JPH0129016B2 - - Google Patents

Info

Publication number
JPH0129016B2
JPH0129016B2 JP6568482A JP6568482A JPH0129016B2 JP H0129016 B2 JPH0129016 B2 JP H0129016B2 JP 6568482 A JP6568482 A JP 6568482A JP 6568482 A JP6568482 A JP 6568482A JP H0129016 B2 JPH0129016 B2 JP H0129016B2
Authority
JP
Japan
Prior art keywords
electron
electrode
electrodes
electron lens
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6568482A
Other languages
Japanese (ja)
Other versions
JPS58184241A (en
Inventor
Kazuaki Naiki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP6568482A priority Critical patent/JPS58184241A/en
Publication of JPS58184241A publication Critical patent/JPS58184241A/en
Publication of JPH0129016B2 publication Critical patent/JPH0129016B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/48Electron guns
    • H01J29/50Electron guns two or more guns in a single vacuum space, e.g. for plural-ray tube
    • H01J29/503Three or more guns, the axes of which lay in a common plane

Description

【発明の詳細な説明】 本発明はインライン型カラー受像管用電子銃の
電子レンズに於ける解像度の改善に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvement of resolution in an electron lens of an in-line color picture tube electron gun.

受像管用電子銃の解像度特性は主として電子レ
ンズの球面収差に制約され、高解像度特性を得る
ためには主電子レンズを構成する電極口径を大き
くして電子レンズの球面収差を小さくする必要が
ある。電子ビームの通過する三つの開孔が一直線
上に配列されたインライン型電子銃では、単に主
電子レンズ口径を大きくすれば開孔間距離である
離心距離が大きくなると共に、電子銃を配設する
受像管ネツク径を大きくせねばならない。
The resolution characteristics of an electron gun for a picture tube are mainly limited by the spherical aberration of the electron lens, and in order to obtain high resolution characteristics, it is necessary to reduce the spherical aberration of the electron lens by increasing the diameter of the electrode that constitutes the main electron lens. In an in-line electron gun in which three apertures through which the electron beam passes are arranged in a straight line, simply increasing the diameter of the main electron lens increases the eccentric distance between the apertures and also increases the distance between the apertures and the arrangement of the electron gun. The picture tube neck diameter must be increased.

周知のように離心距離の増大は三電子ビームを
螢光面上全域にわたつて一点に集中させるコンバ
ージエンス特性を劣化させ、ネツク径の増大は受
像管の偏向電力の増大化となりいずれも望ましく
ない。
As is well known, an increase in the eccentric distance deteriorates the convergence characteristic of concentrating the three electron beams over the entire area on the fluorescent surface, and an increase in the net diameter increases the deflection power of the picture tube, both of which are undesirable. .

そこで第1図、2図に示す様に、インライン型
電子銃の離心距離Sとネツク径を変更することな
く、主電子レンズ構成電極の口径Dを大きくする
方法として、三つの開孔の離心距離S以上の口径
Dを持つた三つの開孔を互に重畳してインライン
配列する電極構造が提案されている。
Therefore, as shown in Figures 1 and 2, as a method of increasing the aperture D of the main electron lens constituent electrode without changing the eccentric distance S and the net diameter of the in-line electron gun, the eccentric distance of the three apertures is An electrode structure has been proposed in which three apertures having an aperture D of S or more are arranged in-line by overlapping each other.

