JPH0129077B2 - - Google Patents

Info

Publication number
JPH0129077B2
JPH0129077B2 JP57207503A JP20750382A JPH0129077B2 JP H0129077 B2 JPH0129077 B2 JP H0129077B2 JP 57207503 A JP57207503 A JP 57207503A JP 20750382 A JP20750382 A JP 20750382A JP H0129077 B2 JPH0129077 B2 JP H0129077B2
Authority
JP
Japan
Prior art keywords
ceramic substrate
substrate
layer
glazed ceramic
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57207503A
Other languages
Japanese (ja)
Other versions
JPS5998586A (en
Inventor
Haruo Tanmachi
Minoru Terajima
Toshito Hara
Kozo Inoe
Yoshio Mori
Tsutomu Ikeda
Kinji Sano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Fujitsu Ltd
Original Assignee
Central Glass Co Ltd
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd, Fujitsu Ltd filed Critical Central Glass Co Ltd
Priority to JP20750382A priority Critical patent/JPS5998586A/en
Publication of JPS5998586A publication Critical patent/JPS5998586A/en
Publication of JPH0129077B2 publication Critical patent/JPH0129077B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass

Landscapes

  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】 (1) 発明の技術分野 本発明はサーマルヘツドあるいはハイブリツド
IC等の基板として用いられる回路パターン形成
用グレーズドセラミツク基板の改良に関するもの
である。
[Detailed description of the invention] (1) Technical field of the invention The present invention relates to a thermal head or a hybrid head.
This invention relates to the improvement of glazed ceramic substrates for forming circuit patterns, which are used as substrates for ICs and the like.

(2) 技術の背景 従来よりサーマルヘツドあるいはハイブリツド
ICの基板にはアルミナ基板又はアルミナ基板に
ガラス質をコーテイングしたグレーズドアルミナ
基板等が用いられている。これら電子回路用絶縁
基板には、高い絶縁性は勿論、高耐熱性及び高精
度のパターン形成性が要求される。
(2) Technical background Conventionally, thermal heads or hybrid
An alumina substrate or a glazed alumina substrate, which is an alumina substrate coated with glass, is used as an IC substrate. These insulating substrates for electronic circuits are required not only to have high insulation properties but also to have high heat resistance and highly accurate pattern formation.

(3) 従来技術と問題点 第1図はサーマルヘツドの構造を示す図であ
る。同図において、1はアルミナ基板1aにガラ
ス質1bをコーテイングしたグレーズドアルミナ
基板、2は蒸着やスパツタリング等で被着形成さ
れた抵抗体層、3は蒸着やスパツタリング或はメ
ツキ等の手段で被着形成された導体層、4は端子
部、5は導体層3とクロスオーバーする上部導
体、6は導体層3と上部導体5とを絶縁する絶縁
層、7はスルーホール導体、8は上部導体を保護
する保護層、9は抵抗体回路パターン2aの発熱
によつて感熱紙に発色印字を与えるための発熱抵
抗体部、10は耐熱耐摩耗用保護膜をそれぞれ示
している。このサーマルヘツドは周知の如く導体
層3,3を介し抵抗体回路パターン2aに通電す
ることにより印字動作が行なわれる。
(3) Prior art and problems Figure 1 is a diagram showing the structure of a thermal head. In the figure, 1 is a glazed alumina substrate in which an alumina substrate 1a is coated with glass 1b, 2 is a resistor layer formed by vapor deposition, sputtering, etc., and 3 is a resistor layer formed by vapor deposition, sputtering, plating, etc. The formed conductor layers include 4 a terminal portion, 5 an upper conductor that crosses over with the conductor layer 3, 6 an insulating layer that insulates the conductor layer 3 and the upper conductor 5, 7 a through-hole conductor, and 8 an upper conductor. A protective layer 9 represents a heat-generating resistor portion for providing colored printing on the thermal paper by heat generated by the resistor circuit pattern 2a, and a heat-resistant and abrasion-resistant protective film 10 represents a protective layer. As is well known, this thermal head performs a printing operation by supplying current to the resistor circuit pattern 2a through the conductor layers 3, 3.

