が低下したものとなる。又、熱間渦流探傷装置はその
設備費や予備品等のコストが高く高価なものになるとい
う問題点があった。 ところで、圧延材に存在する欠陥には上記のような表面
欠陥の他に製造過程等で生ずる内部欠陥がある。従来は
、このような内部欠陥を、圧延ラインにおいてオンライ
ンで検出できる技術がなかった。又、圧延後の成品段階
においてもこの内部欠陥の探傷については、その成品長
が長く国数が伴うため実施されておらず、欠陥が発生す
る都度、2次加工工程での成品加工に不具合を生じてい
た。 従って、被検材の内部欠陥をオンラインで連続的に検出
できる技術が要請されていた。
However, there are various problems in flaw detection of rolled materials etc. using the hot eddy current flaw detection apparatus as described above, as described below. In other words, in order to maintain flaw detection accuracy, the distance between the flaw detection coil and the test material must be kept constant and extremely short (for example, about 1 to 3 cm).
As a result of this, scratches, chips, etc. may occur in rolled products. Furthermore, each time the dimensions of the material to be inspected are changed, it is necessary to replace the flaw detection coil with one of a different diameter in order to maintain accuracy, but this replacement work is time-consuming and imposes a large workload. Furthermore, when a rolled product that has been rolled at high speed is used as a material to be inspected, the accuracy in detecting continuous flaws is reduced. In addition, hot eddy current flaw detection equipment has a problem in that its equipment costs, spare parts, etc. are high and expensive. By the way, defects that exist in rolled materials include, in addition to the above-mentioned surface defects, internal defects that occur during the manufacturing process and the like. Conventionally, there was no technology that could detect such internal defects online in a rolling line. In addition, inspection for internal defects is not carried out at the finished product stage after rolling because the length of the product is long and the number of countries required. was occurring. Therefore, there has been a need for a technology that can continuously detect internal defects in test materials online.

【発明の目的】[Purpose of the invention]

本発明は、前記従来の問題点を解消するべくなされたも
ので、渦流探傷器を用いることなく、又は渦流探傷器と
組み合わせて、被検材の欠陥をオンラインで精度良く検
出することができる被検材の欠陥検出方法を提供するこ
とを目的とする。
The present invention has been made in order to solve the above-mentioned conventional problems, and is capable of accurately detecting defects in a test material online without using an eddy current flaw detector or in combination with an eddy current flaw detector. The purpose is to provide a method for detecting defects in inspection materials.

【課題を解決するための手段】[Means to solve the problem]

本発明は、被検材の欠陥検出方法において、被検材を急
冷し、急冷された被検材が復熱して、その表面温度が均
一化する前に、該被検材の表面温度を検出し、検出され
た表面温度に基づき、被検材の欠陥を検出することによ
り、前記目的を達成したものである。 又、検出する前記被検材の欠陥は、表面欠陥又は内部欠
陥のいずれでもよいものであり、表面欠陥については、
前記検出された表面温度が他の部分に比較して低い部分
の存在から検出し、又、内部欠陥については、前記検出
された表面温度が他の部分に比較して高い部分の存在か
ら検出することができる。
The present invention is a method for detecting defects in a test material, in which the test material is rapidly cooled, and the surface temperature of the test material is detected before the rapidly cooled test material recovers heat and its surface temperature becomes uniform. However, the above object is achieved by detecting defects in the material to be inspected based on the detected surface temperature. Further, the defects of the test material to be detected may be either surface defects or internal defects, and regarding surface defects,
The detected surface temperature is detected based on the presence of a portion where the detected surface temperature is lower than other portions, and an internal defect is detected based on the presence of a portion where the detected surface temperature is higher than other portions. be able to.