第1図は三つの開孔離心距離S以上の口径Dを
持つた開孔11R,11G,11Bが互に重畳さ
れてインライン配列された電極11の上面図を示
し、各開孔11R,11G,11Bは独立した開
孔を形成せず重畳部が連続した連通孔となつてお
り、隣接開孔境界には直線状仕切電極12が設置
されている。第2図は上記構造の電極を集束電極
G3と、陽極電極G4として互に対向させてバイ・
ポテンシヤル・フオーカス方式主電子レンズを形
成した電子銃構体1の側断面図を示す。この主電
子レンズは第1図に示す様に集束電極G3、陽極
電極G4の各開孔が軸対称で独立した開孔でなく、
開孔配列方向である水平方向に直線部を持つた欠
円状となつているため、水平方向レンズ作用は垂
直方向レンズ作用より弱くなり、螢光面上のビー
ムスポツトは縦長状となり、垂直方向解像度が損
われる。特に中央開孔は水平方向の両端に直線部
を持つた欠円状となているため両外側開孔部で形
成されるビームスポツトより一層縦長状となり、
中央部主電子レンズの垂直解像度は両外側部主電
子レンズより更に劣化してしまう。この解像度特
性劣化は電子レンズ内占有電子ビーム径が大きく
なる高電流域に於て一層顕著となる。
FIG. 1 shows a top view of the electrode 11 in which three apertures 11R, 11G, and 11B each having a diameter D greater than or equal to the aperture eccentric distance S are arranged in-line by overlapping each other, and each aperture 11R, 11G, Reference numeral 11B does not form independent openings, but is a continuous communication hole with an overlapping portion, and a linear partition electrode 12 is installed at the boundary between adjacent openings. Figure 2 shows the electrode with the above structure as a focusing electrode.
G3 and G4 are placed opposite each other as anode electrode G4.
A side sectional view of an electron gun assembly 1 in which a potential focus type main electron lens is formed is shown. As shown in Fig. 1, this main electron lens has apertures in the focusing electrode G3 and anode electrode G4 that are axially symmetrical and not independent apertures.
Since it has an truncated circular shape with a straight line in the horizontal direction, which is the direction in which the holes are arranged, the horizontal lens action is weaker than the vertical lens action, and the beam spot on the fluorescent surface becomes vertically elongated. Resolution is lost. In particular, the central aperture has a truncated circular shape with straight parts at both horizontal ends, making it more vertically elongated than the beam spot formed by the outer apertures.
The vertical resolution of the central main electron lens is further degraded than that of both outer main electron lenses. This deterioration in resolution characteristics becomes more noticeable in a high current region where the diameter of the electron beam occupying the electron lens becomes large.

通常最終電極の主電子レンズの開孔離心距離は
上述のSより3〜5%程度大きくし、外側の二電
子ビームを静電気的に集中させているが、ここで
は説明の便宜上、微小開孔離心距離増加に基づく
口径の増加は無視することにする。
Normally, the aperture eccentricity of the main electron lens of the final electrode is set to be about 3 to 5% larger than the above-mentioned S, and the outer two electron beams are electrostatically concentrated. We will ignore the increase in aperture due to increase in distance.

本発明は上述の欠点を除去して従来のインライ
ン型電子銃構体の三電子銃開孔離心距離を同一に
保つたまま主電子レンズの球面収差を十分低減し
て、高解像度特性を得られるインライン型電子銃
構体を提供することを目的とする。
The present invention eliminates the above-mentioned drawbacks and sufficiently reduces the spherical aberration of the main electron lens while keeping the three electron gun aperture eccentric distances of the conventional inline electron gun assembly the same. The purpose is to provide a type electron gun structure.

即ち、インライン型電子銃構体の主電子レンズ
を三つ以上の電極を対向させて二つ以上の対向二
電極間で集束電子レンズ段を構成する多段集束電
子レンズとし、前段から後段に至る各集束電子レ
ンズ段で開孔離心距離Sを同一に保つたまま主電
子レンズ電極口径DのSに対する比を1以下から
1以上に徐々に大きくして大口径化された集束電
子レンズ段で球面収差を低減出来るようにしたも
のである。
That is, the main electron lens of the in-line electron gun structure is a multi-stage focusing electron lens in which three or more electrodes are opposed to each other and a focusing electron lens stage is constructed between two or more opposing electrodes, and each focusing electron lens from the front stage to the rear stage is While keeping the aperture eccentric distance S the same in the electron lens stage, the ratio of the main electron lens electrode aperture D to S is gradually increased from 1 or less to 1 or more to eliminate spherical aberration in the large-diameter focusing electron lens stage. It is designed so that it can be reduced.

以下、本発明の一実施例を図面に基づいて詳述
する。
Hereinafter, one embodiment of the present invention will be described in detail based on the drawings.

第3図は本発明の一実施例を示し、電気的、構
造的に三電子銃で共通で、各電子ビーム通路には
実質的に個別の電子レンズを形成する一体化電極
を備え、主電子レンズが多段集束電子レンズであ
るインライン型電子銃構体2の三電子銃の軸を含
む要部側断面図である。
FIG. 3 shows an embodiment of the invention, which is electrically and structurally common to three electron guns, each electron beam path having an integrated electrode forming a substantially separate electron lens, and the main electron FIG. 2 is a sectional side view of a main part of an in-line electron gun assembly 2 whose lenses are multistage focusing electron lenses, including the axes of three electron guns.