第2図は上記サーマルヘツドの発熱抵抗体部形
成のホトリソグラフイ工程を示す図であり、aは
第1工程、bは第2工程、b′はb図の平面図、c
は第3工程、c′はc図の平面図、dは第4工程、
d′はd図の平面図をそれぞれ示す。同図において
1はグレーズドアルミナ基板、2は抵抗体層、3
は導体層、11,11′はホトレジスト、12,
12′はマスクをそれぞれ示す。またc,c′,d,
d′の各図はb図とb′図を側方から見た断面図と平
面図である。
FIG. 2 is a diagram showing the photolithography process for forming the heating resistor portion of the thermal head, in which a is the first step, b is the second step, b' is a plan view of FIG.
is the third step, c' is the plan view of figure c, d is the fourth step,
d' shows the plan view of figure d, respectively. In the figure, 1 is a glazed alumina substrate, 2 is a resistor layer, and 3 is a glazed alumina substrate.
is a conductor layer, 11, 11' is a photoresist, 12,
12' each indicates a mask. Also c, c′, d,
Each figure d' is a sectional view and a plan view of figure b and figure b' viewed from the side.

図により上記工程を説明すると、先ずa図の如
くグレーズドアルミナ基板1の上面に形成された
抵抗体層2及び導体層3の上にホトレジスト11
を被着し、このホトレジスト11に対し導体パタ
ーンを画いたマスク12を用い、紫外線である感
光用光線を照射して第1回目の露光を行う。次に
b,b′図の如く現像して不要なホトレジストを除
去し、しかる後導体層3と抵抗体層2のエツチン
グを行なつて下層に帯状抵抗体層が位置した導体
回路パターン3aを形成する。次に残存ホトレジ
スト11を除去した後、c,c′図の如く再びホト
レジスト11′を被着し、このホトレジスト1
1′に対し抵抗体パターンを画いたマスク12′を
用い上記同様の感光用光線を照射して第2回目の
露光を行なう。次にd,d′図の如く現像・導体回
路パターン3aの部分的エツチング及びレジスト
除去を行ない抵抗体回路パターン2aを形成する
のである。
To explain the above steps using figures, first, as shown in figure a, a photoresist layer 11 is applied on the resistor layer 2 and conductor layer 3 formed on the upper surface of the glazed alumina substrate 1.
A mask 12 having a conductor pattern drawn thereon is used to irradiate the photoresist 11 with a sensitizing light beam, thereby performing a first exposure. Next, as shown in Figures b and b', unnecessary photoresist is removed by development, and then the conductor layer 3 and resistor layer 2 are etched to form a conductor circuit pattern 3a with a band-shaped resistor layer located below. do. Next, after removing the remaining photoresist 11, photoresist 11' is again deposited as shown in Figures c and c'.
A second exposure is performed using a mask 12' having a resistor pattern drawn thereon and irradiating it with the same sensitizing light beam as described above. Next, as shown in FIGS. d and d', the resistor circuit pattern 2a is formed by partially etching the conductor circuit pattern 3a and removing the resist.