【発明の作用及び効果】[Operation and effects of the invention]

以下、本発明を、圧延材(例えば線材、棒鋼、形鋼)の
熱間圧延ラインにおいて、第1図に示されるような仕上
延機10で仕上げ圧延された圧延材11の欠陥検出を行
う場合を例にとり説明する。 今、圧延材を熱間圧延した後、冷却水を供給することに
より短時間に急速に冷却(以下、急冷という)を行った
とする。このとき、該圧延材の表面に疵等の表面欠陥が
存在した場合、その欠陥の形態に応じて局部的に熱伝導
率が上昇するため該欠陥の存在する部分(以下、欠陥部
という)は、欠陥の存在しない部分(以下、正常部とい
う)に比べて強く冷却される。この正常部と欠陥部の冷
却結果の違いを次に説明する。 前記仕上圧延810で圧延されて、空冷された後、水冷
帯12で冷却される圧延材11(この場合、鋼材)の温
度を検出し、この検出温度を後記記録計28で記録した
結果の一例を第2図に示す。 この場合、仕上圧延後の鋼材は、第3図(A)に示され
るような断面形状の正常部と同図(B)に示されるよう
な断面形状の欠陥部を有したものである。又、鋼材は水
冷帯12人側で温度が900〜1100゛Cのものであ
り、速度10〜100m7秒でライン上を搬送されて、
水冷帯12に入る。 又、水冷帯12は長さが7.5〜22m有り、熱伝達率
a =2000〜12000Kcal/rh ”Cで急
冷できる冷却能力を有するものである。更に、該水冷帯
12の出側には、熱放射から温度を検出する放射温度計
14が設けられ、この温度計14の検出結果は前記記録
計28で記録される。 又、第2図において、実線Aが、前記正常部の表面温度
であり、又、−点鎖線Bが前記欠陥部の表TfJ温度で
ある。なお、第2図中破線A1が前記正常部の平均温度
であり、二点鎖線B1が前記欠陥部の平均温度である。 第2図のように、水冷時において、欠陥部の表面温度は
正常部の表面温度に比べて大きく温度が低下し、部分的
に温度むらを生じている。これは、欠陥部においては、
被検材が冷却水の蒸気膜で常に覆われている膜沸謄の状
態から、欠陥部で独立して蒸気泡が発生する核沸騰の状
態に移行し、冷却速度が速くなるからである。従って、
水冷後の表面温度が正常部の表面温度に比べて低い部分
の存在から被検材に表面欠陥、例えば、へげ疵等の、被
検材断面積や表面積に変化が生じた欠陥を検出すること
ができる。但し、被検材が復熟し、表面温度が均一化す
ると欠陥部を特定できなくなるため、復熱する前に表面
温度を検出する必要がある。 例えば第2図においては符号Cで示す時期に温度検出す
ることが望ましい。 本発明はこのような知見に基づきなされたものであり、
本発明によれば、表面欠陥の検出をオンラインで精度良
く行い、被検材に対する品質を強化することができる。 又、温度検出装置は渦流検出装置に比較して安価である
ため経済性が良い。 更に渦流検出装置の如く被検材の寸法によって検出コイ
ルを取り換える必要がないため欠陥検出を簡易な手順で
行うことができる。又、後述するように、渦流検出装置
では検出できなかった連続疵にも対応して欠陥検出でき
るものである。 なお、前記表面欠陥の検出をする際には、本発明方法を
熱間渦流探傷器と併用することで表面欠陥の見逃しを防
止し、更に欠陥検出の精度を上げることができる0例え
ば、発明者らの測定によれば、熱間渦流探傷器の欠陥検
出率が96%であり、本発明を用いて欠陥を検出した検
出率が92%である場合に、両者を併用して欠陥検出率
を98%に高めることができな。 一方、前記の如き鋼材等の被検材の表面欠陥ではなく非
金属介在物等の内部欠陥が存在する場合には、該内部欠
陥の影響により熱伝導率に違いが生じ、被検材を冷却水
等で急冷しても、該内部欠陥の存在する部分の表面が正
常な部分の表面に比較してゆっくりと冷却され、高温と
なる。従って、この表面温度の違いから被検材の内部欠
陥の存在を知ることができる。 前記の如く被検材のうち内部欠陥の存在する部分の冷却
時における表面温度低下が少ないことを知るため、発明
者らは所定の内部欠陥の存在する複数の試験材について
、シミュレーションにより急冷した際の温度変化を測定
した。第4図にその際の測定結果を示す、なお、この場
合、第4図中に示すように、試験材は外径5.5qmで
内部欠陥の直径dが0.1.2 uのものを用い、これ
を1050℃に加熱した後に搬送速度9011/秒で根
送しながら、熱伝導率α=11000にcal/ゴh℃
の冷却水を供給して急冷した。 第4図から、内部欠陥のない場合(d=0)に比較して
、内部欠陥が存在する場合(d=1.2am )の方が
冷却による温度低下が少ないことが理解される0例えば
、図の結果においては、冷、却後0.5秒経過した後の
各被検材温度が、内部欠陥がない場合853℃で、内部
欠陥がある場合(d==1.2+am)それぞれ964
℃、997℃であった。 従って、急冷後の被検材の表面温度を検出すれば、池の
部分に比較して表面温度の高い部分の存在から内部欠陥
を検出することができる。よって、従来は検出でなかっ
た圧延過程における鋼材等の内部欠陥の検出をオンライ
ンで精度良く行うことができ、2次加工工程で欠陥によ
る加工不具合を生ずることがない、これにより、線材、
棒鋼、形鋼、その池の被検材に対する品質保証の強化を
図ることができる。 なお、以上の説明においては、被検材として高温の鋼材
を例に挙げ、これに冷却水を供給していたが、被検材は
このようなものに限定されるものではない、要は、被検
材がそれに供給される冷却剤との関係で急冷可能なもの
であれば、いずれの被検材(例えば熱間鍜造材)にらい
ても、又、いずれの冷却剤を用いても、本発明を実施で
きるものである。
Hereinafter, the present invention will be applied to a case where defects are detected in a rolled material 11 finish-rolled by a finishing mill 10 as shown in FIG. This will be explained using an example. Now, suppose that after a rolled material is hot-rolled, it is rapidly cooled in a short time (hereinafter referred to as quenching) by supplying cooling water. At this time, if there are surface defects such as scratches on the surface of the rolled material, the thermal conductivity locally increases depending on the form of the defect, so the area where the defect exists (hereinafter referred to as defective area) , the area is cooled more strongly than the area where no defects exist (hereinafter referred to as the normal area). The difference in cooling results between the normal part and the defective part will be explained next. An example of the result of detecting the temperature of the rolled material 11 (in this case, steel material) that is rolled in the finishing rolling 810, air-cooled, and then cooled in the water-cooling zone 12, and recording this detected temperature with the recorder 28 described later. is shown in Figure 2. In this case, the steel material after finish rolling has a normal section with a cross-sectional shape as shown in FIG. 3(A) and a defective section with a cross-sectional shape as shown in FIG. 3(B). In addition, the steel material has a temperature of 900 to 1100°C on the 12-person side of the water cooling zone, and is conveyed on the line at a speed of 10 to 100 m and 7 seconds.
Enter water cooling zone 12. The water cooling zone 12 has a length of 7.5 to 22 m, and has a cooling capacity capable of rapid cooling with a heat transfer coefficient a = 2000 to 12000 Kcal/rh''C. , a radiation thermometer 14 for detecting temperature from heat radiation is provided, and the detection result of this thermometer 14 is recorded by the recorder 28. In addition, in FIG. 2, the solid line A indicates the surface temperature of the normal area. , and the dashed-dotted line B is the surface TfJ temperature of the defective part.The broken line A1 in FIG. 2 is the average temperature of the normal part, and the dashed-two dotted line B1 is the average temperature of the defective part. As shown in Fig. 2, during water cooling, the surface temperature of the defective part is significantly lower than that of the normal part, causing local temperature unevenness. ,
