JPH01290655A - Production of amino acid methyl ester mineral acid salt - Google Patents

Production of amino acid methyl ester mineral acid salt

Info

Publication number
JPH01290655A
JPH01290655A JP11937488A JP11937488A JPH01290655A JP H01290655 A JPH01290655 A JP H01290655A JP 11937488 A JP11937488 A JP 11937488A JP 11937488 A JP11937488 A JP 11937488A JP H01290655 A JPH01290655 A JP H01290655A
Authority
JP
Japan
Prior art keywords
methanol
amino acid
methyl ester
added
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11937488A
Other languages
Japanese (ja)
Other versions
JP2728883B2 (en
Inventor
Masanobu Ajioka
正伸 味岡
Takeshi Oura
剛 大浦
Chojiro Higuchi
長二郎 樋口
Toshio Kato
敏雄 加藤
Teruhiro Yamaguchi
彰宏 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP63119374A priority Critical patent/JP2728883B2/en
Publication of JPH01290655A publication Critical patent/JPH01290655A/en
Application granted granted Critical
Publication of JP2728883B2 publication Critical patent/JP2728883B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To obtain a mineral acid salt of an amino acid methyl ester in high yield by esterifying an amino acid with methanol in the presence of a mineral acid, removing methanol by concentration and subjecting the reaction system to azeotropic dehydration in the presence of an organic solvent. CONSTITUTION:An amino acid is esterified by leaving the acid together with methanol for several days at room temperature or heating at a temperature near the refluxing temperature of methanol in the presence of a mineral acid (e.g. hydrochloric acid). After removing excess methanol, the system is added with an organic solvent (e.g. toluene) capable of forming an azeotropic mixture with water and subjected to azeotropic dehydration at <=80 deg.C to obtain the objective compound. The objective mineral acid salt of amino acid methyl ester is useful as a synthetic intermediate for peptides, a synthetic raw material for aspartame which is a peptide-type sweetener or as a raw material for pharmaceuticals.

Description

【発明の詳細な説明】 C産業上の利用分野] 本発明は、アミノ酸メチルエステル鉱酸塩を効率よく、
かつ高収率で製造する方法に関するものである。
[Detailed Description of the Invention] C. Industrial Application Field] The present invention provides efficient processing of amino acid methyl ester mineral salts.
The present invention also relates to a method for producing the same with high yield.

本発明のアミノ酸メチルエステル鉱酸塩は、ペプチド合
成の中間体として重要であり、また、ジペプチド系の甘
味料アスパルテームの合成原料、あるいは医薬原料とし
て有用なものである。
The amino acid methyl ester mineral acid salt of the present invention is important as an intermediate for peptide synthesis, and is also useful as a raw material for the synthesis of the dipeptide sweetener aspartame or as a raw material for pharmaceuticals.

〔従来の技術およびその問題点〕[Conventional technology and its problems]

アミノ酸のエステル化法は古くから知られており、基本
的には1888年にCutttus等が開発した方法が
今日も用いられている。この方法は、アミノ酸を懸濁し
たアルコールに塩化水素を飽和させ、反応した後過剰の
アルコールを除き、さらに反応に用いたアルコールを添
加して濃縮することを繰り返し、エーテルや石油エーテ
ルを用いて結晶化することにより、目的物を得るもので
ある。しかし、この方法では、大量のアルコールを用い
る必要がある上に、回収したアルコールが水を含んでい
るために、そのままでは再使用できない、また、用いる
アルフールがメタノールのように水と共沸しないもので
あると、反応後過剰のアルコールを除いたあとに水が残
り、vAwiを操り返す過程でエステルの加水分解が進
行する。このために、濾過、乾燥で得られるエステル化
物の収率は高々90%程度である。さらに、得られたエ
ステルに加水分解で生成した原料アミノ酸が多量に含ま
れる場合には、これらの不純物からの分離が困難である
という問題も生じる。
The esterification method of amino acids has been known for a long time, and basically the method developed by Cuttus et al. in 1888 is still used today. In this method, hydrogen chloride is saturated in alcohol in which amino acids are suspended, and after the reaction, excess alcohol is removed, and the alcohol used in the reaction is added and concentrated repeatedly, followed by crystallization using ether or petroleum ether. The object is obtained by converting it into something. However, this method requires the use of a large amount of alcohol, and since the recovered alcohol contains water, it cannot be reused as it is, and the alcohol used is not azeotropic with water, like methanol. In this case, after the excess alcohol is removed after the reaction, water remains, and the hydrolysis of the ester progresses during the process of re-manipulating vAwi. For this reason, the yield of the esterified product obtained by filtration and drying is about 90% at most. Furthermore, when the obtained ester contains a large amount of raw material amino acids produced by hydrolysis, there arises the problem that separation from these impurities is difficult.