このような工程において、a図に示す第1回目
の露光時は感光用光線の入射光が導体層3の表面
で反射され、該表面は蒸着やメツキ等によつて平
滑面に形成されているためマスクパターンに忠実
なレジストパターンの現像ができる。これに対し
c図に示す第2回目の露光の際の入射光は、既に
導体層3及び抵抗層2が除去された部分ではグレ
ーズ部分1bを通過し、アルミナ基板1aの表面
で反射する。ところで、アルミナ基板の如き焼結
体においてはその表面凹凸は導体層3の表面に比
べて大変大きく、このためアルミナ基板1a表面
での反射は乱反射になつてしまう。そして、この
乱反射光はホトレジスト11′を裏面より必要部
以外まで感光させる。このためホトレジストにポ
ジテイブタイプのものを用いた場合にはレジスト
の密着性が低下し、レジストの剥離を引き起こし
ていた。またd′図に示すようにパターンのコーナ
ー部分eにオーバーエツチングを生じ抵抗値の増
加及びばらつきの原因となつていた。なおサーマ
ルヘツドでは650℃以上の耐熱性、さらに解像性
6〜16本/mm(パターン幅10〜100μm)パター
ンが要求される。
In such a process, during the first exposure shown in Figure a, the incident light of the photosensitive light beam is reflected on the surface of the conductor layer 3, and the surface is formed into a smooth surface by vapor deposition, plating, etc. Therefore, it is possible to develop a resist pattern that is faithful to the mask pattern. On the other hand, the incident light during the second exposure shown in FIG. c passes through the glaze portion 1b in the portion where the conductive layer 3 and the resistive layer 2 have already been removed, and is reflected on the surface of the alumina substrate 1a. Incidentally, in a sintered body such as an alumina substrate, the surface unevenness is much larger than that of the surface of the conductor layer 3, and therefore the reflection on the surface of the alumina substrate 1a becomes diffused reflection. Then, this diffusely reflected light exposes the photoresist 11' from the back surface to all but the necessary areas. For this reason, when a positive type photoresist is used, the adhesion of the resist decreases, causing peeling of the resist. Furthermore, as shown in Figure d', over-etching occurred at the corner portion e of the pattern, causing an increase and variation in resistance value. The thermal head is required to have a heat resistance of 650 DEG C. or higher and a resolution of 6 to 16 lines/mm (pattern width 10 to 100 .mu.m).

(4) 発明の目的 本発明は上記従来の問題点を解決するために、
650℃以上の耐熱性を有するとともにホトレジス
トの剥離を減少し、高精度のパターン形成が可能
な回路パターン形成用グレーズドセラミツク基板
を提供することを目的とするものである。
(4) Purpose of the invention In order to solve the above-mentioned conventional problems, the present invention
The object of the present invention is to provide a glazed ceramic substrate for circuit pattern formation, which has heat resistance of 650° C. or higher, reduces peeling of photoresist, and enables highly accurate pattern formation.

(5) 発明の構成 そしてこの目的は本発明によれば、アルミナ等
からなるセラミツク基板上にガラス質層がコーテ
イングされ、且つ該ガラス質層上には回路パター
ンがホトリソ工程を経て形成されるグレーズドセ
ラミツク基板において、ガラス質層は「SiO2
50〜60wt%、Al2O3:10〜30wt%、ZrO2:2〜
6wt%、CaOとMgO:15〜30wt%を主成分とす
ることにより転移温度を高め、表面平滑度を向上
させ、かつセラミツクとの熱的物性(熱膨張率)
を近似させることができるもので、以上の組成成
分の他にTiO2,BaO,ZnO,PbO,P2O5,B2O3
等をガラスの表面特性向上、ガラス化領域の拡大
などの目的で、アルカリ成分としてNa2Oおよび
またはK2Oをガラスの粘性低下による表面平滑化
の目的で、必要に応じて少量添加してもよい。」
として既に提案(特願昭55−188236号)したガラ
ス組成に、その特性(特に転移温度)をほとんど
損うことなく、金属酸化物を少くとも1種以上
0.5wt%〜10wt%含有させることにより達成され
る。
(5) Structure of the Invention According to the present invention, the object is to provide a glazed glass substrate in which a glassy layer is coated on a ceramic substrate made of alumina or the like, and a circuit pattern is formed on the glassy layer through a photolithography process. In ceramic substrates, the glassy layer is “SiO 2 :
50~60wt%, Al2O3 : 10~ 30wt %, ZrO2 : 2~
6wt%, CaO and MgO: 15 to 30wt% as main components to raise the transition temperature, improve surface smoothness, and improve thermal properties (coefficient of thermal expansion) with ceramics.
In addition to the above composition components, TiO 2 , BaO, ZnO, PbO, P 2 O 5 , B 2 O 3
Na 2 O and/or K 2 O are added as alkaline components in small amounts as necessary to smooth the surface by reducing the viscosity of the glass. Good too. ”
The addition of at least one metal oxide to the glass composition already proposed (Patent Application No. 55-188236) as
This is achieved by containing 0.5wt% to 10wt%.