This is because the test material changes from a film boiling state in which it is always covered with a vapor film of cooling water to a nucleate boiling state in which steam bubbles are generated independently at defective parts, and the cooling rate becomes faster. Therefore,
Detects surface defects on the test material from the presence of parts where the surface temperature after water cooling is lower than the surface temperature of the normal part, such as flaws that have caused a change in the cross-sectional area or surface area of the test material. be able to. However, once the material to be tested has ripened and the surface temperature has become uniform, it is no longer possible to identify the defective part, so it is necessary to detect the surface temperature before reheating. For example, in FIG. 2, it is desirable to detect the temperature at the time indicated by C. The present invention was made based on such knowledge,
According to the present invention, surface defects can be detected online with high precision, and the quality of the material to be inspected can be enhanced. Furthermore, the temperature detection device is less expensive than the eddy current detection device, so it is more economical. Furthermore, unlike an eddy current detection device, there is no need to replace the detection coil depending on the size of the material to be inspected, so defects can be detected in a simple procedure. Furthermore, as will be described later, it is possible to detect defects even in cases of continuous defects that could not be detected by the eddy current detection device. In addition, when detecting the surface defects, by using the method of the present invention in combination with a hot eddy current flaw detector, it is possible to prevent overlooking of surface defects and further improve the accuracy of defect detection. According to their measurements, when the defect detection rate of the hot eddy current flaw detector is 96% and the detection rate of defects detected using the present invention is 92%, it is possible to increase the defect detection rate by using both together. I can't increase it to 98%. On the other hand, if there are internal defects such as non-metallic inclusions rather than surface defects in the specimen material such as steel as described above, a difference in thermal conductivity occurs due to the influence of the internal defects, and the specimen material is cooled. Even if the surface is rapidly cooled with water or the like, the surface of the portion where the internal defect exists is cooled more slowly than the surface of the normal portion, resulting in a high temperature. Therefore, the presence of internal defects in the material to be inspected can be determined from this difference in surface temperature. As mentioned above, in order to find out that the surface temperature drop during cooling of the portion of the test material where internal defects are present is small, the inventors conducted a simulation to find out when a plurality of test materials with predetermined internal defects were rapidly cooled. The temperature change was measured. Figure 4 shows the measurement results. In this case, as shown in Figure 4, the test material had an outer diameter of 5.5 qm and an internal defect diameter d of 0.1.2 u. After heating it to 1,050°C, it was fed at a conveying speed of 9,011/sec to a thermal conductivity of α = 11,000 cal/h°C.
Cooling water was supplied for rapid cooling. From FIG. 4, it is understood that the temperature drop due to cooling is smaller when an internal defect exists (d=1.2 am) than when there is no internal defect (d=0).For example, In the results shown in the figure, the temperature of each test material 0.5 seconds after cooling is 853°C when there is no internal defect, and 964°C when there is an internal defect (d==1.2+am).
℃, 997℃. Therefore, by detecting the surface temperature of the test material after quenching, internal defects can be detected from the presence of a portion with a higher surface temperature than the pond portion. Therefore, it is possible to accurately detect internal defects in steel materials, etc. during the rolling process, which could not be detected in the past, online, and there will be no processing defects due to defects in the secondary processing process.
It is possible to strengthen the quality assurance of steel bars, shaped steel, and other materials to be inspected. In the above explanation, high-temperature steel was used as an example of the material to be tested, and cooling water was supplied to it, but the material to be tested is not limited to such materials. As long as the material to be tested can be rapidly cooled in relation to the coolant supplied to it, it can be used with any material to be tested (e.g. hot-formed material) and with any coolant. , with which the present invention can be implemented.