また、結晶化にエーテル類を用いるため、それらの取扱
や回収上の問題から、工業的な実施は困難である。
Furthermore, since ethers are used for crystallization, industrial implementation is difficult due to problems in handling and recovering them.

他にも、アミノ酸をP−)ルエンスルホン酸、エタノー
ルおよび四塩化炭素と加熱して、生成する水を共沸混合
物として系外に除き、アミノ酸エチルエステルのP−)
ルエンスルホン酸塩として得る方法(日化誌83.11
51.1962年)も知られているが、不揮発性の酸を
用いる必要があることや、メタノールの場合には共沸に
よりアルコールが系外に除かれるため、大量のメタノー
ルを使用する必要があるなど、工業的には問題があった
In addition, amino acids are heated with P-) luenesulfonic acid, ethanol, and carbon tetrachloride, and the resulting water is removed from the system as an azeotrope to produce P-) amino acid ethyl esters.
Method for obtaining luenesulfonate (Nikkashu 83.11
51.1962) is also known, but it requires the use of a nonvolatile acid, and in the case of methanol, the alcohol is removed from the system by azeotropy, so it is necessary to use a large amount of methanol. There were problems from an industrial perspective.

(41題を解決するための手段〕 本発明者らは、アミノ酸を鉱酸の存在下メタノールと反
応させエステル化した後、濃縮によりメタノールを一部
除き、水と共沸し得る有機溶媒を加えて共沸脱水すれば
、アミノ酸メチルエステルの鉱酸塩を高収率で単離でき
ることを見いだし2、本発明を完成した。
(Means for Solving Problem 41) The present inventors esterified an amino acid by reacting it with methanol in the presence of a mineral acid, removed part of the methanol by concentration, and added an organic solvent that can be azeotropic with water. They discovered that mineral acid salts of amino acid methyl esters can be isolated in high yield by azeotropic dehydration,2 and the present invention was completed.

本発明の原料であるアミノ酸は、天然物、非天然物を問
わず、また、ラセミ体、光学活性体のいずれであっても
よい。例えば、グリシン、アラニン、バリン、ロイシン
、イソロイシン、フェニルアデニン、セリン、スレオニ
ン等の中性アミノ酸、リジン、アルギニン等の塩基性ア
ミノ酸、アスパラギン酸、グルタミン酸等の酸性アミノ
酸およびそれらの官能基が保護された誘導体等である。
The amino acids that are the raw materials of the present invention may be natural or non-natural, and may be racemic or optically active. For example, neutral amino acids such as glycine, alanine, valine, leucine, isoleucine, phenyladenine, serine, and threonine, basic amino acids such as lysine and arginine, acidic amino acids such as aspartic acid and glutamic acid, and their functional groups are protected. derivatives, etc.

本発明で用い得る鉱酸は、アミノ酸のアミノ基と塩を形
成するとともに、エステル化の触媒となるものであるが
、−船釣には塩酸、硫酸、硝酸、リン酸等の鉱酸が用い
られる。好ましくは、エステル化反応後、過剰に用いた
鉱酸を容易に除き得る塩酸が適当である。
The mineral acids that can be used in the present invention form salts with the amino groups of amino acids and serve as catalysts for esterification. It will be done. Hydrochloric acid is preferably used from which excess mineral acid can be easily removed after the esterification reaction.

本発明におけるエステル化の条件は特に限定されるもの
ではなく、用いるアミノ酸のエステル化の難易度を考慮
し温度、時間、原料のモル比等の条件は適宜選択しうる
0通常、室温で数日放置するか、または、メタノールの
還流温度近くまで加温して数時間反応させる方法がとら
れる。
The conditions for esterification in the present invention are not particularly limited, and conditions such as temperature, time, and molar ratio of raw materials can be selected as appropriate in consideration of the difficulty of esterification of the amino acid used. Usually, at room temperature for several days. Either the mixture is left to stand, or the mixture is heated to near the reflux temperature of methanol and allowed to react for several hours.