(6) 発明の実施例 以下本発明実施例を図面によつて詳述する。(6) Examples of the invention Embodiments of the present invention will be described in detail below with reference to the drawings.

第3図はFe2O3(酸化第2鉄)をガラス質に対
し所定重量部含有せしめた厚さ0.1mmの650℃以上
の高転移ガラスの紫外線透過率を示した特性図で
ある。同図において、横軸には波長、縦軸には透
過率をとり、曲線AによりFe2O3:0wt%、曲線
BによりFe2O3:0.5wt%、曲線CによりFe2O3
1.0wt%、曲線DによりFe2O3:2.0wt%、曲線E
によりFe2O3:4.0wt%、曲線FによりFe2O3
6.0wt%の場合をそれぞれ示している。
FIG. 3 is a characteristic diagram showing the ultraviolet transmittance of a high transition glass of 650° C. or higher and having a thickness of 0.1 mm and containing a predetermined weight part of Fe 2 O 3 (ferric oxide) based on the glass. In the figure, the horizontal axis shows wavelength and the vertical axis shows transmittance. Curve A shows Fe 2 O 3 : 0wt%, curve B shows Fe 2 O 3 : 0.5wt%, and curve C shows Fe 2 O 3 :
1.0wt%, curve D Fe 2 O 3 : 2.0wt%, curve E
According to the curve F, Fe 2 O 3 : 4.0wt%, Fe 2 O 3 :
The case of 6.0wt% is shown in each case.

図によりホトレジストの感度を有する波長約
400nm近傍(近紫外光)における透過率を70%
以下とするにはFe2O3は約2wt%(D曲線)以上
含有すれば良いことが理解できる。
The figure shows the wavelength at which the photoresist is sensitive.
70% transmittance near 400nm (near ultraviolet light)
It can be understood that to achieve the following, Fe 2 O 3 should be contained at about 2 wt% or more (D curve).

この際のガラス透過率70%の値はこれを例えば
サーマルヘツドの基板に用いたときに、そのホト
リソグラフイ工程の第2図cで示した第2回目の
露光に際し、ガラス質層部分に入射した光が反射
してホトレジストに到達するには、コーテイング
されたガラス質層厚さの2倍を通過するので、そ
の約50%は吸収されることになる。
The value of the glass transmittance of 70% in this case is determined by the fact that when this is used for a substrate of a thermal head, for example, during the second exposure shown in Figure 2c of the photolithography process, the light is incident on the vitreous layer. In order for the reflected light to reach the photoresist, it passes through twice the thickness of the coated glass layer, so about 50% of it is absorbed.

またガラス透過率は70%以下にすればそれだけ
反射光は弱められ、Fe2O3が4wt%含有のE曲線
ガラスにおいては透過率が約60%でホトレジスト
への到達反射光は入射光の約1/3になる。更に
Fe2O3が6wt%含有のF曲線ガラスにおいては透
過率が約40%で到達反射光は入射光の約1/6にな
り極めて有効である。これに対しFe2O3が1wt%
含有のC曲線ガラスでは透過率が約80%になり到
達反射光は入射光の約35%が吸収された光量でこ
れでも効果はあるがFe2O3が2wt%以上の方がよ
り実用的である。
Also, if the glass transmittance is set to 70% or less, the reflected light will be weakened accordingly.For E-curve glass containing 4wt% Fe 2 O 3 , the transmittance is about 60%, and the reflected light reaching the photoresist is about the same as the incident light. It becomes 1/3. Furthermore
In F-curve glass containing 6 wt% of Fe 2 O 3 , the transmittance is about 40% and the reflected light that reaches about 1/6 of the incident light is extremely effective. In contrast, Fe 2 O 3 is 1wt%
The transmittance of C-curve glass containing Fe 2 O 3 is about 80%, and the amount of reflected light that reaches about 35% of the incident light is absorbed, which is still effective, but it is more practical to have Fe 2 O 3 of 2wt% or more. It is.