【実施例】【Example】

以下、図面を参照して本発明の実施例を詳細に説明する
。 この実施例は、熱間圧延された線材や棒材(以下線材と
略する)16表面を第1図に示した水冷帯12で均一に
冷却し、水冷後、放射温度計14で該線材16の全周面
を測温し、この測温結果に基づき後述するように線材1
6の表面欠陥あるいは内部欠陥を検出するようにした装
置である。 前記水冷帯12には第5図に示される構成の水冷ノズル
18が設けられている0図において、符号20が冷却水
の給水口、22がエアーの圧入口である。 放射温度計14以降の信号系は、第6図に示されるもの
となる0図のように放射温度計14は温度検出器24及
び信号変換器26を備えている。 前記温度計14及び記録計28は線材16の圧延速度、
即ち、搬送速度に応じた応答周波数を有する高速応答可
能なものであり、例えば温度検出から記録までのループ
応答性が応答速度1〜2(INS)以下のものを用いる
ことができる。 この信号変換器26の出力は記録計28及び警報出力装
置30に入力される。該記録計28は検出温度を記録チ
ャートに記録するためのものである。又、前記警報出力
装置30は設定された設定値以上の温度が検出されたと
きに欠陥が生じたものとして警報を発し、該欠陥部にマ
ーキングを行うものである。 以下、実施例の作用を説明する。 まず、前記線材16の表面欠陥を検出するべく、水冷帯
12で急冷した後の線材16の表面温度を記録計28に
記録すると共に、熱間渦流探傷装置で同じ線材を探傷し
た結果を第7図に示す、なお、前記温度計の時間軸と渦
流探傷器の時間軸は異なって表示されているため、第7
図においては線材16上の対応する個所の検出値同志を
破線で繋いでいる。 図から、渦流探傷装置の検出結果と温度低下している部
分とがよく一致しており、従って1、本発明を実施して
温度検出することにより精度良く表面欠陥を検出できる
ことが理解される。具体的には線材16の表面温度をト
ラッキングしながら検出し、表面温度の平均値に対して
一定の閾値以上の温度低下が生じた場合、欠陥が存在す
るものと判定し、トラッキング長さと温度低下位置を対
応させて欠陥部の位置を特定する。なお、図には各部に
対応する欠陥の種類を記載している。 又、前記温度記録を用いて欠陥の種類も知ることができ
る。即ち、第8図に示されるように線材16に表面欠陥
が存在し、その表面欠陥が図中符号32で示す局部疵や
符号34で示す連続疵の場合には、第9図に示されるよ
うな温度記録結果となる。前記局部疵32の場合には、
第9図中符号36で示されるように短い範囲で温度が低
下し、一方、前記連続疵の場合には、図中符号38で示
されるように長い範囲で温度が低下している。従って、
この温度低下の幅から疵が局部疵又は連続疵のいずれで
あるかを知ることができる。 これに対して、渦流探傷器により探傷を行った場合、第
10図に示されるように局部疵に対しては疵信号が出力
されて欠陥検出ができるが、連続疵に対しては検出する
ことができない、従って、本発明方法により表面疵を検
出しようとした場合、渦流探傷器で検出できなかった種
類の疵(連続a:)までも検出することができ、検出さ
れる欠陥の対象が広いことが理解される。 次に、本実施例装置で線材16の内部欠陥を検出する場
合について説明する。 水冷帯12で急冷された後に放射温度計14を用いて、
線材16の先端から尾端まで、温度を検出した結果を第
11図に示す1図の符号ThHで示すように、他の部分
に比べて高い温度が検出された線材16の部分(以下、
高温部という)に非金属介在物(例えばパウダ)による
内部欠陥が存在することが確認された。具体的には、ト
ラッキングしながら線材16の表面温度をその先端から
尾端まで検出し、この検出温度をその温度の平均値と比
較し、その差が所定の閾値以上の高温の場合、欠陥が存
在するものと判定し、その判定1結果と線材16上の位
置を対応させて高温部の位置を特定することにより、内
部欠陥の存在及びその線材16における内部欠陥の位置
を検出した。なお、発明者らは上記装置により、線材中
に非金属介在物の巻き込みによる内部欠陥を6例検出し
、ライン後流に流さず、後流における加工上の不具合を
未然に防止した。 なお、前記実施例におては、被検材として、線材、棒鋼
、形鋼等の圧延材を例示したが、本発明を使用できる被
検材はこれに限定されず、その他の被検材例えば熱間鍛
造材の欠陥検出にも使用できるものである。
Embodiments of the present invention will be described in detail below with reference to the drawings. In this embodiment, the surface of a hot-rolled wire rod or bar (hereinafter abbreviated as wire rod) 16 is uniformly cooled in a water cooling zone 12 shown in FIG. The temperature of the entire circumferential surface of the wire rod 1 is measured, and based on this temperature measurement result, as described later,
This device is designed to detect surface defects or internal defects. In FIG. 0, the water cooling zone 12 is provided with a water cooling nozzle 18 having the structure shown in FIG. The signal system after the radiation thermometer 14 is as shown in FIG. 6. As shown in FIG. 0, the radiation thermometer 14 is equipped with a temperature detector 24 and a signal converter 26. The thermometer 14 and the recorder 28 measure the rolling speed of the wire rod 16,
That is, it is capable of high-speed response and has a response frequency that corresponds to the conveyance speed, and for example, one that has a loop response from temperature detection to recording with a response speed of 1 to 2 (INS) or less can be used. The output of this signal converter 26 is input to a recorder 28 and an alarm output device 30. The recorder 28 is for recording the detected temperature on a recording chart. Further, the alarm output device 30 issues an alarm when a temperature higher than a set value is detected, indicating that