反応後、減圧下または常圧下メタノールな留去して、奮
発残分全量に対して5〜20%のメタノールが残る程度
まで濃縮するのが好ましい、これ以上メタノールを除く
ためには、高減圧度下においても高温長時間の操作が必
要であり、エステルの加水分解が進んで収率低下をきた
す、また、メタノールの残存量がこれより多いと、次の
操作で有機溶媒を加え、水を共沸で除く際に、主にメタ
ノールと有機溶媒が先に共沸で留出するために、効率よ
く共沸脱水することができない。
After the reaction, it is preferable to distill off the methanol under reduced pressure or normal pressure and concentrate to the extent that 5 to 20% methanol remains based on the total amount of the ejected residue.To remove more methanol, use a high vacuum degree. Even at low temperatures, long-term operations at high temperatures are required, and the hydrolysis of the ester progresses, resulting in a decrease in yield.Also, if the amount of methanol remaining is greater than this, an organic solvent must be added in the next operation to co-mix water. When removing by boiling, the methanol and organic solvent are first distilled off azeotropically, making it impossible to efficiently perform azeotropic dehydration.

本発明の方法に用いる有機溶媒は、水と共沸混合物をつ
くるもので、反応混合物の構成成分に対して不活性なも
のであればなんでもよい0例えば、ベンゼン、トルエン
、n−ヘキサン、シクロヘキサン等の炭化水素類、クロ
ロホルム、ジクロルエタン、四塩化炭素、1,2−ジク
ロルエタン、1゜1.2− トリクロルエタン、クロル
ベンゼン等のハロゲン化炭化水素、エチルエーテル、ブ
チルエーテル、テトラヒドロフラン、ジオキサン等のエ
ーテル類、酢酸メチル、プロピオン酸メチル等の工′ス
テル類が挙げられる。
The organic solvent used in the method of the present invention may be any organic solvent as long as it forms an azeotrope with water and is inert to the constituent components of the reaction mixture.For example, benzene, toluene, n-hexane, cyclohexane, etc. hydrocarbons, chloroform, dichloroethane, carbon tetrachloride, 1,2-dichloroethane, 1゜1.2-trichloroethane, halogenated hydrocarbons such as chlorobenzene, ethers such as ethyl ether, butyl ether, tetrahydrofuran, dioxane, Examples include esters such as methyl acetate and methyl propionate.

共沸操作は、常圧下または減圧下で行うことができるが
、高温ではアミノ酸のラセミ化やエステルの加水分解が
起こるため、80℃以下で行うことが好ましい。
The azeotropic operation can be carried out under normal pressure or reduced pressure, but is preferably carried out at 80° C. or lower, since racemization of amino acids and hydrolysis of esters occur at high temperatures.

共沸脱水後は、そのまま乾燥して結晶あるいはオイル状
の目的物を得ることができる。また、結晶が析出してい
る場合は、濾過、乾燥、により目的物を得ることができ
る。さらに、次の工程で用いられる溶媒を加え、そのま
ま、あるいは残存溶媒を留出させて除くことにより、次
の工程に用いることもできる。
After azeotropic dehydration, the desired product can be obtained in the form of crystals or oil by drying as it is. In addition, if crystals are precipitated, the desired product can be obtained by filtration and drying. Furthermore, it can be used in the next step by adding the solvent to be used in the next step and removing it as is or by distilling off the remaining solvent.

(作用および効果〕 本発明の方法によれば、メタノール中生成したアミノ酸
のメチルエステルを、単離工程における加水分解反応を
伴うことなく高収率で、かつ効率よく製造することがで
きる。
(Functions and Effects) According to the method of the present invention, the methyl ester of an amino acid produced in methanol can be efficiently produced in high yield without involving a hydrolysis reaction in the isolation step.

(実施例〕 以下、実施例によって本発明の方法を詳しく説明する。(Example〕 Hereinafter, the method of the present invention will be explained in detail with reference to Examples.

