JPH0129017B2 - - Google Patents

Info

Publication number
JPH0129017B2
JPH0129017B2 JP9274382A JP9274382A JPH0129017B2 JP H0129017 B2 JPH0129017 B2 JP H0129017B2 JP 9274382 A JP9274382 A JP 9274382A JP 9274382 A JP9274382 A JP 9274382A JP H0129017 B2 JPH0129017 B2 JP H0129017B2
Authority
JP
Japan
Prior art keywords
electron
electrode
lens
main
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9274382A
Other languages
Japanese (ja)
Other versions
JPS58209853A (en
Inventor
Kazuaki Naiki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP9274382A priority Critical patent/JPS58209853A/en
Publication of JPS58209853A publication Critical patent/JPS58209853A/en
Publication of JPH0129017B2 publication Critical patent/JPH0129017B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/48Electron guns
    • H01J29/50Electron guns two or more guns in a single vacuum space, e.g. for plural-ray tube
    • H01J29/503Three or more guns, the axes of which lay in a common plane

Description

【発明の詳細な説明】 本発明はインライン型カラー受像管用電子銃の
解像度の改善に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improving the resolution of an in-line color picture tube electron gun.

電子銃の解像度特性は主として電子レンズの球
面収差に制約され、高解像度特性を得るには主電
子レンズを構成する電極口径を大きくして電子レ
ンズの球面収差を小さくする必要がある。主電子
レンズ電極口径はカラー受像管の硝子頚部内径に
制限され、三電子銃が一列に配列されたインライ
ン型カラー受像管では主電子レンズ電極口径は最
大でも硝子頚部内径の1/3以下となり、電子銃構
体設計上、一定の硝子頚部内径に対し何如に三つ
の主電子レンズ径を大きくするかが重要な点とな
つている。
The resolution characteristics of an electron gun are mainly limited by the spherical aberration of the electron lens, and in order to obtain high resolution characteristics, it is necessary to reduce the spherical aberration of the electron lens by increasing the aperture of the electrodes constituting the main electron lens. The diameter of the main electron lens electrode is limited to the inner diameter of the glass neck of the color picture tube, and in an in-line color picture tube with three electron guns arranged in a row, the diameter of the main electron lens electrode is at most 1/3 or less of the inner diameter of the glass neck. When designing an electron gun structure, an important point is how to increase the diameters of the three main electron lenses for a fixed inner diameter of the glass neck.

第1図は、従来用いられている電気的、構造的
に共通で各電子ビーム通路には実質的に個別の電
子レンズを形成する一体化電極を備え、主電子レ
ンズがバイ・ポテンシヤル・フオーカス方式を採
るインライン型電子銃構体の三電子銃の軸を含
む側断面図を示す。インライン型電子銃構体
互に絶縁されて等間隔距離Sを保つて一列に整列
した三つの陰極構体10とこれに対向して電子ビ
ーム進行方向に順次配置される一体化電極である
G1電極11、G2電極12、二つの閉塞筒状体電
極13-1,13-2を口縁部で重ね合せた集束電極
であるG3電極13、陽極電極である閉塞筒状体
のG4電極14、及び遮蔽磁極17から構成され、
遮蔽磁極17を除く各電極は図示されないが、各
電極支持部を介して絶縁物支持杆18に融着固定
され、所定の電極間隔を保持し、各電子ビーム通
路ごとに独立の電子銃1R,1G,1Bを形成し
ている。各電子銃1R,1G,1BのG4電極1
4に対向するG3電極13、及びG4電極14の主
電子レンズを形成する開孔H30,H40の口径D30
D40は等しく、且つ硝子頚部19の内径の1/3以
下となつている。但しG4電極14の主電子レン
ズ開孔中心間距離S′は上述のSより3〜5%程度
大きく、これにともなつてG4電極14の両外側
開孔H′40の口径D′40はG3電極13の開孔口径D30
より幾分大きく、G3電極13とG4電極14間の
各対応する開孔間隙に形成される主電子レンズの
両外側部には非対称電界を形成し、陰極線管螢光
面中心で外側の二本の電子ビームを中央電子ビー
ムに静電気的に集中するようになつている。ここ
では説明の便宜上外側の二電子ビームを静電気的
に集中するために、微小開孔間距離増加に基づく
口径の増加は無視することにする。
Figure 1 shows a conventionally used electronically and structurally common system in which each electron beam path has an integrated electrode that essentially forms an individual electron lens, and the main electron lens is of a bi-potential focus type. A side cross-sectional view including the axis of three electron guns of an in-line type electron gun assembly 1 is shown. The in-line electron gun assembly 1 includes three cathode assemblies 10 that are insulated from each other and arranged in a line at equal distances S, and integrated electrodes that are arranged in sequence in the direction of electron beam propagation in opposition to these cathode assemblies 10.
G1 electrode 11, G2 electrode 12, G3 electrode 13 which is a focusing electrode made by overlapping two closed cylindrical electrodes 13 -1 and 13 -2 at the mouth edge, and G4 electrode 14 which is a closed cylindrical body and is an anode electrode. , and a shielding magnetic pole 17,
Although each electrode except for the shielding magnetic pole 17 is not shown, it is fused and fixed to the insulator support rod 18 via each electrode support part, and a predetermined electrode interval is maintained, and an independent electron gun 1R, 1G and 1B are formed. G4 electrode 1 of each electron gun 1R, 1G, 1B
The apertures D 30 of the apertures H 30 and H 40 forming the main electron lenses of the G3 electrode 13 and the G4 electrode 14 facing the
D 40 is equal and less than 1/3 of the inner diameter of the glass neck 19. However, the distance S' between the centers of the main electron lens apertures of the G4 electrode 14 is about 3 to 5% larger than the above-mentioned S, and accordingly, the aperture D' 40 of both outer apertures H' 40 of the G4 electrode 14 is larger than the G3 Opening diameter of electrode 13 D 30
Asymmetrical electric fields are formed on both outer sides of the main electron lens formed in each corresponding aperture gap between the G3 electrode 13 and the G4 electrode 14, and the outer two electric fields are formed at the center of the fluorescent surface of the cathode ray tube. electron beams are electrostatically concentrated into a central electron beam. Here, for convenience of explanation, in order to electrostatically concentrate the outer two-electron beam, the increase in the aperture due to the increase in the distance between the minute apertures will be ignored.

例えば従来広く用いられている硝子頚部口径
29.1mm(内径23.9mm)の陰極線管の場合は、三電
子銃相互間距離S=6.6mmであり、D30=5.5mm、
S′=6.8mm、D′40=5.9mmとなり、実際には主電子
レンズ口径D30は硝子頚部内径の1/3よりはるか
に小さい1/4以下となつている。
For example, the diameter of the glass neck that has been widely used in the past
In the case of a 29.1 mm (inner diameter 23.9 mm) cathode ray tube, the distance between the three electron guns S = 6.6 mm, D 30 = 5.5 mm,
S′ = 6.8 mm, D′ 40 = 5.9 mm, and the main electron lens aperture D 30 is actually less than 1/4, which is much smaller than 1/3 of the inner diameter of the glass neck.

以上の様に従来用いられているインライン型電
子銃構体では三電子銃の各対応する主電子レンズ
電極開孔口径は等しく、且つ硝子頚部内径の1/3
以下となり、硝子頚部口径を大きくし、三電子銃
相互間距離を大きくして、主電子レンズ電極口径
を大きくしない限り主電子レンズの球面収差を十
分低減して、高解像度特性を得ることは出来なか
つた。特に近年偏向電力低減化と三電子銃から発
射された三電子ビームが作る走査画面を空間的に
一つに重ね合せるコンバージエンス特性向上を目
的として三電子銃相互間距離Sを出来るだけ小さ
くし、陰極線管硝子頚部口径を小さくする傾向に
あり、増々主電子レンズ電極口径は小さくなり、
解像度特性上非常に不利となつている。
As described above, in the conventional in-line electron gun structure, the aperture diameter of each corresponding main electron lens electrode of the three electron guns is equal, and is 1/3 of the inner diameter of the glass neck.
Therefore, unless the glass neck aperture is increased, the distance between the three electron guns is increased, and the main electron lens electrode aperture is increased, it is not possible to sufficiently reduce the spherical aberration of the main electron lens and obtain high resolution characteristics. Nakatsuta. In particular, in recent years, the distance S between the three electron guns has been made as small as possible for the purpose of reducing the deflection power and improving the convergence characteristic of spatially overlapping the scanning screens created by the three electron beams emitted from the three electron guns. There is a trend to reduce the diameter of the cathode ray tube glass neck, and the diameter of the main electron lens electrode becomes smaller.
This is extremely disadvantageous in terms of resolution characteristics.

本発明は上述の欠点を除去して従来のインライ
ン型電子銃構体の三電子銃相互間距離を同一に保
つたまま主電子レンズの球面収差を十分低減して
高解像度特性を得られるインライン型電子銃構体
を提供することを目的とする。
The present invention eliminates the above-mentioned drawbacks and provides an in-line electron gun structure that can sufficiently reduce the spherical aberration of the main electron lens while maintaining the same distance between the three electron guns in the conventional in-line electron gun assembly, thereby obtaining high-resolution characteristics. The purpose is to provide gun structures.

即ち、少なくとも陰極、G1電極、G2電極から
なる電子ビーム形成部と、これより射出された電
子ビームを加速、集速するG3、G4、G5、G6電
極を有し、G3電極とG4電極、G4電極とG5電極、
G5電極とG6電極の各対向部で三段の主集束電子
レンズを形成する多段集束電子レンズ系を備えた
インライン型電子銃構体に於て、中央電子銃の陰
極側にある前2段の主電子レンズ電極口径を両外
側電子銃の電極口径より大きくし、両外側電子銃
の電子ビーム射出側にある第3段の主電子レンズ
電極口径を中央電子銃の電極口径より大きくする
ことで、中央と両外側主電子レンズの強さを変え
ることなく、各電子銃の大口径化された集束電子
レンズ段で球面収差を低減出来るようにしたもの
である。
That is, it has an electron beam forming section consisting of at least a cathode, a G1 electrode, and a G2 electrode, and G3, G4, G5, and G6 electrodes that accelerate and focus the electron beam emitted from this section. electrode and G5 electrode,
In an in-line electron gun assembly equipped with a multi-stage focusing electron lens system in which a three-stage main focusing electron lens is formed at each opposing part of the G5 and G6 electrodes, the main focusing electron lens of the front two stages on the cathode side of the central electron gun By making the electron lens electrode aperture larger than the electrode aperture of both outer electron guns, and by making the third stage main electron lens electrode aperture on the electron beam exit side of both outer electron guns larger than the electrode aperture of the central electron gun, The spherical aberration can be reduced by the large-diameter focusing electron lens stage of each electron gun without changing the strength of both outer main electron lenses.

以下、本発明の一実施例を図に基づいて詳述す
る。
Hereinafter, one embodiment of the present invention will be described in detail based on the drawings.

第2図は本発明の一実施例を示し、電気的、構
造的に共通で、各電子ビーム通路には実質的に個
別の電子レンズを形成する一体化電極を備え、主
電子レンズがG3〜G6電極から成る四つの電極を
互に対向させて三段の主集束電子レンズを構成し
たインライン型電子銃構体の三電子銃の軸を含
む要部側断面図である。
FIG. 2 shows an embodiment of the invention which is electrically and structurally common and includes integrated electrodes forming substantially separate electron lenses in each electron beam path, with the main electron lens being G3~ FIG. 2 is a sectional side view of a main part of an in-line electron gun assembly 2 including the axis of three electron guns, in which four electrodes consisting of G6 electrodes are opposed to each other to constitute a three-stage main focusing electron lens.

インライン型電子銃構体は互に絶縁されて従
来と同一の三電子銃相互間距離Sを保つて一列に
整列した三つの陰極20(図示せず)と、これに
対向して電子ビーム進行方向に順次配置される一
体化電極であるG1電極21、G2電極22(以上
を電子ビーム形成部と呼ぶ)及び二つの閉塞筒状
体電極を口縁部で重ね合せた、或いは単独で用い
られた第1〜第4集束電極であるG3電極23〜
G6電極26と遮蔽磁極27から構成され、遮蔽
磁極27を除く各電極は図示されないが各電極支
持部を介して絶縁物支持杆28に融着固定され、
所定の電極間隔を保持し、各電子ビーム通路ごと
に独立の電子銃2R,2G,2Bを形成してい
る。
The in-line electron gun structure 2 has three cathodes 20 (not shown) that are insulated from each other and arranged in a line with the same distance S between the three electron guns as in the conventional case, and a cathode 20 (not shown) that faces in the electron beam traveling direction. The G1 electrode 21, the G2 electrode 22 (the above is referred to as an electron beam forming part), which are integrated electrodes arranged sequentially in G3 electrode 23 which is the first to fourth focusing electrodes
Consisting of a G6 electrode 26 and a shielding magnetic pole 27, each electrode except the shielding magnetic pole 27 is fused and fixed to an insulator support rod 28 via each electrode support part, although not shown.
A predetermined electrode spacing is maintained, and independent electron guns 2R, 2G, and 2B are formed for each electron beam path.

ここにG4電極24とG6電極26とは互に接続
されて高電圧の陽極電圧が与えられ、G3電極2
3とG5電極25も互に接続されて陽極電圧の10
〜40%程度の中高電圧が与えられ、G3電極23
とG4電極24、G4電極24とG5電極25及び
G5電極25とG6電極26の夫々対向二電極間に
集束電子レンズを三段に形成している。
Here, the G4 electrode 24 and the G6 electrode 26 are connected to each other and a high anode voltage is applied to the G3 electrode 2.
3 and G5 electrodes 25 are also connected to each other and the anode voltage is 10
A medium-high voltage of ~40% is applied to the G3 electrode 23.
and G4 electrode 24, G4 electrode 24 and G5 electrode 25, and
Three stages of focusing electron lenses are formed between two opposing electrodes, G5 electrode 25 and G6 electrode 26, respectively.

一般に焦点距離f1,f2,f3で、各電子レンズ間
距離がd1,d2である合成レンズの焦点距離fは次
式で与えられる。
Generally, the focal length f of a composite lens with focal lengths f 1 , f 2 , f 3 and distances between the electron lenses d 1 and d 2 is given by the following equation.

1/f=1/f1+1/f2+1/f3−d1/f1f2
d2/f2f3 −(d1+d2)/f3f1+d1d2/f1f2f3 ……(1) 然るに第2図及び同図中A−A′矢示のG3電極
23-2の平面図である第3図に図示する様に、陰
極側にあつて第1の集束電子レンズ段を形成する
G3電極23-2とG4電極24-1の対向部に於て、
両外側電子銃2R,2Bの両外側開孔HS34の口径
D2を第1図に示すG3電極13、G4電極14が持
つ従来と同一開孔径D30,D40に保つて、中央電
子銃2Gの中央開孔HC34の口径D1を両外側開孔
HS34の口縁に外接するまで両外側開孔より大口径
化する。同様に第2図及び同図中B−B′矢示の
G4電極24-2の平面図である第4図に図示する
様に、第2の集束電子レンズ段を形成するG4電
極24-2とG5電極25-1の対向部に於ても、中
央電子銃2Gの中央開孔HC45の口径を前記D1に、
両外側開孔HS45の口径をD2に夫々設定する。一
方第2図及び同図中C−C′矢示のG5電極25-2
の平面図である第5図に図示する様に、電子ビー
ム射出口側にあつて第3段目の集束電子レンズを
形成するG5電極25-2とG6電極26の対向部に
於ては、前述の第1、第2段目の電子レンズと逆
の関係になるように、中央電子銃2Gの中央開孔
HC56の口径を小口径のD2に、両外側電子銃2R,
2Bの両外側開孔HS56の口径を大口径のD1
夫々設定する。
1/f=1/f 1 +1/f 2 +1/f 3 −d 1 /f 1 f 2
d 2 / f 2 f 3 − (d 1 + d 2 ) / f 3 f 1 + d 1 d 2 / f 1 f 2 f 3 ...(1) However, in Fig. 2 and the arrow A-A' in the same figure, As shown in FIG. 3, which is a plan view of the G3 electrode 23-2 , a first focusing electron lens stage is formed on the cathode side.
At the opposing part of G3 electrode 23 -2 and G4 electrode 24 -1 ,
Diameter of both outer openings H S34 of both outer electron guns 2R and 2B
While keeping D 2 at the same aperture diameters D 30 and D 40 as the conventional ones of the G3 electrode 13 and G4 electrode 14 shown in FIG.
The diameter becomes larger than both outer openings until it circumscribes the rim of H S34 . Similarly, in Fig. 2 and the arrow B-B' in the same figure,
As shown in FIG . 4 , which is a plan view of the G4 electrode 24-2 , the center electron The caliber of the central opening H C45 of gun 2G is D1 ,
The diameter of both outer openings H S45 is set to D2 . On the other hand, the G5 electrode 25 -2 shown in Fig. 2 and the C-C' arrow in the same figure
As shown in FIG. 5, which is a plan view of the electron beam, in the opposing portion of the G5 electrode 25-2 and the G6 electrode 26, which form the third stage focusing electron lens on the electron beam exit side, The central aperture of the central electron gun 2G has a reverse relationship with the first and second stage electron lenses described above.
Change the caliber of H C56 to small caliber D 2 , both outer electron guns 2R,
The diameters of both outer openings H S56 of 2B are set to the large diameter D1 .