a defect has occurred, and marks the defective portion. The effects of the embodiment will be explained below. First, in order to detect surface defects in the wire rod 16, the surface temperature of the wire rod 16 after being rapidly cooled in the water cooling zone 12 is recorded on the recorder 28, and the results of flaw detection of the same wire rod with a hot eddy current flaw detector are recorded in the seventh test. In addition, since the time axis of the thermometer and the time axis of the eddy current flaw detector shown in the figure are displayed differently,
In the figure, detected values at corresponding locations on the wire 16 are connected by broken lines. From the figure, it can be seen that the detection results of the eddy current flaw detector and the area where the temperature has decreased are in good agreement, and therefore, 1. It is understood that surface defects can be detected with high accuracy by implementing the present invention and detecting the temperature. Specifically, the surface temperature of the wire 16 is detected while tracking, and if the temperature decreases by more than a certain threshold value with respect to the average value of the surface temperature, it is determined that a defect exists, and the tracking length and temperature decrease are determined. The position of the defective part is identified by matching the positions. In addition, the types of defects corresponding to each part are described in the figure. Moreover, the type of defect can also be known using the temperature record. That is, as shown in FIG. 8, if there is a surface defect on the wire 16, and the surface defect is a local flaw indicated by reference numeral 32 or a continuous flaw indicated by reference numeral 34, as shown in FIG. Temperature recording results will be obtained. In the case of the local flaw 32,
The temperature decreases in a short range as shown by the reference numeral 36 in FIG. 9, whereas in the case of continuous flaws, the temperature decreases in a long range as shown by the reference numeral 38 in the figure. Therefore,
From the width of this temperature drop, it can be determined whether the flaw is a local flaw or a continuous flaw. On the other hand, when flaw detection is performed using an eddy current flaw detector, as shown in Figure 10, flaw signals are output for local flaws and defects can be detected, but continuous flaws cannot be detected. Therefore, when trying to detect surface flaws using the method of the present invention, it is possible to detect even types of flaws (continuous a:) that cannot be detected with an eddy current flaw detector, and the range of defects that can be detected is wide. That is understood. Next, a case will be described in which internal defects in the wire rod 16 are detected using the apparatus of this embodiment. After being rapidly cooled in the water cooling zone 12, using the radiation thermometer 14,
The results of temperature detection from the tip to the tail end of the wire 16 are shown in FIG. 11. As shown by the symbol ThH in FIG.