実施例! L−アラニン10.hを、塩化水素12gを含むメタノ
ール38gに加え、20°Cで撹拌下放置する0反応液
の高速液体クロマトグラフィーによる分析の結果、24
時間後のし一アラニンメチルエステルへの転化率は99
%以上に達した。
Example! L-alanine 10. As a result of high performance liquid chromatography analysis of the reaction solution, which was added to 38 g of methanol containing 12 g of hydrogen chloride and left under stirring at 20°C, 24
The conversion rate to mono-alanine methyl ester after hours was 99
reached more than %.

反応後、留出残分の重量が18.4gになるまで、減圧
下50℃以下でメタノールを留去する3次に、トルエン
50gを加え同じく減圧下トルエンと水を留出させると
全体が結晶化する。トルエンの留出がほとんどなくなっ
た所で、トルエン50gを加えてスラリー化し、濾過、
乾燥することにより15.8gの結晶を得た。
After the reaction, methanol is distilled off under reduced pressure at 50°C or less until the weight of the distillate residue becomes 18.4 g. 3. Next, 50 g of toluene is added and toluene and water are distilled out under reduced pressure, and the whole becomes crystallized. become When almost no toluene was distilled out, 50 g of toluene was added to form a slurry, filtered,
By drying, 15.8 g of crystals were obtained.

この結晶の融点は110″Cであり、元素分析の結果は
L−アラニンメチルエステル塩酸塩に一致した。
The melting point of this crystal was 110''C, and the results of elemental analysis were consistent with L-alanine methyl ester hydrochloride.

元素分析(i1!(%)  C4HIICI NotC
HN   C1 実測(i  34.35 7.35 10゜00 24
.8計算値 34.42 7.22 10.03 25
.4この結晶を、高速液体クロマトグラフィーで分析し
た結果、純度97.5%であり、未反応の■2−アラニ
ンは1.2%であった。収率98.1%。
Elemental analysis (i1! (%) C4HIICI NotC
HN C1 Actual measurement (i 34.35 7.35 10°00 24
.. 8 Calculated value 34.42 7.22 10.03 25
.. 4 This crystal was analyzed by high performance liquid chromatography, and the purity was 97.5%, and unreacted 2-alanine was 1.2%. Yield 98.1%.

比較例1 実施例1と同様の反応を行った後、メタノールを減圧下
′a縮して、さらにメタノール50gを加え濃縮する操
作を2回繰り返す、得られたオイル状残渣にエチルエー
テルを加えて結晶化し、濾過、乾燥することによりLl
、Ogの結晶を得た。高速液体クロマトグラフィーによ
る分析の結果、純度93.6%であり、未反応のI4−
アラニンを3.4%含んでいた。収率65.8%。
Comparative Example 1 After carrying out the same reaction as in Example 1, methanol was condensed under reduced pressure, 50 g of methanol was further added, and the operation of concentrating was repeated twice. Ethyl ether was added to the obtained oily residue. By crystallizing, filtering and drying Ll
, Og crystals were obtained. As a result of high performance liquid chromatography analysis, the purity was 93.6%, indicating that unreacted I4-
It contained 3.4% alanine. Yield 65.8%.

実施例2 L−アラニンのかわりにL−フェニルアラニン10.0
gを用いた以外は、実施例1と同様にしてエステル化を
行なった。メタノールを濃縮する過程で結晶が析出した
が、そのままトルエン50gを加えて共沸脱水を行い、
さらにトルエン50gを加えて濾過、乾燥することによ
り結晶13.1gを得た。
Example 2 L-phenylalanine 10.0 instead of L-alanine
Esterification was carried out in the same manner as in Example 1 except that g was used. Crystals precipitated during the process of concentrating methanol, but 50 g of toluene was added as it was to perform azeotropic dehydration.
Further, 50 g of toluene was added, filtered, and dried to obtain 13.1 g of crystals.

この結晶の融点は116’Cであり、元素分析の結果は
L−フェニルアラニンメチルエステル塩酸塩に一致した
The melting point of this crystal was 116'C, and the results of elemental analysis were consistent with L-phenylalanine methyl ester hydrochloride.

元素分析+1 (%)  C,oH+、C+ NoIC
HN   C1 実測(直  55.22  7.01  6.21  
15.8計算値 55.68 6.54 6.49 1
6.4この結晶を、高速液体クロマトグラフィーで分析
した結果、純度96.7%であり、未反応のし一アラニ
ンは2.1%であった。収率97.0%。
Elemental analysis +1 (%) C, oH+, C+ NoIC
HN C1 Actual measurement (direct 55.22 7.01 6.21
15.8 Calculated value 55.68 6.54 6.49 1
6.4 Analysis of this crystal by high performance liquid chromatography revealed that the purity was 96.7%, and unreacted mono-alanine was 2.1%. Yield 97.0%.

比較例2 実施例2と同様の反応を行った後、メタノールを減圧下
濃縮して、さらにメタノール50gを加え濃縮する操作
を2回繰り返す、得られた結晶化した残渣にエチルエー
テルを加えてスラリー化し、濾過、乾燥することにより
12.8 gの結晶を得た。
Comparative Example 2 After carrying out the same reaction as in Example 2, methanol was concentrated under reduced pressure, and the operation of adding 50 g of methanol and concentrating was repeated twice. Ethyl ether was added to the obtained crystallized residue to form a slurry. 12.8 g of crystals were obtained by drying, filtering, and drying.

高速液体クロマトグラフィーによる分析の結果、純度9
3.3%であり、未反応のし一フェニルアラニンを5.
1%含んでいた。収率91.3%。
As a result of analysis by high performance liquid chromatography, purity is 9.
3.3%, and unreacted phenylalanine was added to 5.3%.
It contained 1%. Yield 91.3%.

実施例3 ■、−アスパラギン酸10.0 gを、塩化水素12g
を含むメタノール38gに加え、40°Cで撹拌上反応
する0反応液の高速液体クロマトグラフィーによる分析
の結果、4時間後のし一アスパラギン酸ジメチルエステ
ルへの転化率は99%以上に達した。
Example 3 ■, -10.0 g of aspartic acid and 12 g of hydrogen chloride
As a result of analysis by high performance liquid chromatography of the reaction solution, which was added to 38 g of methanol containing 38 g of methanol and reacted at 40° C. with stirring, the conversion rate to dimethyl aspartate reached 99% or more after 4 hours.

反応後、留出残分の重量が17.5 gになるまで、減
圧下50℃以下でメタノールを留去させる。次に、トル
エン50gを加え同じく減圧下トルエンと水を留出させ
る。トルエンの留出がほとんどなくなった所で、しばら
く放置すると結晶化するので、トルエン50gを加えて
スラリー化し、濾過、乾燥することにより14.9gの
結晶を得た。
After the reaction, methanol is distilled off under reduced pressure at 50° C. or lower until the weight of the distillate residue is 17.5 g. Next, 50 g of toluene is added and toluene and water are distilled out under reduced pressure. When almost no toluene was distilled out, crystallization would occur if left for a while, so 50 g of toluene was added to form a slurry, filtered, and dried to obtain 14.9 g of crystals.

この結晶の融点は116℃であり、元素分析の結果はI
、−アスパラギン酸ジメチルエステル塩酸塩に一致した
The melting point of this crystal is 116°C, and the results of elemental analysis are I
,-aspartic acid dimethyl ester hydrochloride.

元素分析値(%) C,H,、CI No。Elemental analysis value (%) C, H, CI No.

CHN   C1 実測債 35.91 6.88 6.75 16.6計
算値 36.47 6゜12 7.09 17.9この
結晶を、高速液体クロマトグラフィーで分析した結果、
純度96.2%であり、未反応のし一アスパラギン酸と
L−アスパラギン酸のα及びβ−モノメチルエステルの
合計は2.8%であった。収率96.6%。
CHN C1 Measured bond 35.91 6.88 6.75 16.6 Calculated value 36.47 6°12 7.09 17.9 As a result of analyzing this crystal by high performance liquid chromatography,
The purity was 96.2%, and the total amount of unreacted monoaspartic acid and α- and β-monomethyl esters of L-aspartic acid was 2.8%. Yield 96.6%.