第3図の紫外線透過率特性はガラス厚さが0.1
mmの場合であり、厚さが変ればこの値も変る。単
位長さ当りの透過率をγとすれば厚さtの板の透
過率にγtとなる。そして、通常サーマルヘツド基
板に用いられるガラス質層の厚さtは0.05〜0.2
mm程度であるので、厚さtが0.05mmの場合透過率
70%を実現するにはFe2O3の添加量はγtの関係お
よび第3図の実験結果より約6wt%以上、また厚
さtが0.2mmの場合は約0.5wt%以上ガラス質に含
有させる。従つて、通常のサーマルヘツド用基板
としてはガラス質に約0.5wt%〜6wt%以上の
Fe2O3を添加してガラス質層を形成すれば紫外線
透過率が約70%の回路パターンを形成する上で良
好なグレーズドアルミナ基板が得られる。
The ultraviolet transmittance characteristics in Figure 3 show that the glass thickness is 0.1.
This is for mm, and if the thickness changes, this value will also change. If the transmittance per unit length is γ, then the transmittance of a plate of thickness t is γ t . The thickness t of the glassy layer normally used for thermal head substrates is 0.05 to 0.2.
mm, so if the thickness t is 0.05 mm, the transmittance
To achieve 70%, the amount of Fe 2 O 3 added should be approximately 6 wt% or more based on the relationship with γ t and the experimental results shown in Figure 3, and if the thickness t is 0.2 mm, the amount of Fe 2 O 3 added must be approximately 0.5 wt% or more to make it glassy. Contain. Therefore, as a substrate for a normal thermal head, approximately 0.5wt% to 6wt% or more should be added to the glass material.
If Fe 2 O 3 is added to form a glassy layer, a glazed alumina substrate can be obtained that is suitable for forming a circuit pattern with an ultraviolet transmittance of about 70%.

また本発明の回路パターン形成グレーズドセラ
ミツク基板は、上記ガラス質層と上記金属酸化物
を含まないガラス質層とを積層し2層以上の積層
構造としても良く、その効果は前記と同様であ
る。
Further, the circuit pattern-formed glazed ceramic substrate of the present invention may have a laminated structure of two or more layers by laminating the above-mentioned glassy layer and the above-mentioned metal oxide-free glassy layer, and the effect is the same as described above.

第4図はサーマルヘツドにおいて感熱紙の印字
濃度を一定にしたときの抵抗体通電時間と抵抗体
の発熱温度との関係を示した図である。図からわ
かるように抵抗体の発熱温度は1msの通電時間で
約600℃、0.5msで700℃であり、通電時間が短い
程高速記録ができるが発熱温度は高くなる。従つ
て基板上のガラス質層の耐熱性は高速駆動にとつ
て重要なフアクターであり、少なくともガラスの
転移点が抵抗体の発熱温度より高くなければなら
ない。
FIG. 4 is a diagram showing the relationship between the resistor energization time and the heat generation temperature of the resistor when the printing density of the thermal paper is kept constant in the thermal head. As can be seen from the figure, the heat generation temperature of the resistor is approximately 600℃ when the current is applied for 1 ms, and 700℃ when the current is applied for 0.5ms.The shorter the current application time, the faster recording can be made, but the heat generation temperature increases. Therefore, the heat resistance of the glassy layer on the substrate is an important factor for high-speed driving, and at least the transition point of the glass must be higher than the heat generation temperature of the resistor.

第3図の実験に使用した曲線Aのガラスは
SiO2:56wt%、Al2O3:14wt%、ZrO2:4wt%、
CaO:22wt%、MgO:2wt%、B2O3:2wt%の
組成をもち、これは既に提案した「特願昭55−
188236」に詳述されている通り転移点が650℃以
上ありサーマルヘツド用基板に有効である。
The glass of curve A used in the experiment in Figure 3 is
SiO2 : 56wt%, Al2O3 : 14wt%, ZrO2 : 4wt%,
It has a composition of CaO: 22wt%, MgO: 2wt%, and B 2 O 3 : 2wt%, which is similar to the previously proposed "Patent Application
As detailed in 188236, it has a transition point of 650°C or higher, making it effective as a substrate for thermal heads.