It was confirmed that there were internal defects due to non-metallic inclusions (for example, powder) in the high-temperature area. Specifically, the surface temperature of the wire 16 is detected from its tip to its tail while tracking, and this detected temperature is compared with the average value of the temperature. If the difference is higher than a predetermined threshold, it is determined that there is a defect. The presence of an internal defect and the position of the internal defect in the wire 16 were detected by determining that the defect existed and identifying the position of the high temperature portion by associating the determination 1 result with the position on the wire 16. The inventors used the above-mentioned device to detect six cases of internal defects caused by non-metallic inclusions in the wire, and prevented them from flowing downstream of the line, thereby preventing processing problems in the downstream. In the above embodiments, rolled materials such as wire rods, steel bars, and shaped steel were exemplified as test materials, but the test materials to which the present invention can be used are not limited to these, and other test materials can also be used. For example, it can be used to detect defects in hot forged materials.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例装置の構成を示す、−部ブロッ
ク図を含む配置図、第2図は本発明の詳細な説明するた
めの、急冷された鋼材の正常部の表面温度と、表面欠陥
部の表面温度の変化例を示す線図、第3図は同じく、線
材の正常部と欠陥部を示す断面図、第4図は内部欠陥の
ある被検物について急冷した場合の温度変化の例を示す
線2図、第5図は前記実施例装置の水冷帯に設けられる
水冷ノズルの詳細な構成を示す断面図、第6図は前記実
施例装置の温度検出系の電気的な構成を示すブロック線
図、第7図は前記実施例装置の温度検出結果と熱間渦流
探傷器の探傷結果を比較して示す線図、第8図は線材の
表面疵の種類を示す要部拡大図、第9図は前記実施例装
置を用いて線材の温度記録結果から該線材の表面欠陥を
検出する例を示す線区、第10図は前記線材を熱間渦流
探傷器を用いて前記線材を探傷した例を示す線図、第1
1図は前記実施例装置で温度検出された結果から内部欠
陥を検出する例を示す線図である。 10・・・仕上圧延機、 11・・・圧延材、 12・・・水冷帯、 14・・・放射温度計、 16・・・線材、 18・・・水冷ノズル、 20・・・冷却水給水口、 22・・・エアー圧入口、 24・・・温度検出器、 26・・・信号変換器、 28・・・記録計、 30・・・警報出力装置。
FIG. 1 is a layout diagram including a block diagram showing the configuration of an embodiment of the apparatus of the present invention, and FIG. 2 is a diagram showing the surface temperature of a normal part of a rapidly cooled steel material, for explaining the present invention in detail. A diagram showing an example of a change in surface temperature of a surface defect. Figure 3 is a cross-sectional view showing a normal part and a defective part of the wire. Figure 4 shows a temperature change when a specimen with an internal defect is rapidly cooled. 2 and 5 are cross-sectional views showing the detailed structure of the water cooling nozzle provided in the water cooling zone of the apparatus of the embodiment, and FIG. 6 is the electrical structure of the temperature detection system of the apparatus of the embodiment. FIG. 7 is a diagram comparing the temperature detection results of the above-mentioned example device with the flaw detection results of the hot eddy current flaw detector. FIG. 8 is an enlarged view of the main part showing the types of surface flaws on the wire rod 9 shows a line section showing an example of detecting surface defects of a wire from the temperature record results of the wire using the apparatus of the embodiment, and FIG. Diagram showing an example of flaw detection, 1st
FIG. 1 is a diagram showing an example of detecting internal defects from the results of temperature detection by the apparatus of the embodiment. 10... Finishing rolling mill, 11... Rolled material, 12... Water cooling zone, 14... Radiation thermometer, 16... Wire rod, 18... Water cooling nozzle, 20... Cooling water supply Port, 22... Air pressure inlet, 24... Temperature detector, 26... Signal converter, 28... Recorder, 30... Alarm output device.