ここで中央及び両外側電子レンズを夫々サフイ
ツクスC、Sで、口径D1,D2により形成される
電子レンズをサフイツクス1,2で現わし、前述
した電子レンズに(1)式を適用すれば中央及び両外
側電子銃の合成主電子レンズの焦点距離fcenter、
fsideは次式で与えられる。
Here, if the central and both outer electron lenses are represented by suffixes C and S, and the electron lenses formed by apertures D 1 and D 2 are represented by suffixes 1 and 2, and equation (1) is applied to the above-mentioned electron lens, then Focal length fcenter of the composite main electron lens of the central and both outer electron guns,
fside is given by the following formula.

1/fcenter=1/fC11+1/fC12+1/fC2−d1/fC
11
fC12 −d2/fC12fC2−d1+d2/fC2fC11+d1d2/fC11fC12
fC2……(2) 1/fside=1/fS21+1/fS22+1/fS1−d1/fS21
fS22 −d2/fS22fS1−d1+d2/fS1fS21+d1d2/fS21fS22
fS1……(3) 通常d1<D1,D2であるからfC11=fC12≡fC1、fS21
=fS22≡fS2となり、(2)、(3)式は 1/fcenter=2/fC1+1/fC2−d1/f2C1−d2/f
C1fC2 −d1+d2/fC2fC1+d1d2/f2C1fC2 …(4) 1/fside=2/fS2+1/fS1−d1/f2S2−d2/fS2
fS1 −d1+d2/fS1fS2+d1d2/f2S2fS1……(5) となる。
1/fcenter=1/f C11 +1/f C12 +1/f C2 -d 1 /f C
11
f C12 −d 2 /f C12 f C2 −d 1 +d 2 /f C2 f C11 +d 1 d 2 /f C11 f C12
f C2 ……(2) 1/fside=1/f S21 +1/f S22 +1/f S1 −d 1 /f S21
f S22 −d 2 /f S22 f S1 −d 1 +d 2 /f S1 f S21 +d 1 d 2 /f S21 f S22
f S1 ...(3) Normally d 1 < D 1 , D 2 so f C11 = f C12 ≡ f C1 , f S21
=f S22 ≡f S2 , and equations (2) and (3) are 1/fcenter=2/f C1 +1/f C2 −d 1 /f 2 / C1 −d 2 /f
C1 f C2 −d 1 +d 2 /f C2 f C1 +d 1 d 2 /f 2 / C1 f C2 …(4) 1/fside=2/f S2 +1/f S1 −d 1 /f 2 / S2 −d 2 /f S2
f S1 −d 1 +d 2 /f S1 f S2 +d 1 d 2 /f 2 / S2 f S1 ...(5).

又中央及び両外側電子レンズの口径の関係は、
D1>D2であることから、 fC1>fC2、fS1>fS2 ……(6) なる関係が成立する。
Also, the relationship between the apertures of the central and both outer electron lenses is
Since D 1 > D 2 , the following relationships hold: f C1 > f C2 , f S1 > f S2 (6).

更に上記構成の電子銃ではd1<d2と選べるか
ら、同一口径を持つていても電子レンズが形成さ
れる段部の相違によつて fC1>fS1、fC2<fS2 ……(7) 従がつて(4)〜(7)式から fcenter=fside ……(8) とすることが可能である。一方(4)、(5)式より明ら
かに次の関係が成立する。
Furthermore, in the electron gun with the above configuration, d 1 < d 2 can be selected, so even if the aperture is the same, f C1 > f S1 , f C2 < f S2 ...( 7) Therefore, from equations (4) to (7), it is possible to set fcenter=fside...(8). On the other hand, the following relationship clearly holds from equations (4) and (5).

fcenter<fC1、fC2、fside<fS1、fS2 ……(9) 上述の様に、本発明による電子銃では中央電子
銃2G、両外側電子銃2R,2Bの主電子レンズ
部には各々大口径部電子レンズ段があるため、そ
の大口径電子レンズ段では従来の三電子銃が等径
で構成されているよりも、レンズ強度を弱く、球
面収差を極めて小さく出来、又(9)式で示される様
に、多段集束レンズによる各段の集束レンズ強度
の弱く、且つ球面収差低減効果と相乗して、中央
と両外側電子銃の主電レンズの収差は著しく小さ
くなる。従がつて本発明の実施例によれば多段集
束電子レンズの球面収差を十分低減して高解像度
特性を得ることが出来る。
fcenter<f C1 , f C2 , fside<f S1 , f S2 ...(9) As mentioned above, in the electron gun according to the present invention, the main electron lens parts of the central electron gun 2G and both outer electron guns 2R and 2B are Since each stage has a large-diameter electron lens stage, the lens strength can be weaker and the spherical aberration can be made extremely small in the large-diameter electron lens stage than in conventional three-electron guns configured with equal diameters, and (9) As shown in the formula, the aberrations of the main electric lenses of the central and both outer electron guns are significantly reduced due to the weak focusing lens strength of each stage of the multi-stage focusing lens and the effect of reducing spherical aberration. Therefore, according to the embodiments of the present invention, it is possible to sufficiently reduce the spherical aberration of the multistage focusing electron lens and obtain high resolution characteristics.

更に本発明では中央と両外側電子銃の大口径電
子レンズ部を異つた段に設けているが、その大口
径電子レンズ部段数を異ならせることにより(8)式
に示す様に中央と両外側電子銃の集束条件を一致
させることが出来る。
Furthermore, in the present invention, the large-diameter electron lens parts of the center and both outer electron guns are provided at different stages, but by making the number of stages of the large-diameter electron lens parts different, as shown in equation (8), It is possible to match the focusing conditions of the electron gun.

又本発明では大口径主電子レンズ部を中央電子
銃では前段に、両外側電子銃では後段に構成して
いるが、これはインライン型電子銃構体を組立て
る際に、一般的には電子ビーム射出端(本実施例
ではG6電極26に相当する)側から複数の電子
銃構成電極をその両外側開孔部に芯棒を通し、順
に積重ねながら組立てられるので、芯棒径と積重
ねられる電極開孔径とが完全嵌合出来ることを考
慮したものであり、大口径部が本実施と前段、後
段で逆になつていれば電子銃構体の組立は困難と
なり、組立精度も悪くなる。
In addition, in the present invention, the large-diameter main electron lens section is configured at the front stage of the central electron gun and at the rear stage of both outer electron guns, but this is generally not necessary when assembling an in-line electron gun structure. Since the core rod is passed through the plurality of electron gun constituent electrodes from the end (corresponding to the G6 electrode 26 in this example) side through their both outer openings, and they are stacked one on top of the other in order, the diameter of the core rod and the aperture diameter of the electrodes to be stacked are the same. This is done in consideration of the fact that the two parts can be completely fitted together, and if the large-diameter parts are reversed in this embodiment and in the front and rear stages, it will be difficult to assemble the electron gun assembly, and the assembly accuracy will also deteriorate.

或いは本発明では従来と同一の三電子銃相互間
隔を保つて主電子レンズを多段集束電子レンズと
し、中央電子銃と両外側電子銃とでは異つた集束
電子レンズ段で大口径化したため、同一集束電子
レンズ段で三つの開孔を同一に大口径するより有
効に大口径化出来、その電極加工形成は容易とな
る。例えば三電子銃相互間隔距離S=6.6mmの場
合、小口径部径D2を従来と同一の5.5mmとし、隣
接開孔間隙を0.5mmとすれば大口径部径D1=6.7mm
と大きく出来、これは小口径部径D2の約22%増
となつている。
Alternatively, in the present invention, the main electron lens is a multi-stage focusing electron lens while maintaining the same distance between the three electron guns as in the past, and the central electron gun and both outer electron guns have different focusing electron lens stages with large apertures. It is possible to effectively increase the diameter of the three openings in the electron lens stage compared to making the same large diameter holes, and the electrode processing and formation thereof becomes easier. For example, when the distance S between three electron guns is 6.6 mm, the diameter D 2 of the small diameter part is 5.5 mm, which is the same as before, and the gap between adjacent holes is 0.5 mm, the diameter D 1 of the large diameter part is 6.7 mm.
This is approximately 22% larger than the small diameter D2 .

以上の説明では三段から成る集束電子レンズは
中高電圧と高電圧とが交互に印加された多段集束
電子レンズであつたが、四つの電極への印加電圧
配分率や電極長の異つた組合せの場合、或いは他
の集束電子レンズ方式であつても本発明を適用出
来ることは云うまでもない。
In the above explanation, the three-stage focusing electron lens was a multi-stage focusing electron lens in which medium-high voltage and high voltage were applied alternately. Needless to say, the present invention can be applied to other focusing electron lens systems.

更に電子銃構体は一体化電極を用いたインライ
ン型電子銃に限定されることなく、中央及び両外
側電子銃が各々独立の電極で構成されたインライ
ン型電子銃構体にも本発明は適用可能である。
Further, the electron gun structure is not limited to an in-line type electron gun using an integrated electrode, but the present invention is also applicable to an in-line type electron gun structure in which the center and both outer electron guns are each composed of independent electrodes. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来用いられている主電子レンズがバ
イ・ポテンシヤル・フオーカス方式を採るインラ
イン型電子銃構体の三電子銃の軸を含む側断面図
を、第2図は本発明の一実施例を示す主電子レン
ズが多段集束電子レンズ方式を採るインライン型
電子銃構体の三電子銃の軸を含む側断面図を、第
3,4,5図は第2図中の矢示A−A′,B−B′,
C−C′のG3電極23-2、G4電極24-2、G5電極
25-2の平面図を夫々示す。 13,23……G3電極、14,24……G4電
極、25……G5電極、26……G6電極、HS34
…G3電極23-2、G4電極24-1の両外側開孔、
HC34……G3電極23-2、G4電極24-1の中央開
孔、HS45……G4電極24-2、G5電極25-1の両
外側開孔、HC45……G4電極24-2、G5電極25
-1の中央開孔、HS56,H′S56……G5電極25-2
G6電極26の両外側開孔、HC56,H′C56……G5電
極25-2、G6電極26の中央開孔、S……三電
子銃相互間距離。
Fig. 1 is a side sectional view including the axis of three electron guns of an in-line electron gun assembly in which the main electron lens used in the past adopts a bipotential focus method, and Fig. 2 shows an embodiment of the present invention. Figures 3, 4, and 5 are side sectional views including the axes of three electron guns of an in-line type electron gun assembly in which the main electron lens adopts a multi-stage focusing electron lens system. B-B',
Plan views of the G3 electrode 23 -2 , the G4 electrode 24 -2 , and the G5 electrode 25 -2 of C-C' are shown, respectively. 13, 23...G3 electrode, 14, 24...G4 electrode, 25...G5 electrode, 26...G6 electrode, H S34 ...
...Both outer openings of G3 electrode 23 -2 and G4 electrode 24 -1 ,
H C34 ... G3 electrode 23 -2 , central opening of G4 electrode 24 -1 , H S45 ... G4 electrode 24 -2 , both outer openings of G5 electrode 25 -1 , H C45 ... G4 electrode 24 -2 , G5 electrode 25
-1 central opening, H S56 , H′ S56 ...G5 electrode 25 -2 ,
Both outer openings of the G6 electrode 26, H C56 , H' C56 . . . G5 electrode 25 -2 , central opening of the G6 electrode 26, S . . . distance between three electron guns.

Claims (1)

【特許請求の範囲】[Claims] 1 少くとも陰極、G1電極、G2電極からなる電
子ビーム形成部と、これより射出された電子ビー
ムを加速、集束するG3、G4、G5、G6電極を有
し、G3電極とG4電極、G4電極とG5電極、G5電
極とG6電極の各対向部で三段の主集束電子レン
ズを形成する多段集束電子レンズ系を備えたイン
ライン型電子銃構体に於て、陰極側にある前二段
の主電子レンズ電極口径を中央電子銃のみ中央及
び両外側電子銃の口径を等径にしたより大きく
し、電子ビーム射出側にある第三段の主電子レン
ズ電極口径を両外側電子銃のみ中央及び両外側電
子銃の口径を等径にしたより大きくすることによ
つて中央と両外側主電子レンズの各合成主電子レ
ンズの強さを変えることなく、各電子銃の主電子
レンズを等径化したよりも大口径化された集束電
子レンズ段で球面収差を低減したことを特徴とす
るインライン型電子銃。
1 It has an electron beam forming section consisting of at least a cathode, a G1 electrode, and a G2 electrode, and G3, G4, G5, and G6 electrodes that accelerate and focus the electron beam emitted from this section, and the G3 electrode, G4 electrode, and G4 electrode In an in-line electron gun assembly equipped with a multi-stage focusing electron lens system in which a three-stage main focusing electron lens is formed by opposing parts of the G5 electrode, the G5 electrode, and the G6 electrode, the first two main stages on the cathode side The aperture of the electron lens electrode of the central electron gun is set to be larger than that of the center and both outer electron guns, and the aperture of the main electron lens electrode of the third stage on the electron beam exit side is set to be larger than that of the center and both outer electron guns. By making the aperture of the outer electron gun larger than when the diameter was made equal, the main electron lenses of each electron gun were made equal in diameter without changing the strength of each composite main electron lens of the central and both outer main electron lenses. An in-line electron gun characterized by reducing spherical aberration with a focusing electron lens stage with a larger diameter than the previous one.
JP9274382A 1982-05-31 1982-05-31 In-line-type electron gun Granted JPS58209853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9274382A JPS58209853A (en) 1982-05-31 1982-05-31 In-line-type electron gun

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9274382A JPS58209853A (en) 1982-05-31 1982-05-31 In-line-type electron gun

Publications (2)

Publication Number Publication Date
JPS58209853A JPS58209853A (en) 1983-12-06
JPH0129017B2 true JPH0129017B2 (en) 1989-06-07

Family

ID=14062891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9274382A Granted JPS58209853A (en) 1982-05-31 1982-05-31 In-line-type electron gun

Country Status (1)

Country Link
JP (1) JPS58209853A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4887009A (en) * 1986-02-12 1989-12-12 Rca Licensing Corporation Color display system

Also Published As

Publication number Publication date
JPS58209853A (en) 1983-12-06

Similar Documents

Publication Publication Date Title
JPH0729512A (en) Color picture tube
KR910001157B1 (en) Electrode assembly for electrostatic lens of electron gun
JPH0312419B2 (en)
CN1038542C (en) Electron gun for a color cathode ray tube
JPH04269429A (en) Electron gun for color cathode ray tube
JPH0129017B2 (en)
JP2567828Y2 (en) In-line type electron gun
JPS6049541A (en) Color cathode ray tube with electron gun and method of producing same gun
JPH0133894B2 (en)
JPS61188840A (en) Electron gun
JPH0129016B2 (en)
US6013976A (en) In-line SB electron gun with large and deep main lens apertures
JPH0452586B2 (en)
JP3348869B2 (en) Color cathode ray tube
JPH021338B2 (en)
US5907217A (en) Uni-bipotential symmetrical beam in-line electron gun
JPH08129966A (en) Chain-shaped hollow main-lens structure comprising slender hole having circular central part for color crt electron gun
JPH024094B2 (en)
JP2685485B2 (en) Color picture tube
JPH01187744A (en) Color image receiving tube
JPH05266822A (en) Color picture tube device
JPH0132287Y2 (en)
JPH0337941A (en) Electron gun for color television picture tube
KR890000832Y1 (en) An electron gun
JPS6321085Y2 (en)