第5図はガラスの組成による熱膨張特性を示し
た図である。同図において、横軸には温度、縦軸
には熱膨張率をとり、曲線Aに前記組成のガラス
の特性を、曲線Bに前記組成のガラス質に1重量
部のFe2O3を添加したものの特性を、曲線Cに
Fe2O3の2wt%添加、曲線DにFe2O3の4wt%添
加、曲線EにFe2O3の6wt%添加の特性をそれぞ
れ示した。図より何れのガラスも転移点Tgは650
℃以上であることがわかる。なお、図示していな
いが10wt%までは転移点Tgを650℃に保つこと
ができるが10wt%を越えると650℃を下まわるよ
うになる。
FIG. 5 is a diagram showing thermal expansion characteristics depending on the composition of glass. In the figure, the horizontal axis shows the temperature, the vertical axis shows the coefficient of thermal expansion, curve A shows the characteristics of the glass with the above composition, and curve B shows the properties of the glass with the above composition and the addition of 1 part by weight of Fe 2 O 3 to the glass with the above composition. Curve C shows the characteristics of the
The characteristics of 2 wt% addition of Fe 2 O 3 , curve D of 4 wt% addition of Fe 2 O 3 , and curve E of 6 wt% addition of Fe 2 O 3 are shown, respectively. From the figure, the transition point Tg of both glasses is 650.
It can be seen that the temperature is above ℃. Although not shown, the transition point Tg can be maintained at 650°C up to 10wt%, but when it exceeds 10wt%, it becomes lower than 650°C.

更に本発明者らは上記組成のガラス質にFe2O3
が10wt%のガラス(t=0.1mm)についても実験
したが、これはTgが約650℃でありサーマルヘツ
ド用基板として使用可能であると共に紫外線透過
率が約20%であつた。
Furthermore, the present inventors added Fe 2 O 3 to the glassy material having the above composition.
We also experimented with glass (t = 0.1 mm) with 10 wt %, which had a Tg of about 650°C and could be used as a substrate for a thermal head, and also had an ultraviolet transmittance of about 20%.

以上詳細に説明した本実施例のグレーズドセラ
ミツク基板の場合には、そのガラス質層としては
上記組成のガラス質にFe2O3を0.5wt%〜10wt%
添加することにより、紫外線透過率が70%以下で
ホトレジストへの到達反射光が約50%吸収され、
しかもTgが約650℃以上である高精度パターンが
形成可能な高耐熱性の高速駆動サーマルヘツドが
得られる。
In the case of the glazed ceramic substrate of this example described in detail above, the glassy layer contains 0.5wt% to 10wt% of Fe 2 O 3 in the glass having the above composition.
By adding this, approximately 50% of the reflected light reaching the photoresist is absorbed with ultraviolet transmittance of 70% or less.
Moreover, a highly heat-resistant, high-speed driving thermal head capable of forming highly accurate patterns with a Tg of about 650° C. or higher can be obtained.

なお本発明に係るグレーズドセラミツク基板は
薄膜ハイブリツドICの基板としても用いること
ができる。なお、本願のガラス質の熱膨張率は約
60×10-7/℃であり、これらはアルミナは勿論、
その他のベリリア、ステアタイト、フオルステラ
イト、マグネシアなどの熱膨張率との差も小さ
く、熱膨張率の差に基づく“そり”を可久的に小
さくすることができるもので、これらのセラミツ
クも本願発明に利用できることは言うまでもな
い。
Note that the glazed ceramic substrate according to the present invention can also be used as a substrate for a thin film hybrid IC. The coefficient of thermal expansion of the vitreous material in this application is approximately
60×10 -7 /℃, and these are not only alumina but also
The difference in thermal expansion coefficient from other ceramics such as beryllia, steatite, forsterite, and magnesia is small, and it is possible to permanently reduce "warpage" due to the difference in thermal expansion coefficient, and these ceramics are also suitable for this application. Needless to say, it can be used for inventions.

(7) 発明の効果 以上、詳細に説明したように、本発明のグレー
ズドセラミツクの基板はサーマルヘツド等の高速
駆動に必要な充分な耐熱性を有するとともに本発
明の回路パターン形成用グレーズドセラミツク基
板は基板にコーテイングしたガラス質層を露光光
が通過して基板面に入射し、その表面で乱反射す
ることを除去するためFe2O3をガラス質に含有さ
せることにより近紫外線を該ガラス質内で吸収さ
せることにより、ホトリソグラフイ工程において
のホトレジストの剥離やオーバー現像とこれによ
つて生じるオーバーエツチングが解消され10本/
mm以上の高精度パターニングが可能であるといつ
た効果大なるものである。
(7) Effects of the Invention As described above in detail, the glazed ceramic substrate of the present invention has sufficient heat resistance necessary for high-speed driving of thermal heads, etc., and the glazed ceramic substrate for forming circuit patterns of the present invention has The exposure light passes through the glassy layer coated on the substrate and enters the substrate surface, and in order to eliminate diffuse reflection on the surface, near ultraviolet rays are absorbed within the glassy layer by incorporating Fe 2 O 3 into the glassy layer. By absorbing the photoresist, peeling of the photoresist and over-development during the photolithography process and over-etching caused by this are eliminated.
This is a great advantage as it enables high-precision patterning of millimeters or more.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のサーマルヘツドの構造を説明す
るための図、第2図はサーマルヘツドのホトリソ
グラフイ工程を説明するための図、第3図はガラ
ス質にFe2O3を含有せしめたときの透過特性を示
した図、第4図はサーマルヘツドの印字濃度を一
定にしたときの抵抗体通電時間と抵抗体発熱温度
との関係を示した図、第5図はガラスの組成によ
る熱膨張特性を示した図である。 図面において、1aは基板、1bはガラス質
層、2は抵抗体層、2aは抵抗体、3は導体層、
3aは導体パターン、11,11′はホトレジス
ト、12,12′はマスクをそれぞれ示す。
Figure 1 is a diagram for explaining the structure of a conventional thermal head, Figure 2 is a diagram for explaining the photolithography process of a thermal head, and Figure 3 is a diagram for explaining the structure of a conventional thermal head. Figure 4 shows the relationship between resistor energization time and resistor heat generation temperature when the print density of the thermal head is kept constant. Figure 5 shows the relationship between heat generation temperature due to the composition of the glass. FIG. 3 is a diagram showing expansion characteristics. In the drawings, 1a is a substrate, 1b is a glassy layer, 2 is a resistor layer, 2a is a resistor, 3 is a conductor layer,
3a is a conductor pattern, 11 and 11' are photoresists, and 12 and 12' are masks, respectively.

Claims (1)

【特許請求の範囲】 1 アルミナ等からなるセラミツク基板上にガラ
ス質層がコーテイングされ、且つ該ガラス質層上
には回路パターンがホトリソ工程等を経て形成さ
れるグレーズドセラミツク基板の前記ガラス質層
がSiO2:50〜60wt%、Al2O3:10〜30wt%、 ZrO2:2〜6wt%、CaOとMgO:15〜30wt%
を主成分とするグレーズドセラミツク基板におい
て、 前記ガラス質層は、前記主成分ガラス質100wt
%にFeの金属酸化物を0.5wt%〜10wt%添加し、
且つ転移点を650℃以上としたことを特徴とする
グレーズドセラミツク基板。 2 前記ガラス質層、即ちFeの金属酸化物を
0.5wt%〜10wt%含んだガラス質層と、これを含
まないガラス質層とを積層した、2層以上の積層
構造としたことを特徴とする特許請求の範囲第1
項記載のグレーズドセラミツク基板。 3 前記グレーズドセラミツク基板をサーマルヘ
ツドの基板として用いたことを特徴とする特許請
求の範囲第1項又は第2項記載のグレーズドセラ
ミツク基板。 4 前記グレーズドセラミツク基板をハイブリツ
ドICの基板として用いたことを特徴とする特許
請求の範囲第1項又は第2項記載のグレーズドセ
ラミツク基板。
[Scope of Claims] 1. A glazed ceramic substrate in which a glassy layer is coated on a ceramic substrate made of alumina or the like, and a circuit pattern is formed on the glassy layer through a photolithography process or the like. SiO2 : 50-60wt%, Al2O3 : 10-30wt%, ZrO2 : 2-6wt%, CaO and MgO: 15-30wt%
In the glazed ceramic substrate whose main component is 100 wt.
Add 0.5wt% to 10wt% of Fe metal oxide to
A glazed ceramic substrate characterized by having a transition point of 650°C or higher. 2 The glassy layer, that is, the Fe metal oxide
Claim 1 characterized in that it has a laminated structure of two or more layers, in which a glassy layer containing 0.5wt% to 10wt% and a glassy layer not containing this are laminated.
The glazed ceramic substrate described in Section 1. 3. The glazed ceramic substrate according to claim 1 or 2, wherein the glazed ceramic substrate is used as a substrate of a thermal head. 4. The glazed ceramic substrate according to claim 1 or 2, wherein the glazed ceramic substrate is used as a substrate for a hybrid IC.
JP20750382A 1982-11-29 1982-11-29 Glazed ceramic substrate Granted JPS5998586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20750382A JPS5998586A (en) 1982-11-29 1982-11-29 Glazed ceramic substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20750382A JPS5998586A (en) 1982-11-29 1982-11-29 Glazed ceramic substrate

Publications (2)

Publication Number Publication Date
JPS5998586A JPS5998586A (en) 1984-06-06
JPH0129077B2 true JPH0129077B2 (en) 1989-06-07

Family

ID=16540791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20750382A Granted JPS5998586A (en) 1982-11-29 1982-11-29 Glazed ceramic substrate

Country Status (1)

Country Link
JP (1) JPS5998586A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI422485B (en) * 2010-12-31 2014-01-11 Tong Hsing Electronic Ind Ltd A ceramic plate with reflective film and method of manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57111288A (en) * 1980-12-27 1982-07-10 Central Glass Co Ltd Ceramic substrate for thermal head
JPS57111287A (en) * 1980-12-27 1982-07-10 Central Glass Co Ltd Manufacture of glazed ceramic substrate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57111288A (en) * 1980-12-27 1982-07-10 Central Glass Co Ltd Ceramic substrate for thermal head
JPS57111287A (en) * 1980-12-27 1982-07-10 Central Glass Co Ltd Manufacture of glazed ceramic substrate

Also Published As

Publication number Publication date
JPS5998586A (en) 1984-06-06

Similar Documents

Publication Publication Date Title
US4396682A (en) Glazed ceramic substrate
US5624782A (en) Method of manufacturing thick-film resistor elements
JPH0129077B2 (en)
GB2107698A (en) Alkali-free glass for photoetching mask(
JPH04234676A (en) Manufacture of heat-sensitive recording element
JPH0321352B2 (en)
JPS6034802B2 (en) Thermal head for thermal recording device
JP2599458B2 (en) Hollow circuit board
EP0747911A1 (en) Method of manufacturing thick-film resistor
US4691210A (en) Thermal head for heat-sensitive recording
JPS5821833B2 (en) Craze substrate for thermal head
JP3419474B2 (en) Conductive composition and multilayer circuit board
JPS6034801B2 (en) Thermal head for thermal recording device
JP3469958B2 (en) Thermal head
JPH04288244A (en) Thermal head
JPS5872478A (en) Thermal head
JP3545947B2 (en) Manufacturing method of glazed ceramic substrate for thermal head
JP2731453B2 (en) Thermal head substrate and method of manufacturing the same
JPH07283012A (en) Production of thick film resistor element
JP2837963B2 (en) Thermal head
JPH02229053A (en) Thermal printer
JPH11217284A (en) Glazed ceramic substrate for thermal head
JPH06163525A (en) Thick film wiring glazed substrate and fabrication thereof
JPH04214368A (en) Thermal head and its manufacture
JPS6034803B2 (en) Thermal head for thermal recording device