Claims (3)

【特許請求の範囲】[Claims] (1)被検材を急冷し、 急冷された被検材が復熱してその表面温度が均一化する
前に、該被検材の表面温度を検出し、検出された表面温
度に基づき、被検材の欠陥を検出することを特徴とする
被検材の欠陥検出方法。
(1) The test material is rapidly cooled, and the surface temperature of the test material is detected before the rapidly cooled test material recuperates and its surface temperature becomes uniform. Based on the detected surface temperature, the test material is A method for detecting defects in a material to be inspected, characterized by detecting defects in the material to be inspected.
(2)請求項1において、前記検出する欠陥が表面欠陥
であると共に、検出される表面温度が他の部分に比較し
て低い部分の存在から、該表面欠陥を検出するようにし
たことを特徴とする被検材の欠陥検出方法。
(2) In claim 1, the defect to be detected is a surface defect, and the surface defect is detected based on the presence of a portion where the detected surface temperature is lower than other portions. A method for detecting defects in materials to be inspected.
(3)請求項1において、前記検出する欠陥が内部欠陥
であると共に、検出された表面温度が他の部分に比較し
て高い部分の存在から、該内部欠陥を検出するようにし
たことを特徴とする被検材の欠陥検出方法。
(3) In claim 1, the defect to be detected is an internal defect, and the internal defect is detected based on the presence of a portion where the detected surface temperature is higher than other portions. A method for detecting defects in materials to be inspected.
JP63120299A 1988-05-17 1988-05-17 Steel material defect detection method Expired - Fee Related JP2501869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63120299A JP2501869B2 (en) 1988-05-17 1988-05-17 Steel material defect detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63120299A JP2501869B2 (en) 1988-05-17 1988-05-17 Steel material defect detection method