インライン三電子銃型電子銃構体2は互に絶縁
されて従来と同一の三電子銃開孔離心距離Sを保
つて一列に整列した三つの陰極構体20(図示せ
ず)と、これに対向して電子ビーム進行方向に順
次配置される一体化電極であるG1電極21、G2
電極22、及び二つの閉塞筒状体電極を口縁部で
重ね合せた電極を含む第1〜4集束電極である
G3〜G6電極23〜26と遮蔽磁極27から構成
され、遮蔽磁極27を除く各電極は図示されない
が各電極支持部を介して絶縁物支持杆28に融着
固定され、所定の電極間隔を保持し、各電子ビー
ム通路ごとに独立の電子銃2R,2G,2Bを形
成している。ここにG4電極24とG6電極26と
は互に接続されて高電圧の陽極電圧が与えられ、
G3電極23とG5電極25も互に接続され陽極電
圧の10〜40%程度の中高電圧が与えられ、G3電
極23とG4電極24、G4電極24とG5電極2
5、及びG5電極25とG6電極26の夫々対向二
電極間に集束電子レンズを三段に形成している。
The in-line three-electron gun type electron gun assembly 2 is opposed to three cathode assemblies 20 (not shown) that are insulated from each other and arranged in a line with the same three-electron gun aperture eccentric distance S as in the past. G1 electrode 21 and G2 are integrated electrodes arranged sequentially in the electron beam traveling direction.
The electrode 22 and the first to fourth focusing electrodes include an electrode in which two occluded cylindrical body electrodes are overlapped at the mouth edge.
Consisting of G3 to G6 electrodes 23 to 26 and a shielding magnetic pole 27, each electrode except the shielding magnetic pole 27 is fused and fixed to an insulator support rod 28 via each electrode support part, although not shown, to maintain a predetermined electrode spacing. However, independent electron guns 2R, 2G, and 2B are formed for each electron beam path. Here, the G4 electrode 24 and the G6 electrode 26 are connected to each other and a high anode voltage is applied.
The G3 electrode 23 and the G5 electrode 25 are also connected to each other and a medium-high voltage of about 10 to 40% of the anode voltage is applied.
5, and three stages of focusing electron lenses are formed between two opposing electrodes, G5 electrode 25 and G6 electrode 26, respectively.

然るに第3図及び同図中A−A′、B−B′、C
−C′矢印のG3電極23-2、G4電極24-2、G5電
極25-2の平面図の一部である第4〜第6図に図
示するように、同一の開孔離心距離Sに対し各集
束電子レンズ段での電極開孔径は互に重畳しない
大きさから互に重畳する径まで三段階にわたつて
大きくなつている。
However, in Figure 3 and in the same figure, A-A', B-B', and C
As shown in FIGS. 4 to 6, which are part of the plan views of the G3 electrode 23 -2 , the G4 electrode 24 -2 , and the G5 electrode 25 -2 indicated by the arrow -C', On the other hand, the diameter of the electrode apertures in each focusing electron lens stage increases in three stages, from a size that does not overlap with each other to a diameter that overlaps with each other.

即ち、第1段の集束電子レンズ段を形成する
G3電極23-2、G4電極24-1では、その電極開
孔H34の口径D1は通常電極形成に用いられる板厚
が0.2〜0.4mmの電極材に対し中央と両外側開孔の
挾隙部間隔がS−D1=1.2〜0.7mmと十分大きくと
れ、電極形成が容易な値に選ばれ、0.75≦D1/S
<0.835の関係を満している。尚上記条件を満す
D1の大きさは従来通常用いられていると同一の
値である。
That is, the first focusing electron lens stage is formed.
In the G3 electrode 23 -2 and the G4 electrode 24 -1 , the diameter D 1 of the electrode hole H 34 is the diameter D 1 of the center and both outer holes for the electrode material with a plate thickness of 0.2 to 0.4 mm, which is normally used for electrode formation. The gap distance was selected to be sufficiently large, S-D 1 = 1.2 to 0.7 mm, and the electrode formation was easy, and 0.75≦D 1 /S
It satisfies the relationship <0.835. In addition, the above conditions are met
The size of D 1 is the same value as conventionally used.

第2段の集束電子レンズ段を形成するG4電極
24-2、G5電極25-1では、出願人が既に開示
した電極形成方法により形成されて、三つの開孔
H45の開孔口径D2は互に重畳することなく、中央
と両外側開孔の挾隙部間隔S−D2が電極形成材
の板厚程度になるまで大きくした値を持つてい
る。この場合D2とSの関係は0.835≦D2/S<1.0
を満している。
The G4 electrode 24 -2 and the G5 electrode 25 -1 forming the second focusing electron lens stage are formed by the electrode forming method already disclosed by the applicant, and have three openings.
The aperture diameter D 2 of H 45 has a value that is increased so that the gap S-D 2 between the central and both outer apertures is approximately the thickness of the electrode forming material without overlapping each other. In this case, the relationship between D 2 and S is 0.835≦D 2 /S<1.0
meets the requirements.

次に第3段の集束電子レンズ段を形成するG5
電極25-2、G6電極26では三つの開孔H56の開
孔口径D3は開孔離心距離S以上で、従つて三つ
の開孔は互に重畳するが、その形状は中央と両外
側開孔の重畳部は幅が電極形成材板厚程度の直線
状仕切り部C56を持つた欠円状開孔となつている。
前述した第1段、2段の集束電子レンズを形成す
る電極開孔H34,H45の周囲に形成される各突状
縁B34,B45は連続しているか、G5電極25-2
G6電極26の開孔H56の周囲に形成されるか突状
縁B56は中央開孔では2ケ所、両外側開孔では1
カ所切断された不連続となつているため、重畳部
には形成された突状縁B56の高さより高い仕切り
電極29が設置され、第3段の集束電子レンズ段
に形成される電子レンズ電界が互に干渉して電子
レンズ電界が乱れないようにしてある。G5電極
25-2、G6電極26の開孔H56の重畳の程度は余
り大きくすると各開孔には開孔配列方向である水
平方向に直線部を持つた欠円状となつていて、水
平方向レンズ作用が垂直方向レンズ作用より著し
く弱くなるため、この影響を本発明による構造の
電子銃で最小限にするには1.0≦D3/S<1.2を満
足するように開孔径D3を選べばよい。
Next, G5 forms the third focusing electron lens stage.
In the electrode 25 -2 and the G6 electrode 26, the aperture diameter D 3 of the three apertures H 56 is greater than or equal to the aperture eccentric distance S, so the three apertures overlap each other, but their shape is that of the center and both outer sides. The overlapping part of the openings is a truncated circular opening having a linear partition part C56 whose width is approximately the thickness of the electrode forming material.
Are the projecting edges B 34 and B 45 formed around the electrode openings H 34 and H 45 forming the first and second stage focusing electron lenses described above continuous ?
The protruding edges B 56 formed around the aperture H 56 of the G6 electrode 26 are located at two locations for the central aperture and at one location for both outer apertures.
Since it is discontinuous by being cut at several places, a partition electrode 29 higher than the height of the formed protruding edge B 56 is installed in the overlapped part, and the electron lens electric field formed in the third focusing electron lens stage is installed. This is to prevent the electron lens electric field from being disturbed by interference with each other. If the degree of overlapping of the holes H 56 of the G5 electrode 25 -2 and the G6 electrode 26 is too large, each hole will have a truncated circular shape with a straight line in the horizontal direction, which is the direction in which the holes are arranged. Since the directional lens effect is significantly weaker than the vertical lens effect, in order to minimize this effect in the electron gun structured according to the present invention, the aperture diameter D 3 must be selected to satisfy 1.0≦D 3 /S<1.2. Bye.

以上述べたインライン型電子銃構体ではG1
電極21とG2電極22間に形成されるクロスオ
ーバ点形成後のG3電極23-1の開孔H3を通過し
十分拡散していない三電子銃夫々の電子ビーム束
は第2段、3段目の集束電子レンズの電極口径
D2、D3より小さい口径D1で、且つ完全円孔を備
えた第1段の集束電子レンズで強く集束され、次
に第1段の主電子レンズ電極口径D1より大きく、
且つ完全円孔を備えた第2段の集束電子レンズ内
にほぼ最大のビーム径を持つて導かれる。第2段
の集束電子レンズ段は第1段より電極口径D2
大きく、完全円孔状となつているため、形成され
る電子レンズは第1段より弱く、球面収差が軽減
されていて、電子銃内でほぼ最大のビーム径に達
した電子ビーム束は球面収差の影響を第1段の集
束電子レンズ電極と同一の電極口径を備えた従来
構造の電子銃構体より受けずに、一様に集束され
て第2段の集束電子レンズ段中より電子ビーム径
を十分小さく絞つて、最終段の第3段の集束電子
レンズ内に入射される。第3段の集束電子レンズ
段では不完全円孔であるがその電極口径が最大で
あるため、第2段の集束電子レンズ通過後の電子
ビーム径相当の中心部は第1、第2段の集束電子
レンズより球面収差が小さく、電子レンズの収束
力は開孔配列方向に対する方向性を受けることな
く一様であり、従がつて電子ビーム束は均一に十
分集束され、螢光面上の電子ビームスポツトが非
円形状に歪むことなく、第1段の集束電子レンズ
段と同一電極口径で三段の電子レンズが形成され
た従来構造の電子銃構体を用いた場合より著しく
小さい電子ビームスポツトが螢光面上に得られ、
高解像度特性が得られる。又前記構成により電子
レンズ内占有電子ビーム径が大くなる高電流域に
於ても電子ビームスポツトは非円形状に歪むこと
なく高解像度特性が維持される。
In the in-line electron gun structure 2 described above, G1
After the crossover point is formed between the electrode 21 and the G2 electrode 22, the electron beam fluxes of the three electron guns that have passed through the aperture H3 of the G3 electrode 23-1 and have not been sufficiently diffused are transferred to the second and third stages. Eye focusing electron lens electrode aperture
It is strongly focused by the first stage focusing electron lens, which has an aperture D 1 smaller than D 2 and D 3 and is equipped with a perfect circular hole, and then is larger than the first stage main electron lens electrode aperture D 1 .
The beam is then guided with approximately the maximum beam diameter into a second-stage focusing electron lens equipped with a complete circular hole. The second stage focusing electron lens stage has a larger electrode aperture D 2 than the first stage and has a completely circular hole shape, so the formed electron lens is weaker than the first stage and spherical aberration is reduced. The electron beam flux that has reached almost the maximum beam diameter within the electron gun is not affected by spherical aberration as compared to the electron gun structure of the conventional structure, which has the same electrode aperture as the first stage focusing electron lens electrode, and is uniform. The electron beam is focused to a sufficiently small diameter in the second focusing electron lens stage, and then enters the third focusing electron lens in the final stage. Although the third focusing electron lens stage has an incomplete circular hole, its electrode aperture is the largest, so the center part corresponding to the diameter of the electron beam after passing through the second focusing electron lens is the center part of the first and second stages. The spherical aberration is smaller than that of a focusing electron lens, and the convergence force of the electron lens is uniform without being affected by the directionality in the aperture arrangement direction. Therefore, the electron beam is uniformly and sufficiently focused, and the electrons on the fluorescent surface are The beam spot is not distorted into a non-circular shape, and the electron beam spot is significantly smaller than when using an electron gun structure with a conventional structure in which three stages of electron lenses are formed with the same electrode diameter as the first focusing electron lens stage. Obtained on a fluorescent surface,
High resolution characteristics can be obtained. Furthermore, with the above configuration, even in a high current range where the diameter of the electron beam occupying the electron lens becomes large, the electron beam spot is not distorted into a non-circular shape and high resolution characteristics are maintained.

以上の説明では主電子レンズは4つの主電子レ
ンズ電極から構成された三段の場合について述べ
たが、例えば5つの主電子レンズ電極を対向さ
せ、四段から成る多段集束電子レンズとしてもよ
く、又前記三段からなる集束電子レンズは中高電
圧と高電圧が交互に印加された多段集束電子レン
ズであつたが、4つの電極への印加電圧配分率や
電極長の異つた組み合せの場合、或いは他の多段
集束電子レンズ方式であつても本発明を適用出来
ることは云うまでもない。
In the above explanation, the case where the main electron lens has three stages composed of four main electron lens electrodes has been described, but for example, a multistage focusing electron lens composed of four stages may be used, with five main electron lens electrodes facing each other. Furthermore, the above-mentioned three-stage focusing electron lens was a multi-stage focusing electron lens in which medium-high voltage and high voltage were applied alternately. It goes without saying that the present invention can be applied to other multistage focusing electron lens systems.

更に電子銃構体は一体化電極を用いたインライ
ン型電子銃に限定されることなく、中央及び両外
側電子銃が各々独立の電極で構成されたインライ
ン型電子銃構体にも本発明を適用可能である。
Further, the electron gun structure is not limited to an in-line type electron gun using an integrated electrode, but the present invention can also be applied to an in-line type electron gun structure in which the center and both outer electron guns are each composed of independent electrodes. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は三つの開孔離心距離以上の開孔径を持
ち、互に重畳されてインライン配列された欠円状
重畳型開孔を持つた従来の主電子レンズ構成電極
の上面図、第2図は上記構造の電極を互に対向さ
せてバイ・ポテンシヤル・フオーカス型主電子レ
ンズを形成した電子銃構体の三電子銃の軸を含む
側断面図を、第3図は本発明の一実施例を示す主
電子レンズが多段集束電子レンズ方式を採るイン
ライン型電子銃構体の三電子銃の軸を含む要部側
断面図を、第4図〜第6図は第3図中のA−A′、
B−B′、C−C′矢印のG3電極23-2、G4電極2
-2、G5電極25-2の夫々平面図を示す。 11……主電子レンズ構成電極、12……仕切
電極、21〜26……G1〜G6電極、H34……G3
電極23-2、G4電極24-1の開孔、H45……G4電
極24-2、G5電極25-1の開孔、H56……G5電極
25-2、G6電極26の開孔、B34,B45,B56……
開孔部の突状縁、C56……直線状仕切部。
Fig. 1 is a top view of a conventional main electron lens constituent electrode that has apertures having an aperture diameter greater than the eccentric distance of three apertures, and which has truncated circular superimposed apertures arranged in-line by overlapping each other. 3 is a side sectional view including the axis of the three electron guns of an electron gun assembly in which the electrodes of the above structure are opposed to each other to form a bipotential focus type main electron lens, and FIG. 3 is a side sectional view including the axis of the three electron guns. Figures 4 to 6 are side sectional views of main parts including the axis of three electron guns of an in-line type electron gun assembly in which the main electron lens adopts a multi-stage focusing electron lens system, and Figures 4 to 6 are A-A' in Figure 3;
B-B', C-C'arrow G3 electrode 23 -2 , G4 electrode 2
4 -2 and a plan view of the G5 electrode 25 -2 , respectively. 11...Main electron lens constituent electrode, 12...Partition electrode, 21-26...G1-G6 electrode, H34 ...G3
Electrode 23 -2 , hole in G4 electrode 24 -1 , H 45 ...G4 electrode 24 -2 , hole in G5 electrode 25 -1 , H 56 ...G5 electrode 25 -2 , hole in G6 electrode 26, B34 , B45 , B56 ...
Projected edge of the opening, C 56 ...Straight partition.

Claims (1)

【特許請求の範囲】 1 インライン型電子銃構体の主電子レンズを三
つ以上の電極を対向させて二つ以上の対向二電極
間で集束電子レンズ段を構成する多段集束電子レ
ンズとし、電子ビームを放射する陰極側の前段か
ら後段に至る各集束電子レンズ段で開孔離心距離
Sを同一に保つたまま主電子レンズ電極口径Dの
Sに対する比を1以下から1以上に徐々に大きく
したことを特徴としたインライン型電子銃構体。 2 主電子レンズをG3〜G6電極の4つの電極で
構成し、G4電極とG6電極を共通の高電圧である
陽極電位に、G3電極とG5電極を陽極電圧の10〜
40%に相当する共通の中高電位に保持して、三段
の集束電子レンズを形成した第1項記載のインラ
イン型電子銃構体に於て、第一〜第三段の集束電
子レンズを形成する互に対向したG3電極とG4電
極、G4電極とG5電極、G5電極とG6電極の各電
極口径をD1〜D3とした時、0.75≦D1/S<0.835、
0.835≦D2/S<1.0、1.0≦D3/S<1.2の関係を
満足したことを特徴としたインライン型電子銃構
体。
[Claims] 1. The main electron lens of the in-line electron gun structure is a multi-stage focusing electron lens in which three or more electrodes are opposed to each other and a focusing electron lens stage is configured between two or more opposing two electrodes, and the electron beam is The ratio of the main electron lens electrode aperture D to S was gradually increased from 1 or less to 1 or more while keeping the aperture eccentric distance S the same in each focusing electron lens stage from the front stage to the rear stage on the cathode side that emits . An in-line electron gun structure featuring 2 The main electron lens is composed of four electrodes, G3 to G6, with the G4 and G6 electrodes set to a common high voltage anode potential, and the G3 and G5 electrodes set to a common high voltage of 10 to 10% of the anode voltage.
In the in-line electron gun assembly described in item 1, in which three stages of focusing electron lenses are formed by maintaining a common medium-high potential corresponding to 40%, the first to third stages of focusing electron lenses are formed. When the electrode diameters of the G3 and G4 electrodes, the G4 and G5 electrodes, and the G5 and G6 electrodes facing each other are D 1 to D 3 , 0.75≦D 1 /S<0.835,
An in-line electron gun assembly characterized by satisfying the following relationships: 0.835≦D 2 /S<1.0 and 1.0≦D 3 /S<1.2.
JP6568482A 1982-04-20 1982-04-20 Inline type electron gun structure Granted JPS58184241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6568482A JPS58184241A (en) 1982-04-20 1982-04-20 Inline type electron gun structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6568482A JPS58184241A (en) 1982-04-20 1982-04-20 Inline type electron gun structure

Publications (2)

Publication Number Publication Date
JPS58184241A JPS58184241A (en) 1983-10-27
JPH0129016B2 true JPH0129016B2 (en) 1989-06-07

Family

ID=13294076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6568482A Granted JPS58184241A (en) 1982-04-20 1982-04-20 Inline type electron gun structure

Country Status (1)

Country Link
JP (1) JPS58184241A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5731657A (en) * 1992-04-21 1998-03-24 Hitachi, Ltd. Electron gun with cylindrical electrodes arrangement
US6411026B2 (en) 1993-04-21 2002-06-25 Hitachi, Ltd. Color cathode ray tube
JPH08190877A (en) 1995-01-09 1996-07-23 Hitachi Ltd Cathode-ray tube
KR100863947B1 (en) * 2001-10-17 2008-10-16 삼성에스디아이 주식회사 Electron gun for cathode ray tube
KR100863946B1 (en) * 2001-10-15 2008-10-16 삼성에스디아이 주식회사 Electron gun for cathode ray tube

Also Published As

Publication number Publication date
JPS58184241A (en) 1983-10-27

Similar Documents

Publication Publication Date Title
KR900006173B1 (en) Cathode ray tube device
JPH0136225B2 (en)
JPH021352B2 (en)
JPH0729512A (en) Color picture tube
KR910007654Y1 (en) Electron gun of multi-step focusing crt
JPH0129016B2 (en)
JPH04269429A (en) Electron gun for color cathode ray tube
US6479927B1 (en) Electrode of electron gun and electron gun using the same
JPS5864740A (en) Electron-gun electrode structure
JPH06236736A (en) Electron gun for color cathode-ray tube
US5455481A (en) Electrode structure of an electron gun for a cathode ray tube
US6670744B2 (en) Electron gun for color cathode ray tube with main lens having composite electron beam passing apertures
JP2667181B2 (en) Color picture tube
JPH021344B2 (en)
JPH044686B2 (en)
US6339285B1 (en) Cathode ray tube with auxiliary electrodes having a plurality of slots
JPH0133894B2 (en)
JPS58216342A (en) Electron gun for color picture tube
JP2000156178A (en) Cathode-ray tube
JPS609036A (en) Electron gun electrode assembly
KR940000713Y1 (en) Electron gun for color display tube
KR910001570Y1 (en) Electron gun of inline type crt
JPH0129017B2 (en)
JP2918888B2 (en) In-line type electron gun
JP3355086B2 (en) In-line type electron gun