比較例3 実施例3と同様の反応を行った後、メタノールを減圧上
濃縮して、さらにメタノール50gを加え濃縮する操作
を2回繰り返す、得られたオイル状残渣にエチルエーテ
ルを加えて結晶化し、濾過、乾燥することにより13.
8gの結晶を得た。高速液体クロマトグラフィーによる
分析の結果、純度81.9%であり、未反応のし一アス
パラギン酸とL−アスパラギン酸のα及びβ−モノメチ
ルエステルの合計は14.1%であった。収率76.1
%。
Comparative Example 3 After carrying out the same reaction as in Example 3, methanol was concentrated under reduced pressure, and the operation of adding 50 g of methanol and concentrating was repeated twice. Ethyl ether was added to the obtained oily residue to crystallize it. 13. by filtration and drying.
8 g of crystals were obtained. As a result of analysis by high performance liquid chromatography, the purity was 81.9%, and the total amount of unreacted mono-aspartic acid and α- and β-monomethyl esters of L-aspartic acid was 14.1%. Yield 76.1
%.

実施例4 L−セリン10.0 gを、塩化水素12gを含むメタ
ノール38gに加え、40℃で撹拌上反応する0反応液
の高速液体クロマトグラフィーによる分析の結果、4時
間後のし一セリンメチルエステルへの転化率は99%以
上に達した。
Example 4 10.0 g of L-serine was added to 38 g of methanol containing 12 g of hydrogen chloride, and the reaction mixture was stirred and reacted at 40° C. Analysis of the reaction solution by high performance liquid chromatography revealed that methyl serine was present after 4 hours. The conversion rate to ester reached over 99%.

反応後、留出残分の重量が18.2gになるまで、減圧
下50℃以下でメタノールを留去させる。メタノールを
濃縮する過程で結晶が析出したが、そのままトルエン5
0gを加え、同じく減圧下トルエンと水を留出させる。
After the reaction, methanol is distilled off under reduced pressure at 50° C. or lower until the weight of the distillate residue becomes 18.2 g. Crystals precipitated during the process of concentrating methanol, but they were added to toluene as they were.
0 g was added, and toluene and water were similarly distilled off under reduced pressure.

トルエンの留出がほとんどなくなった所で、トルエン5
0gを加えてスラリー化し、濾過、乾燥することにより
15.1 gの結晶を得た。
At the point where toluene distillation is almost gone, toluene 5
0 g was added to form a slurry, filtered and dried to obtain 15.1 g of crystals.

この結晶の融点は166°Cであり、元素分析の結果は
L−セリンメチルエステル塩酸塩に一致した元素分析値
(%) C,H,、CI NoICHN   C1 実測値 29.95 7.54 8.43 22.3計
算(直  30.68  7.08 8.94  22
.にの結晶を、高速液体クロマトグラフィーで分析した
結果、純[96,7%であり、未反応のし一セリンは2
.3%であった。収率98.4%。
The melting point of this crystal is 166°C, and the elemental analysis results are consistent with L-serine methyl ester hydrochloride.Elemental analysis value (%) C, H,, CI NoICHN C1 Actual value 29.95 7.54 8. 43 22.3 calculation (direct 30.68 7.08 8.94 22
.. Analysis of the crystals by high performance liquid chromatography revealed that the crystals were pure [96.7%], and the unreacted serine was 2.
.. It was 3%. Yield 98.4%.

比較例4 実施例4と同様の反応を行った後、メタノールを減圧下
′a!11して、さらにメタノール50gを加え濃縮す
る操作を2回繰り返す。得られた結晶化した残渣にエチ
ルエーテルを加えてスラリー化し、濾過、乾燥すること
により14.4gの結晶を得た。
Comparative Example 4 After carrying out the same reaction as in Example 4, methanol was added under reduced pressure'a! Step 11, add 50 g of methanol, and repeat the operation of concentrating twice. Ethyl ether was added to the obtained crystallized residue to form a slurry, which was then filtered and dried to obtain 14.4 g of crystals.

高速液体クロマトグラフィーによる分析の結果、純度9
4.0%であり、未反応のし一セリンを3.2%含んで
いた。収率91.0%。
As a result of analysis by high performance liquid chromatography, purity is 9.
4.0%, and contained 3.2% of unreacted serine. Yield 91.0%.

実施例5 L−アスパラギン酸のかわりにL−リジン塩酸塩10.
0 gを用いた以外は、実施例3と同様にしてエステル
化を行なった0反応中に結晶が析出し、反応液の高速液
体クロマトグラフィーによる分析の結果、4時間後のL
−リジンメチルエステルへの転化率は99%以上に達し
た。
Example 5 L-lysine hydrochloride instead of L-aspartic acid 10.
Crystals were precipitated during the esterification reaction in which esterification was carried out in the same manner as in Example 3, except that 0 g was used, and as a result of analysis of the reaction solution by high performance liquid chromatography, L after 4 hours was
-The conversion rate to lysine methyl ester reached 99% or more.

反応後、留出残分の重量が19.9 gになるまで、減
圧下50℃以下でメタノールを留去させる0次に、トル
エン50gを加え、同じく減圧下トルエンと水を留出さ
せる。トルエンの留出がほとんどなくなった所で、トル
エン50gを加えてスラリー化し、濾過、乾燥すること
により16.0 gの結晶を得たこの結晶の融点は21
0”Cであり、元素分析の結果は■、−リジンメチルエ
ステルニ塩酸塩に一致した。
After the reaction, methanol is distilled off under reduced pressure at 50° C. or below until the weight of the distilled residue becomes 19.9 g. Next, 50 g of toluene is added, and toluene and water are distilled off under reduced pressure as well. When almost no toluene was distilled out, 50 g of toluene was added to form a slurry, filtered, and dried to obtain 16.0 g of crystals. The melting point of these crystals was 21.
0''C, and the results of elemental analysis were consistent with ■,-lysine methyl ester dihydrochloride.

元素分析値(%)  Ct H+ * CI x N 
x OxCHN   C1 実測値 36.02 8.0311.97 29.7計
夏値 36.06 7.7812.02 30.4この
結晶を、高速液体クロマトグラフィーで分析した結果、
純度95.8%であり、未反応のl、  IJジンは3
.1%であった。収率96.1%。
Elemental analysis value (%) Ct H+ * CI x N
x OxCHN C1 Actual value 36.02 8.0311.97 29.7 Total summer value 36.06 7.7812.02 30.4 As a result of analyzing this crystal by high performance liquid chromatography,
The purity is 95.8%, and the unreacted l, IJ gin is 3
.. It was 1%. Yield 96.1%.

比較例5 実施例5と同様の反応を行った後、メタノールを減圧下
i4縮して、さらにメタノール50gを加え濃縮する操
作を2回繰り返す。得られた結晶化した残渣にエチルエ
ーテルを加えてスラリー化し、濾過、乾燥することによ
り12.3gの結晶を得た。
Comparative Example 5 After carrying out the same reaction as in Example 5, methanol was condensed under reduced pressure, and the operation of adding 50 g of methanol and concentrating was repeated twice. Ethyl ether was added to the obtained crystallized residue to form a slurry, which was then filtered and dried to obtain 12.3 g of crystals.

高速液体クロマトグラフィーによる分析の結果、純度9
2.3%であり、未反応のし一リジンを5.6%含んで
いた。収率76.9%。
As a result of analysis by high performance liquid chromatography, purity is 9.
It contained 5.6% of unreacted lysine. Yield 76.9%.

実施例6〜8 トルエンのかわりに、表1に示した有機溶媒を用いて、
共沸脱水を行った以外は実施例3と同様の反応と後処理
を行い、それぞれ表1に示した結果を得た。
Examples 6 to 8 Using the organic solvents shown in Table 1 instead of toluene,
The reaction and post-treatment were carried out in the same manner as in Example 3, except that azeotropic dehydration was carried out, and the results shown in Table 1 were obtained.

Claims (1)

【特許請求の範囲】[Claims] 1)鉱酸の存在下、アミノ酸とメタノールからアミノ酸
のメチルエステルの鉱酸塩を製造する方法において、エ
ステル化反応終了後、過剰のメタノールを除き、続いて
水と共沸しうる有機溶媒を加え、共沸脱水することを特
徴とするアミノ酸メチルエステル鉱酸塩の製造法。
1) In the method of producing a mineral acid salt of a methyl ester of an amino acid from an amino acid and methanol in the presence of a mineral acid, after the esterification reaction is completed, excess methanol is removed, and then an organic solvent that can be azeotroped with water is added. , a method for producing an amino acid methyl ester mineral salt, the method comprising azeotropic dehydration.
JP63119374A 1988-05-18 1988-05-18 Method for producing amino acid methylsulfate Expired - Lifetime JP2728883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63119374A JP2728883B2 (en) 1988-05-18 1988-05-18 Method for producing amino acid methylsulfate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63119374A JP2728883B2 (en) 1988-05-18 1988-05-18 Method for producing amino acid methylsulfate

Publications (2)

Publication Number Publication Date
JPH01290655A true JPH01290655A (en) 1989-11-22
JP2728883B2 JP2728883B2 (en) 1998-03-18

Family

ID=14759929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63119374A Expired - Lifetime JP2728883B2 (en) 1988-05-18 1988-05-18 Method for producing amino acid methylsulfate

Country Status (1)

Country Link
JP (1) JP2728883B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5113009A (en) * 1988-12-27 1992-05-12 Mitsui Toatsu Chemicals, Incorporated Preparation and isolation of mineral acid salt of an amino acid methyl ester
JP2002255876A (en) * 2001-02-23 2002-09-11 Showa Denko Kk Method for purifying and producing propargyl alcohol

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5740456A (en) * 1980-08-26 1982-03-06 Mitsui Toatsu Chem Inc Separation of aminoalkanol sulfuric acid ester
JPS6174588A (en) * 1984-09-12 1986-04-16 バスフ アクチェン ゲゼルシャフト Production of lactic ester

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5740456A (en) * 1980-08-26 1982-03-06 Mitsui Toatsu Chem Inc Separation of aminoalkanol sulfuric acid ester
JPS6174588A (en) * 1984-09-12 1986-04-16 バスフ アクチェン ゲゼルシャフト Production of lactic ester

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5113009A (en) * 1988-12-27 1992-05-12 Mitsui Toatsu Chemicals, Incorporated Preparation and isolation of mineral acid salt of an amino acid methyl ester
JP2002255876A (en) * 2001-02-23 2002-09-11 Showa Denko Kk Method for purifying and producing propargyl alcohol

Also Published As

Publication number Publication date
JP2728883B2 (en) 1998-03-18

Similar Documents

Publication Publication Date Title
EP0127411B1 (en) Method of preparing alpha-l-aspartyl-l-phenylalanine methyl ester and its hydrochloride
DK149126B (en) METHOD FOR PREPARING C1-4 ALKYL ESTERS OF L-ASPARTYL-L-AMINO ACIDS
AU612921B2 (en) Preparation and isolation of mineral acid salt of an amino acid methyl ester
US4390722A (en) Resolution of amino acids
JPH01290655A (en) Production of amino acid methyl ester mineral acid salt
US11453648B2 (en) Method for producing orotic acid derivative
JP2928564B2 (en) Method for producing amino acid methyl ester mineral acid salt
JP4356292B2 (en) Method for producing amino acid ester hydrochloride
JP2728891B2 (en) Method for producing amino acid ester mineral salts
JP3996671B2 (en) Method for producing N-alkoxycarbonylated, N-alkenyloxycarbonylated or N-arylalkoxycarbonylated amino acids
JP2728909B2 (en) Method for producing amino acid alkyl ester mineral salts
JPH0717941A (en) Production of n-alkoxycarbonylamino acid
JP2000072719A (en) Production of allyl 2-hydroxyisobutyrate
US6316657B1 (en) Process for purification or recovery of sweetener
US3105092A (en) Purification of beta-alanine
JP3888402B2 (en) Process for producing optically active N-carbobenzoxy-tert-leucine
US20040124144A1 (en) Process for the purification of N-carboxyanhydrides of amino acids
JP4768145B2 (en) Optical purification method of optically active 2-phenoxypropionic acid
EP0300450B1 (en) Method for producing alpha-L-aspartyl-L-phenylalanine methyl ester hydrochloride
JP2001114744A (en) Method for producing n-hydrocarbon oxycarbonylamino acid
Kotake et al. An Improved Synthesis of N, β-Dimethylleucine and the Resolution Thereof
JP2001031635A (en) Production of optically active n-protected-n-methyl- phenylalanine derivative
JP2976609B2 (en) Method for producing α-L-aspartyl-L-phenylalanine methyl ester or hydrochloride thereof
JP2004010484A (en) Method for purifying l-lysine aminoethyl ester trihydrochloride
JP2001181247A (en) Method of producing inorganic acid salt of amino acid ester