Publications (2)

Publication Number Publication Date
JPH01291149A true JPH01291149A (en) 1989-11-22
JP2501869B2 JP2501869B2 (en) 1996-05-29

Family

ID=14782798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63120299A Expired - Fee Related JP2501869B2 (en) 1988-05-17 1988-05-17 Steel material defect detection method

Country Status (1)

Country Link
JP (1) JP2501869B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014219222A (en) * 2013-05-01 2014-11-20 住友電気工業株式会社 Defect inspection method for cast material
JP2016138770A (en) * 2015-01-26 2016-08-04 Jfeスチール株式会社 Adhesive force inspection method and inspection system for inner surface polyvinyl chloride-lining steel pipes

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5562345A (en) * 1978-11-02 1980-05-10 Kawasaki Steel Corp Surface flaw detection method for steel material
JPS6454242A (en) * 1987-08-25 1989-03-01 Takenaka Komuten Co Detection of peeling for sheath
JPH01180441A (en) * 1988-01-13 1989-07-18 Nkk Corp Method for detecting internal surface state of body to be inspected

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5562345A (en) * 1978-11-02 1980-05-10 Kawasaki Steel Corp Surface flaw detection method for steel material
JPS6454242A (en) * 1987-08-25 1989-03-01 Takenaka Komuten Co Detection of peeling for sheath
JPH01180441A (en) * 1988-01-13 1989-07-18 Nkk Corp Method for detecting internal surface state of body to be inspected

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014219222A (en) * 2013-05-01 2014-11-20 住友電気工業株式会社 Defect inspection method for cast material
JP2016138770A (en) * 2015-01-26 2016-08-04 Jfeスチール株式会社 Adhesive force inspection method and inspection system for inner surface polyvinyl chloride-lining steel pipes

Also Published As

Publication number Publication date
JP2501869B2 (en) 1996-05-29

Similar Documents

Publication Publication Date Title
US3462602A (en) Infra-red flaw detector
KR101757019B1 (en) Thermographic test method and testing device for carrying out the test method
JPS5816143B2 (en) The Golden Pig
US3483721A (en) Material tester
WO2007111021A1 (en) Quality guarantee system for high frequency heat treatment equipment
JP2006220527A (en) Manufacturing method of metal strip, and the metal strip with marking
JP2001321829A (en) Method and device for manufacturing steel sheet
JPH01291149A (en) Detecting method for defect of material to be inspected
WO2011118681A1 (en) Steel pipe production equipment
JPS611408A (en) Rolling processing method of billet having internal defect
CN1259063A (en) Method and device for detecting the actual state of a hot tube
JPS63193052A (en) Flaw detection method
KR101105107B1 (en) Eddy Current Surface-defect On-Line Detection Device for Hot Wire Rod
JPS5922894B2 (en) Surface quality identification method for moving objects
JP7294367B2 (en) Eddy current flaw detector, steel material manufacturing equipment, steel pipe manufacturing equipment, eddy current flaw detection method, steel material manufacturing method, and steel pipe manufacturing method
JPS61135409A (en) Method for presuming generating cause of wall-thickness deviation of seamless steel pipe
JPH0775766B2 (en) Method for detecting vertical crack in slab in continuous casting
JPH05240815A (en) Method and device for induction heating flaw detecting
SU744301A1 (en) Method of determining surface and subsurface defects of articles
TWI546136B (en) Inspection method for hot rolled metal product
JP3286549B2 (en) Surface flaw detection method for long steel materials
KR20050007036A (en) Surface defect inspection apparatus ofrod wire
JP5310149B2 (en) Thick steel plate quality assurance equipment
Manjohme et al. Improvements of billet conditioning processes
KR20200049327A (en) defective position indicator and indicating method of wire rod

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees